

Chapter 9: Virtual MemoryChapter 9: Virtual Memory

9.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

De la mémoire vers la mémoire virtuelleDe la mémoire vers la mémoire virtuelle

 So far: various memory management strategies

 Keep many processes in memory → multiprogramming

 Require that the entire process is in memory

 Virtual memory allows the execution of a process not completely in

memory

 Programs >> main memory size

 Abstracts main memory into extremely large uniform array

 Allows processes to share files, to implement shared memory

9.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Chapter 9: Virtual MemoryChapter 9: Virtual Memory

1. Background

2. Demand Paging

3. Copy-on-Write

4. Page Replacement

5. Allocation of Frames

6. Thrashing

7. Memory-Mapped Files

8. Allocating Kernel Memory

9. Other Considerations

10. Operating-System Examples

Objectives:

To describe the benefits of a

virtual memory system

To explain the concepts of

demand paging, page-

replacement algorithms, and

allocation of page frames

To discuss the principle of the

working-set model

9.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

1. Background1. Background

 Memory management (previous chapter)

 Instruction being executed must be in physical memory

 Place the entire logical memory in physical memory

 Dynamic loading may help

 Special precaution / extra work

 Seems necessary & reasonable

 Unfortunate

 Limits the size of a program

 Entire program is not needed in many cases:

 Code for unusual error condition

 Array / lists allocate more memory than needed

 Some options / features rarely used

9.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Background (cont)Background (cont)

 Benefits

 No constraint by the limit of the physical memory

 More programs could be run at the same time

 Increase in CPU utilization, throughput

 Same response time or turnaround

 Less I/O to load/swap each user program / run faster

9.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Background (cont)Background (cont)

 Virtual memory – separation of user logical memory from

physical memory.

 Only part of the program needs to be in memory for execution

 Logical address space can therefore be much larger than

physical address space

 Programming task much more easier

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

9.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Virtual Memory That is Larger Than Physical MemoryVirtual Memory That is Larger Than Physical Memory



9.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Virtual Address SpaceVirtual Address Space

 Refers to the logical view of how a process is

stored in memory

 In fact physical memory may be organized in

page frames

 Pages frames may be assigned to a process in

a non contiguous way

 The MMU maps logical pages to physical pages

 Hole (sparse address space) is part of the

virtual address space

 Require physical addresses only if the

heap/stack grows

 Allows also sharing of files, memory, process

creation, libraries

9.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Shared Library Using Virtual MemoryShared Library Using Virtual Memory

Mapped Read only

9.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

2. Demand Paging2. Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed → reference to it

 Invalid reference → abort

 Not-in-memory → bring to memory

 Lazy swapper – never swaps a page into memory unless

page will be needed

 Swapper that deals with pages is a pager

9.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Transfer of a Paged Memory to Contiguous Disk SpaceTransfer of a Paged Memory to Contiguous Disk Space

9.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Basic conceptBasic concept

 Pager “guesses” which pages will be used before the process is

swapped out again

 Need support to distinguish between the pages that are

 In memory

 On the disk

9.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Valid-Invalid BitValid-Invalid Bit

 With each page table entry, a valid–invalid bit is associated
(v → in-memory, i → not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry

 is i → page fault

v

v

i

v

i

i

i

….

Frame # valid-invalid bit

page table

9.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page Table When Some Pages Are Not in Main Page Table When Some Pages Are Not in Main

MemoryMemory

 Page marked invalid has no effect

if the process never attempts to

access that page

 If we guess right, the process will

run exactly as though we have

brought in all pages

 While pages are memory

resident, execution proceeds

normally

9.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page FaultPage Fault

 If there is a reference to a page, first reference to that
page will trap to operating system:

 page fault

1. Operating system looks at another table to decide:

 Invalid reference → abort process

 Just not in memory → page it in

2. Get empty frame

3. Swap page into frame

4. Update page table: set validation bit = v

5. Restart the instruction that caused the page fault

Extreme case: start executing a process with no page in memory

 pure demand paging

9.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page Fault (Cont.)Page Fault (Cont.)

 Restart instruction

 Must save the state of the interrupt process

 restart the process in exactly the same place

 If page fault when writing result, restart the whole instruction

 Problems, for instance with block move

 Solution: check locations before start or use registers

Some programs could access several new pages of memory with each

instruction execution

  poor performance

  locality of reference results in reasonable performance from demand paging

9.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Steps in Handling a Page FaultSteps in Handling a Page Fault

9.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Performance of Demand PagingPerformance of Demand Paging

 Page fault rate 0 ≤ p ≤ 1

 if p = 0, no page faults

 if p = 1, every reference is a fault

 Effective Access Time (EAT)

EAT = (1 – p) x (memory access time)

+ p x (page fault overhead

 + swap page out

 + swap page in

 + restart overhead)

9.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Demand Paging ExampleDemand Paging Example

 Memory access time = 200 nanoseconds

 Average page-fault service time = 8 milliseconds

 EAT = (1 – p) x 200 + p x (8 milliseconds)

 = (1 – p) x 200 + p x 8,000,000

 = 200 + p x 7,999,800

 If one access out of 1,000 causes a page fault, then

 EAT = 8.2 microseconds.

 This is a slowdown by a factor of 40!

 Performance degradation < 10%

 → p < 0.0000025

9.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Process CreationProcess Creation

 Virtual memory allows other benefits during process creation:

 Copy-on-Write

 Memory-Mapped Files (later)

 fork() system call creates a child process as a duplicate of its parent

 Many child call exec() system call immediately after creation

 Unnecessary code copy… waste of time

9.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

3. Copy-on-Write3. Copy-on-Write

 Copy-on-Write (CoW) allows both parent and child processes to

initially share the same pages in memory

If either process modifies a shared page, only then is the page

copied

 Only pages that can be modified are marked CoW (not the

code)

 CoW allows more efficient process creation as only modified pages

are copied

 Free pages are allocated from a pool of zeroed-out pages

9.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Before Process 1 Modifies Page CBefore Process 1 Modifies Page C

Copy of

page C

After Process 1 Modifies Page CAfter Process 1 Modifies Page C

1

1

2

2

9.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

What happens if there is no free frame?What happens if there is no free frame?

 Page replacement – find some page in memory, but not

really in use, swap it out

 algorithm

 performance – want an algorithm that will result in

minimum number of page faults

 Same page may be brought into memory several times

9.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

4. Page Replacement4. Page Replacement

 Prevent over-allocation of memory by modifying page-fault

service routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers –

only modified pages are written to disk

 Page replacement completes separation between logical

memory and physical memory – large virtual memory can be

provided on a smaller physical memory

 Need

 Frame allocation algorithm

 Page replacement algorithm

9.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Need For Page ReplacementNeed For Page Replacement

9.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Basic Page ReplacementBasic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

 - If there is a free frame, use it

 - If there is no free frame, use a page replacement

algorithm to select a victim frame

3. Bring the desired page into the (newly) free frame;

update the page and frame tables

4. Restart the process

9.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page ReplacementPage Replacement

9.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page Replacement AlgorithmsPage Replacement Algorithms

 Want lowest page-fault rate

 Evaluate algorithm by running it on a particular

string of memory references (reference string) and

computing the number of page faults on that string

 In all our examples, the reference strings are

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

and

 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

9.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Graph of Page Faults Versus The Number of FramesGraph of Page Faults Versus The Number of Frames

9.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

First-In-First-Out (FIFO) AlgorithmFirst-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

 4 frames ?

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

9.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

First-In-First-Out (FIFO) AlgorithmFirst-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

 4 frames

 Belady’s Anomaly: more frames → more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

FIFO Illustrating Belady’s AnomalyFIFO Illustrating Belady’s Anomaly

9.33 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

FIFO Page ReplacementFIFO Page Replacement

15 faults

9.34 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Optimal AlgorithmOptimal Algorithm

 Replace page that will not be used for longest period of time

 4 frames example

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know this?

 Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5

9.35 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Optimal Page ReplacementOptimal Page Replacement

9 faults (vs 15 for FIFO)

9.36 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Least Recently Used (LRU) AlgorithmLeast Recently Used (LRU) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Counter implementation

 Every page entry has a counter; every time page is

referenced through this entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to

determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

9.37 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

LRU Page ReplacementLRU Page Replacement

12 faults (vs 15 for FIFO)

9.38 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

LRU Algorithm (Cont.)LRU Algorithm (Cont.)

 Stack implementation – keep a stack of page numbers in a double

link form:

 Page referenced:

 move it to the top

 requires 6 pointers to be changed

 No search for replacement

 Neither implementation (counter or stack) conceivable without

hardware support

 Interrupt to update clock or stack

 Slow every memory reference by a factor at least 10

 Overhead that cannot be tolerated

9.39 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Use Of A Stack to Record The Most Recent Page ReferencesUse Of A Stack to Record The Most Recent Page References

9.40 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

LRU Approximation AlgorithmsLRU Approximation Algorithms

 Reference bit
 With each page associate a bit, initially = 0

 When page is referenced bit set to 1

 Replace one that is 0 (if one exists)

 We do not know the order, however

 Additional reference bit
 Shift register to record reference bit periodically

 Second chance
 Need reference bit

 Clock replacement

 If page to be replaced (in clock order) has reference bit = 1 then:

 set reference bit 0

 leave page in memory

 replace next page (in clock order), subject to same rules

9.41 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Second-Chance (clock) Page-Replacement AlgorithmSecond-Chance (clock) Page-Replacement Algorithm

9.42 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Counting AlgorithmsCounting Algorithms

 Keep a counter of the number of references that have been

made to each page

 LFU Algorithm: replaces page with smallest count

(Least Frequently Used)

 MFU Algorithm: based on the argument that the page with

the smallest count was probably just brought in and has yet

to be used

(Most Frequently Used)

9.43 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

5. Allocation of Frames5. Allocation of Frames

 How do we allocate the fixed amount of free memory among the

various processes ?

 Each process needs minimum number of pages

 Example: IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 Two major allocation schemes

 fixed allocation

 priority allocation

9.44 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Fixed vs Priority AllocationFixed vs Priority Allocation

 Equal allocation – For example, if there are 100 frames and 5

processes, give each process 20 frames

 Proportional allocation – Allocate according to the size of process

 si = size of process pi , S = ∑ si

 m = total number of frames

 ai : number of frames allocated to pi : ai = (si / S) x m

 Example with m = 64, s1 = 10, s2 = 127:

• We obtain a1 = 5, a2 = 59

 Priority allocation – Use a proportional allocation scheme using

priorities rather than size

9.45 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Global vs. Local AllocationGlobal vs. Local Allocation

 Global replacement – process selects a replacement

frame from the set of all frames; one process can take a

frame from another

 Local replacement – each process selects from only its

own set of allocated frames

 With global replacement, a process cannot control its

own page fault behavior

 Priority allocation (cont): If process Pi generates a page fault,

 select for replacement one of its frames

 select for replacement a frame from a process with lower

priority number

9.46 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

6. Thrashing6. Thrashing

 If a process does not have “enough” frames, the page-fault rate is

very high. This leads to:

 low CPU utilization

 operating system thinks that it needs to increase the degree of

multiprogramming

 another process added to the system

 Thrashing = a process is busy swapping pages in and out

9.47 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Thrashing (Cont.)Thrashing (Cont.)

Limit the trashing by using local replacement algorithm / priority replacement :

 process trashing  in paging queue most of the time  access time will increase

We need to provide a process with as many frames as it needs

How do we know how many frames it “needs” ?

9.48 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Demand Paging and Thrashing Demand Paging and Thrashing

 Why does demand paging work?

Locality model

 Process migrates from one locality to another

 Localities may overlap

 Allocate enough frames to a process to accommodate its

current locality

 Why does thrashing occur?

 ∑ size of locality > total memory size

 Limit effects by using local or priority page replacement

9.49 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Locality In A Memory-Reference PatternLocality In A Memory-Reference Pattern

Locality model == unstated

principle behind several concepts

If accesses to any type of data

were random rather than

patterned, caching would be

useless…

9.50 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Working-Set ModelWorking-Set Model

 Δ = working-set window = a fixed number of page references

Example: 10,000 instructions

 WSSi (working-set size of process Pi) =

total number of pages referenced in the most recent Δ (varies in time)

 If Δ too small: will not encompass entire locality

 if Δ too large: will encompass several localities

 if Δ = ∞ : will encompass entire program

 D = ∑ WSSi = total demand frames

 If D > m: Thrashing

 Policy if D > m, then suspend one of the processes

9.51 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Working-set modelWorking-set model

9.52 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Keeping Track of the Working SetKeeping Track of the Working Set

 Approximate with interval timer + a reference bit

 Example: Δ = 10,000

 Timer interrupts every 5000 time units

 Keep in memory 2 bits for each page

 Whenever a timer interrupts: copy and set the values of all

reference bits to 0

 If one of the bits in memory = 1: page in working set

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time units

9.53 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Page-Fault Frequency SchemePage-Fault Frequency Scheme

 Establish “acceptable” page-fault rate

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

9.54 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

7. Memory-Mapped Files7. Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine

memory access by mapping a disk block to a page in memory

 A file is initially read using demand paging. A page-sized

portion of the file is read from the file system into a physical

page. Subsequent reads/writes to/from the file are treated as

ordinary memory accesses.

 Simplifies file access by treating file I/O through memory rather

than read() write() system calls

 Also allows several processes to map the same file allowing the

pages in memory to be shared

9.55 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Memory Mapped FilesMemory Mapped Files

9.56 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Memory-Mapped Shared Memory in WindowsMemory-Mapped Shared Memory in Windows

9.57 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

8. Allocating Kernel Memory8. Allocating Kernel Memory

 Treated differently from user memory

 Often allocated from a free-memory pool

 Kernel requests memory for structures of varying sizes:

should limit waste due to fragmentation

 Some kernel memory needs to be contiguous

9.58 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Buddy SystemBuddy System

 Allocates memory from fixed-size segment consisting of

physically-contiguous pages

 Memory allocated using power-of-2 allocator

 Satisfies requests in units sized as power of 2

 Request rounded up to next highest power of 2

 When smaller allocation needed than is available, current

chunk split into two buddies of next-lower power of 2

 Continue until appropriate sized chunk available

 Pros and cons

 Coalescing to quickly combine adjacent buddies

 Rounding up to next highest power of 2 causes fragmentation

9.59 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Buddy System AllocatorBuddy System Allocator

9.60 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Slab AllocatorSlab Allocator

 Alternate strategy

 Slab is one or more physically contiguous pages

 Cache consists of one or more slabs

 Single cache for each unique kernel data structure

 Each cache filled with objects – instantiations of the data

structure

 When cache created, filled with objects marked as free

 When structures stored, objects marked as used

 If slab is full of used objects, next object allocated from empty slab

 If no empty slabs, new slab allocated

 Benefits include no fragmentation, fast memory request satisfaction

9.61 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Slab AllocationSlab Allocation

9.62 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

9. Other Issues – Prepaging9. Other Issues – Prepaging

 Prepaging

 To reduce the large number of page faults that occur at process

startup

 Prepage all or some of the pages a process will need, before they

are referenced (e.g., pages from working set)

 But if prepaged pages are unused, I/O and memory were wasted

 Assume s pages are prepaged and α of the pages are used

 Is cost of s x α saved pages faults greater or less than the cost

of prepaging s x (1- α) unnecessary pages?

 α close to zero (resp. one): prepaging loses (resp. win)

9.63 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Other Issues – Page SizeOther Issues – Page Size

 Page size selection must take into consideration:

 fragmentation

 table size

 I/O overhead (latency + transfer rate)

 locality

 number of page faults

9.64 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Other Issues – TLB Reach Other Issues – TLB Reach

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB

 Otherwise there is a high degree of page faults

 Increase the Page Size

 This may lead to an increase in fragmentation as not all

applications require a large page size

 Provide Multiple Page Sizes

 This allows applications that require larger page sizes the

opportunity to use them without an increase in

fragmentation

9.65 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Other Issues – Program StructureOther Issues – Program Structure

 Program structure

 Int[128,128] data;

 Each row is stored in one page

 Program 1

 for (j = 0; j <128; j++)

 for (i = 0; i < 128; i++)

 data[i,j] = 0;

 128 x 128 = 16,384 page faults

 Program 2

 for (i = 0; i < 128; i++)

 for (j = 0; j < 128; j++)

 data[i,j] = 0;

128 page faults

9.66 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Other Issues – I/O interlockOther Issues – I/O interlock

 I/O Interlock – Pages must sometimes be locked into

memory

 Consider I/O - Pages that are used for copying a file

from a device must be locked from being selected for

eviction by a page replacement algorithm

9.67 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Reason Why Frames Used For I/O Must Be In MemoryReason Why Frames Used For I/O Must Be In Memory

9.68 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

10a. Windows XP10a. Windows XP

 Uses demand paging with clustering. Clustering brings in

pages surrounding the faulting page.

 Processes are assigned working set minimum (50) and

working set maximum (345)

 Working set minimum is the minimum number of pages the

process is guaranteed to have in memory

 A process may be assigned as many pages up to its working

set maximum

 When the amount of free memory in the system falls below a

threshold, automatic working set trimming is performed to

restore the amount of free memory

 Working set trimming removes pages from processes that

have pages in excess of their working set minimum

10. Operating System Examples10. Operating System Examples

9.69 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

10b. Solaris 10b. Solaris

 Maintains a list of free pages to assign faulting processes

 lotsfree – threshold parameter (amount of free memory) to begin

paging (1/64 of the size of the physical memory)

 desfree – threshold parameter to increasing paging

 minfree – threshold parameter to begin swapping

 Paging is performed by pageout process

 pageout scans pages using modified clock algorithm

 scanrate is the rate at which pages are scanned. This ranges from

slowscan to fastscan

 pageout is called more frequently depending upon the amount of

free memory available

9.70 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

Solaris 2 Page ScannerSolaris 2 Page Scanner

9.71 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

RésuméRésumé

 Mémoire virtuelle: mapper un large espace d'adressage logique sur

une mémoire physique plus petite – permet de faire tourner des

gros processus, et d'augmenter le degré de multiprogrammation

 Pagination à la demande: table des pages, et faute de page si la

page n'est pas en mémoire; mettre la page en mémoire et relancer

l'instruction qui a provoqué la faute

 Remplacement de pages lorsque la mémoire est pleine; attention à

l'anomalie de Belady

 Politique d'allocation des cadres de page; remplacement local

(interne à un processus) ou global (avec priorité par exemple);

modèle du working-set pour éviter le thrashing

 Fichiers mappés en mémoire: accès fichier = accès mémoire

 Mémoire système: allocation buddy ou slab

9.72 Silberschatz, Galvin and Gagne ©2005Operating System Concepts – 7th Edition, Feb 22, 2005

ExercicesExercices

1. Demand-paged memory. Page table: in registers.

 * 8 millisec to service page fault if there is an empty page, or

the replaced page is not modified

 * 20 millisec if the replaced page is modified

 * Memory access time: 100 nanosec

 If the page to be replaced is modified 70% of the time, what is the

maximum acceptable page-fault rate for an effective access time

of no more than 200 nanosec?

2. What is the cause of thrashing? How does the system detect

thrashing? Once it detects thrashing, what can the system do to

eliminate this problem?

