

Chapter 8: Main MemoryChapter 8: Main Memory

8.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Chapter 8: Memory ManagementChapter 8: Memory Management

1. Background

2. Swapping

3. Contiguous Memory Allocation

4. Paging

5. Structure of the Page Table

6. Segmentation

7. Example: The Intel Pentium

Objectives:

 Detailed description of various ways of organizing memory

hardware

 Various memory-management techniques, including paging and

segmentation

 Detailed description of the Intel Pentium, which supports both

pure segmentation and segmentation with paging

8.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

1. Background1. Background
 Typical instruction/execution cycle

 Fetches an instruction from memory

 Decode

 Operand fetched from memory

 Result stored back in memory

 Memory units see ONLY a stream of memory addresses

 Does not know

 how they are generated (PC, indirection, indexing, literal
addresses…)

 What they are for (data, instruction)

 Accordingly, we can ignore HOW a program generates a memory
address

 We are interested only in the sequence of memory addresses
generated by the running program

8.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Background (cont)Background (cont)

 Program must be brought (from disk) into memory and placed

within a process for it to be run

 Main memory and registers are only storage CPU can access

directly

 Register access in one CPU clock (or less)

 Main memory can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation

 Each process has a separate memory space

8.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Base and Limit RegistersBase and Limit Registers

 A pair of base and limit registers define the logical address space

 The CPU hardware compares EVERY address generated in user

mode with the register

Loaded only by the OS

special privilege

instruction

 Unrestricted access

to the OS

8.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Binding of Instructions and Data to MemoryBinding of Instructions and Data to Memory

 Address binding of instructions and data to memory

addresses can happen at three different stages

 Compile time: If memory location known a priori,

absolute code can be generated; must

recompile code if starting location changes

 Load time: Must generate relocatable code

if memory location is not known at compile time:

reload only user code when location is known

 Execution time: Binding delayed until run time

if the process can be moved during its execution

from one memory segment to another. Special

hardware support must be available (e.g., base

and limit registers)

8.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Logical vs. Physical Address SpaceLogical vs. Physical Address Space

 The concept of a logical address space that is bound to a

separate physical address space is central to proper memory

management

 Logical address – generated by the CPU; also referred to

as virtual address

 Physical address – address seen by the memory unit /

loaded into the memory-address register

 Logical and physical addresses are the same in compile-time

and load-time address-binding schemes; logical (virtual) and

physical addresses differ in execution-time address-binding

scheme

8.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Memory-Management Unit (Memory-Management Unit (MMUMMU))

 Hardware device that maps virtual to physical address

 In MMU scheme, the value in the relocation register is added to every

address generated by a user process at the time it is sent to memory

 The user program deals with logical addresses; it never sees the real

physical addresses

 Could set (a=346) / inc (a++) / compute / compare…

 But when use as an address *a  relocated relative to the base

 Final location not known until the reference is made (exec-time binding)

8.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Dynamic LoadingDynamic Loading

 Up to now, entire program and all data must be in physical memory

 Size of a process <= size of physical memory

 Dynamic loading:

● Routine is not loaded until it is called

● Better memory-space utilization: unused routine is never

loaded

● Useful when large amounts of code are needed to handle

infrequently occurring cases

● No special support from the operating system is required;

implemented through program design

8.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Dynamic LinkingDynamic Linking

 Linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate

memory-resident library routine

 Stub replaces itself with the address of the routine, and

executes the routine

 Operating system needed to check if routine is in processes’

memory address

 Dynamic linking is particularly useful for libraries

 System also known as shared libraries

8.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

2. Swapping2. Swapping

 A process can be swapped temporarily out of memory to a backing store,
and then brought back into memory for continued execution

 Backing store – fast disk large enough to accommodate copies of all
memory images for all users; must provide direct access to these memory
images

 Roll out, roll in – swapping variant used for priority-based scheduling
algorithms; lower-priority process is swapped out so higher-priority process
can be loaded and executed

 Major part of swap time is transfer time; total transfer time is directly
proportional to the amount of memory swapped: 10 MB at 40 MB per
second → around ¼ second

 Modified versions of swapping are found on many systems (i.e., UNIX,
Linux, and Windows)

 System maintains a ready queue of ready-to-run processes that have
memory images on disk

8.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Schematic View of SwappingSchematic View of Swapping

 Context switch time problem

 Process must be completely idle

 Problem with pending I/Os

  never swap process with pending I/0

 Or execute I/O only into OS buffers

8.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

3. Contiguous Allocation3. Contiguous Allocation

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with

interrupt vector

 User processes then held in high memory

 Relocation registers used to protect user processes from each

other, and from changing operating-system code and data

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses – each

logical address must be less than the limit register

 MMU maps logical address dynamically

8.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Contiguous Allocation (Cont.)Contiguous Allocation (Cont.)

 Multiple-partition allocation

 Hole – block of available memory; holes of various size are

scattered throughout memory

 When a process arrives, it is allocated memory from a hole

large enough to accommodate it

 Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

8.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Dynamic Storage-Allocation ProblemDynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size

 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search entire list

 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in terms of

speed and storage utilization

Bit table or linked list to keep track of holes

8.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

FragmentationFragmentation

 External Fragmentation – total memory space exists to satisfy a

request, but it is not contiguous – 50-percent rule: 1/3 of memory

unusable! (statistical analysis)

 Internal Fragmentation – allocated memory may be slightly larger

than requested memory; this size difference is memory internal to a

partition, but not being used

 Reduce external fragmentation by compaction:

 Shuffle memory contents to place all free memory together in

one large block

 Compaction is possible only if relocation is dynamic, and is

done at execution time

 I/O problem

 Last job in memory while it is involved in I/O

 Do I/O only into OS buffers

8.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

4. Paging4. Paging

 Logical address space of a process can be noncontiguous;

process is allocated physical memory whenever the latter is

available

 Divide physical memory into fixed-sized blocks called frames

(size is power of 2, between 512 bytes and 16 MB)

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size n pages, need to find n free frames

and load program

 Set up a page table to translate logical to physical addresses

 Internal fragmentation

8.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Address Translation SchemeAddress Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which

contains base address of each page in physical memory

 Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

for given logical address space of size 2m and page size 2n

page number page offset

p d

m - n n

8.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Paging Hardware, Logical and Physical MemoryPaging Hardware, Logical and Physical Memory

8.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Paging ExamplesPaging Examples

Example with 32-byte memory and

4-byte pages

Before allocation After allocation

8.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Implementation of Page TableImplementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PTLR) indicates size of the page

table

 In this scheme every data/instruction access requires two

memory accesses. One for the page table and one for the

data/instruction.

 The two memory access problem can be solved by the use of a

special fast-lookup hardware cache called associative memory

or translation look-aside buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs) in each

TLB entry – uniquely identifies each process to provide address-

space protection for that process

8.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Associative MemoryAssociative Memory

 TLBs typically small (64 to 1024 entries)

 Associative memory – parallel search

Address translation (p, d)

 If p is in associative register, get frame # out

 Otherwise get frame # from page table in memory

 Replacement policies must be considered, some entries wired down

Page # Frame #

8.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Effective Access TimeEffective Access Time

 Associative lookup = ε time unit, can be < 10% of memory

access time

 Assume memory access time is 1 microsecond

 Hit ratio – percentage of times that a page number is found

in the associative registers; ratio related to number of

associative registers

 Hit ratio = �
 Effective Access Time (EAT)

EAT = (1 + ε) � + (2 + ε)(1 – �)
= 2 + ε – �

Hit ratio 80%, and ε = 0.2 → 1,4 microseconds

Hit ratio 98%, and ε = 0.2 → 1,22 microseconds

8.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Memory ProtectionMemory Protection

 Memory protection implemented by

associating protection bit with each frame:

read-write vs read-only

 Valid-invalid bit attached to each entry in

the page table:

 “valid” indicates that the associated

page is in the process’s logical

address space, and is thus a legal

page

 “invalid” indicates that the page is not

in the process’s logical address space

 Problem with invalid addresses due to

internal fragmentation

 Page Table Length Register (PTLR)

8.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Shared PagesShared Pages

 Shared code

 One copy of read-only (reentrant) code

shared among processes (i.e., text editors,

compilers, window systems)

 Similar to multiple threads sharing the

same process space

 Also useful for interprocess

communication if sharing of read-write

pages is allowed

 Private code and data

 Each process keeps a separate copy of

the code and data

 The pages for the private code and data

can appear anywhere in the logical

address space

 Shared memory

 Could be implemented with shared pages

8.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

5. Structure of the Page Table5. Structure of the Page Table

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

8.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

5a. Hierarchical Page Tables5a. Hierarchical Page Tables

 Large logical address space 2^32 to 2^64

  large page table (page = 4KB  1million entries (2^32/2^12))

 4MB for the table

 Break up the logical address space

into multiple page tables

 A simple technique is a two-level

page table

 The page table is itself paged!

8.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Two-Level Paging ExampleTwo-Level Paging Example

 A logical address (on 32-bit machine with 1KB page size) is divided into:

 a page number consisting of 22 bits

 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:

 a 12-bit page number

 a 10-bit page offset

 Thus, a logical address is as follows:

where p1 is an index into the outer page table, and p2 is the displacement
within the page of the outer page table

page number page offset
p1 p2 d

 12 10 10

8.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Three-level Paging SchemeThree-level Paging Scheme

8.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

5b. Hashed Page Tables5b. Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table. This page

table contains a chain of elements hashing to the same location.

 Virtual page numbers are compared in this chain searching for a

match. If a match is found, the corresponding physical frame is

extracted.

8.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

5c. Inverted Page Table5c. Inverted Page Table

 One associated page table per process  large amount

 Solution: one entry for each real page (frame) of memory

 Entry consists of the virtual address of the page stored in that real

memory location, with information about the process that owns

that page

 Decreases memory needed to store each page table, but

increases time needed to search the table when a page reference

occurs

 Use hash table to limit the search to one — or at most a few —

page-table entries

8.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Inverted Page Table ArchitectureInverted Page Table Architecture

What about shared memory?

8.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

6. Segmentation6. Segmentation

 Memory-management scheme that supports user view of memory

 A program is a collection of segments

 A segment is a logical unit such as:

main program

procedure

function

method

object

local variables, global variables

common block

stack

symbol table

 arrays

8.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Logical View of SegmentationLogical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

8.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Segmentation Architecture Segmentation Architecture

 Logical address consists of a two tuple:

<segment-number, offset>

 Segment table – maps two-dimensional physical addresses;

each table entry has:

 base – contains the starting physical address where the

segments reside in memory

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment

table’s location in memory

 Segment-table length register (STLR) indicates number of

segments used by a program;

 segment number s is legal if s < STLR

8.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Segmentation Architecture (Cont.)Segmentation Architecture (Cont.)

 Protection

 With each entry in segment table associate:

 validation bit = 0 → illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing

occurs at segment level

 Since segments vary in length, memory allocation is a

dynamic storage-allocation problem

 A segmentation example is shown in the following diagram

 Map two-dimensional user-defined address into one-

dimensional physical address == segment table

8.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Segmentation HardwareSegmentation Hardware

8.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Example of SegmentationExample of Segmentation

8.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

7. Example: The Intel Pentium7. Example: The Intel Pentium

 Both paging and segmentation have advantages and

disadvantages

 Supports both segmentation and segmentation with paging

 CPU generates logical address

 Given to segmentation unit

 which produces linear addresses

 Linear address given to paging unit

 which generates physical address in main memory

 Segmentation and paging units form equivalent of MMU

8.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Logical to Physical Address Translation in Logical to Physical Address Translation in

PentiumPentium

Page size: 4KB or 4MB – Two-level paging for 4-KB pages

8.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Intel Pentium SegmentationIntel Pentium Segmentation

Segments as large as 4GB

Maximum number of segments per process: 16K

Logical space of a process divided into 2 partitions:

 up to 8K segments private (LDT Local Descriptor Table)

 + up to 8K segments shared (GDT Global Descriptor Table)

Selector = s(13) g(1 – LDT/GDT) p(2 – protection)

8.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Pentium Paging ArchitecturePentium Paging Architecture

8.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Linear Address in LinuxLinear Address in Linux

Broken into four parts:

8.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Three-level Paging in LinuxThree-level Paging in Linux

On the pentium: middle directory of size 0 bits

CR3 register points to global directory for task currently executing

8.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

RésuméRésumé

 Algorithmes de gestion de la mémoire: contraints par le hardware

 Allocation contiguë (C), pagination (P), segmentation (S)

 Support hardware: registres de base et limite suffisant pour C,

mais besoin de tables en plus pour P et S

 Performance: temps requis pour mapper une adresse logique à une

adresse physique – Utilisation de TLBs pour P et S

 Fragmentation: 1-partition et P: fragmentation interne

multi-partitions et S: fragmentation externe

 Swapping: copier dans et hors de la mémoire

 Partage: pages ou segments à partager

 Protection: protéger le code et les données (read only, ...)

 Processus entier en mémoire avant exécution

 Utilisation de mémoire virtuelle pour ne pas avoir cette limitation!

8.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

ExercicesExercices

1) Comparer la pagination et la segmentation en terme de mémoire requise

pour pouvoir traduire les adresses virtuelles en adresses physiques.

2) Un programme est généralement structuré ainsi: le code à partir d'une

adresse virtuelle 0, suivi des données (variables du programme). La pile

part de l'autre bout de l'espace d'adressage du processus.

Comment se comporte l'algorithme de gestion de la mémoire avec

(a) l'allocation contiguë, (b) la segmentation, et (c) la pagination?

