
dynamic task graph adaptation with
recursive tasks
17th Scheduling Workshop for large-scale systems @ Aussois

Mathieu Faverge, Nathalie Furmento, Abdou Guermouche, Gwenolé Lucas, Thomas
Morin, Raymond Namyst, Samuel Thibault, Pierre-André Wacrenier

0



introduction



The Task-based Paradigm

• Applications are presented as a Directed Acyclic
Graph (DAG).

◦ Nodes are tasks, a set of computations.
◦ Edges are dependencies that ensure the correct

workflow of the application.
• Runtime systems enforce the dependencies and

schedule the tasks on the computing resources
available.

⇒ Different models propose different ways for the user
to describe an application’s DAG to the runtime
system.
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Sequential Task Flow Model

Sequential code:

1 F(a)
2 G(a, b)
3 G(a, c)
4 H(b)
5 H(c)
6 F(a)

STF code: Resulting DAG:

F

G

G

H

H

F

Read after Write on aRead after Write on aWrite after Write on bWrite after Write on cWrite after Read on a

• The STF model relies on sequential consistency to create data dependencies.
• It provides an intuitive way to express applications.
• It is widely used in state of the art runtime systems (PaRSEC’s DTD, OmpSs,

OpenMP (> 4.0), etc).
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Introduction - Limitations of the STF model

Submission
• Overhead: large number of non-ready tasks.
• Bottleneck: sequential insertion.
• Adaptability ? static task graphs.

⇒ How to create more dynamic task-graphs ? ⇒ Recursive tasks graphs !

Granularity

• GPUs versus CPUs.
• Lack of parallelism versus Steady State.

⇒ Steering granularity dynamically ?
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recursive tasks



Recursive Tasks in StarPU

Objectives
• Adapt task implementation at runtime.
• No spurious synchronization.

Principles

1. No limit for the hierarchy depth.
2. Fine-grained dependencies.
3. Transparent data management.

◦ Automatic data partition.

• Recursive task execution:

◦ Remain regular task.
◦ Insert a subgraph: split.
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Recursive tasks - State of the Art

Figure 1: Barrier between
parent tasks

Figure 2: Fine-grain
dependencies

Runtime
Fine-grain Automatic data

Heterogeneity
Dependencies Partition

TaskFlow

✗ ✗ ✓

PaRSEC

✗ ✗ ✓

IRIS

✗ ✓ ✓

OmpSs

✓ ✗

StarPU

✓ ✓ ✓
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dynamic task graph adaptation



Dynamic task graph adaptation : splitting tasks

Which task should we split?

Efficiency VS Completion Time

When do we choose to split task?

Submission, execution, ...
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Which task do we split

Exploit informations

1. Split efficiency.
2. Current parallelism on Runtime System.

Split the task - Gantt chart

Not split the task - Gantt chart

time

worker 0

worker 1

worker 2

worker 3

Completion time: 8 units.
Cumulated time: 8 units.

Completion Time versus Efficiency
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When do we choose to split tasks

Task life path

app wait
dependencies scheduler

data transfer
data fetching worker

submission release queue execute
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When do we choose to split tasks
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splitterrec. task

rec. task
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When do we choose to split tasks

Position of the splitter - trade-off
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Results - POTRF (2x18-core Intel Cascade Lake)

Figure 3: Performance comparison between different Cholesky
Factorization versions.
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Which task should we split - Heterogeneous case

1. Which type of tasks needs to be split.

2. Split the right amount of tasks.

Which type of tasks needs to be split ?

Objective

min t_exec (1)

w.r.t.∑
t∈τ

Nbig
t · Timegpu

t ≤ Rgpus · t_exec (2)∑
t∈τ

Nsmall
t · Timecpu

t ≤ Rcpus · t_exec (3)

Nsmall
t + Nbig

t = Ntotal
t ∀ t ∈ τ (4)
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Which task should we split - Heterogeneous case

1. Which type of tasks needs to be split.
2. Split the right amount of tasks.
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Nbig
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Nsmall
t · Timecpu

t ≤ Rcpus · t_exec (3)

Nsmall
t + Nbig

t = Ntotal
t ∀ t ∈ τ (4)
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Results - POTRF (2xNvidia A100 + 2x32-core AMD Zen3 EPYC 7513)
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Results - GETRF (2xNvidia A100 + 2x32-core AMD Zen3 EPYC 7513)
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conclusion



Conclusion

• Recursive tasks:
◦ Insert subgraph at runtime.
◦ More dynamic DAG.

• Splitting task dynamically brings different questions:
◦ Which task sould we split.
◦ When do we choose to split.

Future Work
• Scheduling questions:

◦ How should we split tasks ?
• Extend current work:

◦ Distributed recursive tasks.

18


	Introduction
	Current STF limitations

	Recursive Tasks
	Comparison to other recursive models

	Dynamic task graph adaptation
	Which task should be split
	When do we take decisions

	Conclusion
	Backup

