

$\frac{5}{4}(1+\epsilon)$-Approximation Algorithm for Scheduling with Rejection Costs Proportional to Processing Times

Olivier Beaumont ${ }^{1} \quad$ Rémi Bouzel ${ }^{2} \quad$ Lionel Eyraud-Dubois ${ }^{1}$
Esragul Korkmaz ${ }^{1} \quad$ Laercio Lima Pilla ${ }^{1} \quad$ Alexandre Van Kempen ${ }^{2}$

24/06/2024, 17th Scheduling for large-scale systems workshop
${ }^{1}$ Inria Center of the University of Bordeaux, LaBRI, UMR 5800, Talence, France
${ }^{2}$ Qarnot Computing, Montrouge, France

Background

Scheduling with Rejection

- Topic of the paper: Scheduling n independent jobs on m machines
- With a possibility to reject some jobs
- Solution (\mathcal{S})
- Accepted jobs $\left(A^{\mathcal{S}}\right)+$ associated schedule
- Rejected jobs $\left(R^{\mathcal{S}}\right)$
- Objective
- minimize $\left(Z^{\mathcal{S}}=C^{\mathcal{S}}+\sum_{j \in R^{\mathcal{S}}}\right.$ Rejection Cost $\left._{j}\right)$
- where $C^{\mathcal{S}}$ denotes the makespan of jobs in $A^{\mathcal{S}}$

Scheduling with Rejection

- Many studies including
- Bartal et al. ${ }^{1}:\left(2-\frac{1}{m}\right)$-approx algo in $\mathcal{O}(n \log n)$
- Ou et al. ${ }^{2}:\left(\frac{3}{2}+\epsilon\right)$-approx algo in $\mathcal{O}\left(n \log n+\frac{n}{\epsilon}\right)$
- Liu and Lu ${ }^{3}$: $\left(\frac{3}{2}-\frac{1}{2 m}\right)$-approx algo in $\mathcal{O}\left(n^{3} \log n\right)$
- Our paper: $\frac{5}{4}(1+\epsilon)$-approx algo in $\mathcal{O}\left(m^{3}(m+n) \log _{1+\epsilon} \rho\right)$
- Assumption: Rejection costs proportional to processing times

[^0]
Context - Qarnot platform

- Scheduling pbs in the context of Qarnot platform (PULSE project)
- Qarnot: Cloud provider with highly distributed computational units
- Recycling heat of computations to provide heat to the hosts
- Avoiding energy waste on cooling systems

Traditional Datacenter

- Today: boiler maintenance scheduled at time T
- Goal: schedule maintenance close to T and minimize energy ${ }_{3 / 15}$

Problem Formulation - Scheduling with Rejection

- Inputs:
- n non-preemptive independent jobs:
- $\forall j \in\{1, \ldots, n\}, p_{j}$: processing time
- $\forall j \in\{1, \ldots, n\}, \rho p_{j}:$ cost to run on expensive machine (ρ is fixed)
- m identical machines on boiler (cheap)
- ∞ identical machines on e.g. public provider (expensive)
- Constraints:
- Each job requires exactly one machine
- Each machine can run at most one job at a time
- All boiler machines are turned ON when any job running on boiler
- Outputs (Decision variables):
- $\forall i \in\{1, \ldots, m\}, X_{i}$ is the list of jobs assigned to the cheap machine i
- Definitions:
- $C^{\mathcal{S}}=\max _{i \in\{1, \ldots, m\}} \sum_{j \in X_{i}} p_{j}$ (no dependencies)
- $R^{\mathcal{S}}=\sum_{j \notin\left(X_{i}\right)_{i \in\{1, \ldots, m\}}} p_{j}$
- Objective:

$$
\operatorname{minimize}\left(Z^{\mathcal{S}}=m * C^{\mathcal{S}}+\rho R^{\mathcal{S}}\right)
$$

Problem Visualization - Scheduling with Rejection

- Left figure shows boiler machines vs time
- Blue is occupied time; Pink is idle time
- Right figure shows the jobs on expensive machines (called rejected)

- Objective: $Z^{\mathcal{S}}=m * C^{\mathcal{S}}+\rho R^{\mathcal{S}}$
- $m * C^{\mathcal{S}}$: energy on boiler
- $\rho R^{\mathcal{S}}$: energy on traditional resources

Solution for a makespan bound T

Maintenance with target T

- Optimal Solution if maintenance is scheduled at time T
- $Z^{o p t}=m * T+\rho R^{o p t}(T)$
- Our goal: find $C^{\mathcal{S}}$ and $R^{\mathcal{S}}$ such that

Machines

- $Z^{\mathcal{S}}=m * C^{\mathcal{S}}+\rho R^{\mathcal{S}} \leq \frac{5}{4} Z^{o p t}$

Our approach for fixed makespan T

- Idea from Caprara et al. ${ }^{4}$ for Multiple Subset Sum Problem solution

- For fitting in T, only possible long job combinations on a machine:
- One job possibilities: $(G),\left(N_{1}\right),\left(N_{2}\right),\left(N_{3}\right)$
- Two job possibilities: $\left(N_{1}, N_{2}\right),\left(N_{1}, N_{3}\right),\left(N_{2}, N_{2}\right),\left(N_{2}, N_{3}\right),\left(N_{3}, N_{3}\right)$
- Three job possibilities: $\left(N_{2}, N_{3}, N_{3}\right),\left(N_{3}, N_{3}, N_{3}\right)$
- Our solution for fixed makespan T :
- Use only these combinations of long jobs (at most $\frac{5}{4} T$ makespan)
- Finally, assign short jobs greedily within makespan $\leq \frac{5}{4} T$

[^1]
Our algorithm for fixed makespan T : FillMaxArea

- Assume: $m=5,|G|=0,\left|N_{1}\right|=5,\left|N_{2}\right|=1,\left|N_{3}\right|=5,|P|=17$
- I_{0}, I_{1}, I_{2} and I_{3} stand for the number of machines that run no long job, one long job, two long jobs and three long jobs, respectively
- Fix $\left(l_{0}, l_{1}, l_{2}, l_{3}\right)=(1,1,2,1)$

Machines

Our algorithm for fixed makespan T : FillMaxArea

- Assume: $m=5,|G|=0,\left|N_{1}\right|=4,\left|N_{2}\right|=1,\left|N_{3}\right|=5,|P|=17$
- I_{0}, I_{1}, I_{2} and I_{3} stand for the number of machines that run no long job, one long job, two long jobs and three long jobs, respectively
- Fix $\left(l_{0}, l_{1}, l_{2}, l_{3}\right)=(1,1,2,1)$

Machines

- Start with singletons, i.e. $(G),\left(N_{1}\right),\left(N_{2}\right),\left(N_{3}\right)$
- No job in $G \Longrightarrow$ Take the longest job in N_{1}

Our algorithm for fixed makespan T : FillMaxArea

- Assume: $m=5,|G|=0,\left|N_{1}\right|=3,\left|N_{2}\right|=0,\left|N_{3}\right|=5,|P|=17$
- I_{0}, I_{1}, I_{2} and I_{3} stand for the number of machines that run no long job, one long job, two long jobs and three long jobs, respectively
- Fix $\left(l_{0}, l_{1}, l_{2}, l_{3}\right)=(1,1,2,1)$

Machines

- Now assign pairs,i.e. $\left(N_{1}, N_{2}\right),\left(N_{1}, N_{3}\right),\left(N_{2}, N_{2}\right),\left(N_{2}, N_{3}\right),\left(N_{3}, N_{3}\right)$
- Longest job in N_{2} and longest job in N_{1}

Our algorithm for fixed makespan T : FillMaxArea

- Assume: $m=5,|G|=0,\left|N_{1}\right|=2,\left|N_{2}\right|=0,\left|N_{3}\right|=4,|P|=17$
- I_{0}, I_{1}, I_{2} and I_{3} stand for the number of machines that run no long job, one long job, two long jobs and three long jobs, respectively
- Fix $\left(l_{0}, l_{1}, l_{2}, l_{3}\right)=(1,1,2,1)$

Machines

- Assign pairs,i.e. $\left(N_{2}, N_{1}\right),\left(N_{3}, N_{1}\right),\left(N_{2}, N_{2}\right),\left(N_{3}, N_{2}\right),\left(N_{3}, N_{3}\right)$
- No job in $N_{2} \Longrightarrow$ Longest job in N_{3} and longest job in N_{1}

Our algorithm for fixed makespan T : FillMaxArea

- Assume: $m=5,|G|=0,\left|N_{1}\right|=2,\left|N_{2}\right|=0,\left|N_{3}\right|=1,|P|=17$
- I_{0}, I_{1}, I_{2} and I_{3} stand for the number of machines that run no long job, one long job, two long jobs and three long jobs, respectively
- Fix $\left(l_{0}, l_{1}, l_{2}, l_{3}\right)=(1,1,2,1)$

Machines

- Assign triplets, i.e. $\left(N_{3}, N_{3}, N_{2}\right),\left(N_{3}, N_{3}, N_{3}\right)$
- No job in $N_{2} \Longrightarrow 3$ longest jobs in N_{3}

Our algorithm for fixed makespan T : FillMaxArea

- Assume: $m=5,|G|=0,\left|N_{1}\right|=2,\left|N_{2}\right|=0,\left|N_{3}\right|=1,|P|=6$
- I_{0}, I_{1}, I_{2} and I_{3} stand for the number of machines that run no long job, one long job, two long jobs and three long jobs, respectively
- $\operatorname{Fix}\left(l_{0}, l_{1}, l_{2}, l_{3}\right)=(1,1,2,1)$

Machines

- Assign P jobs greedily while makespan $\leq \frac{5}{4} T$

Our algorithm for fixed makespan T : FillMaxArea

- Assume: $m=5,|G|=0,\left|N_{1}\right|=2,\left|N_{2}\right|=0,\left|N_{3}\right|=1,|P|=6$
- I_{0}, I_{1}, I_{2} and I_{3} stand for the number of machines that run no long job, one long job, two long jobs and three long jobs, respectively
- $\operatorname{Fix}\left(I_{0}, l_{1}, l_{2}, l_{3}\right)=(1,1,2,1)$

Machines

- Find solution for each $\left(l_{0}, l_{1}, l_{2}, l_{3}\right) \rightarrow \mathcal{O}\left(m^{3}\right)$ iterations
- Choose solution with largest $\sum_{j \in A c c e p t e d J o b s} p_{j}$

FillMaxArea - Main result

Overall algorithm:

- Iterate above algorithm for all $l_{0}, l_{1}, l_{2}, l_{3}$ such that $\sum l_{i}=m$
- there are "only" $\Theta\left(m^{3}\right)$ such quadruplets...
- and keep the solution that minimizes $Z^{\mathcal{S}}=m * C^{\mathcal{S}}+\rho R^{\mathcal{S}}$

RESULT

For any T, let \dagger be the solution obtained by FillMaxArea(J, m, T). Then, $C^{\dagger} \leq \frac{5}{4} T$ and $R^{\dagger} \leq R^{*}(T)$, where $R^{*}(T)=\min _{\mathcal{S}, C^{s} \leq T} R^{\mathcal{S}}$.

FillMaxArea - Main result

Overall algorithm:

- Iterate above algorithm for all $l_{0}, l_{1}, l_{2}, l_{3}$ such that $\sum l_{i}=m$
- there are "only" $\Theta\left(m^{3}\right)$ such quadruplets...
- and keep the solution that minimizes $Z^{\mathcal{S}}=m * C^{\mathcal{S}}+\rho R^{\mathcal{S}}$

RESULT

For any T, let \dagger be the solution obtained by FillMaxArea(J, m, T). Then, $C^{\dagger} \leq \frac{5}{4} T$ and $R^{\dagger} \leq R^{*}(T)$, where $R^{*}(T)=\min _{\mathcal{S}, C^{s} \leq T} R^{\mathcal{S}}$.

Sketch of Proof:

- $C^{\dagger} \leq \frac{5}{4} T$: straightforward given the upper bounds of combinations
- FillMaxArea allocates as much work as possible on the boiler given $l_{0}, l_{1}, l_{2}, l_{3}$
- $R^{\dagger} \leq R^{*}(T)$

FillMaxArea - Main result

RESULT

For any T, let \dagger be the solution obtained by FillMaxArea(J, m, T). Then, $C^{\dagger} \leq \frac{5}{4} T$ and $R^{\dagger} \leq R^{*}(T)$, where $R^{*}(T)=\min _{\mathcal{S}, C^{s} \leq T} R^{\mathcal{S}}$.

LEMMA

For any T, let \dagger be the solution obtained by FillMaxArea(J, m, T). We can bound its cost by: $Z^{\dagger} \leq \frac{5}{4} T m+\rho R^{*}(T)$.

FillMaxArea - Main result

RESULT

For any T, let \dagger be the solution obtained by FillMaxArea(J, m, T). Then, $C^{\dagger} \leq \frac{5}{4} T$ and $R^{\dagger} \leq R^{*}(T)$, where $R^{*}(T)=\min _{\mathcal{S}, C^{s} \leq T} R^{\mathcal{S}}$.

LEMMA

For any T, let \dagger be the solution obtained by FillMaxArea(J, m, T). We can bound its cost by: $Z^{\dagger} \leq \frac{5}{4} T m+\rho R^{*}(T)$.

Proof:

- Remember: Cost of \dagger is $Z^{\dagger}=m * C^{\dagger}+\rho R^{\dagger}$
- $C^{\dagger} \leq \frac{5}{4} T$
- $R^{\dagger} \leq R^{*}(T)$
- $Z^{\dagger} \leq \frac{5}{4} T m+\rho R^{*}(T) \leq \frac{5}{4} Z^{\text {opt }}$

Determining the makespan bound T

Determining Makespan: BEKP method

- If $C^{O P T}$ is known \Longrightarrow FillMaxArea(COPT) is a $\frac{5}{4}$-approx. algorithm
- In the general problem C $C^{O P T}$ is not known...
- Assume: Lower and Upper bound (L and U) on makespan such that
- Rejecting all jobs when makespan $C^{O P T} \leq L$ and $C^{O P T} \geq U$ is valid
- Iterate over remaining makespans

- ϵ : User defined small coefficient
- Iteration number: $k=\left\lceil\frac{\log \left(\frac{U}{L}\right)}{\log (1+\epsilon)}\right\rceil$

Determining Makespan: BEKP method

Algorithm $1 \mathcal{B E K} \mathcal{P}(J, m)$

1: The solution where all jobs are rejected is X_{0}
2: Compute U and L
3: Set k as the first value such that $(1+\epsilon)^{k} L \geq U$
4: for each $C_{i} \in\left\{L,(1+\epsilon) L,(1+\epsilon)^{2} L, \ldots,(1+\epsilon)^{k} L\right\}$ do
5: $\quad X_{i}=$ FillMaxArea $\left(J, m, C_{i}\right)$
6: return A schedule with the lowest cost among X_{0} and all X_{i}

Determining Makespan: BEKP method

Algorithm $2 \mathcal{B E K} \mathcal{P}(J, m)$

1: The solution where all jobs are rejected is X_{0}
2: Compute U and L
3: Set k as the first value such that $(1+\epsilon)^{k} L \geq U$
4: for each $C_{i} \in\left\{L,(1+\epsilon) L,(1+\epsilon)^{2} L, \ldots,(1+\epsilon)^{k} L\right\}$ do
5: $\quad X_{i}=$ FillMaxArea $\left(J, m, C_{i}\right)$
6: return A schedule with the lowest cost among X_{0} and all X_{i}

WHAT IS LEFT?

- Compute L and U
- Proof: BEKP is a $\frac{5}{4}(1+\epsilon)$-approximation algorithm.

Computing L and U

- W: sum of all processing times of jobs in ready queue
- $R^{*}(C)$: minimum possible area for the rejected jobs for makespan C
- Lower bound function on the cost: $f(C)=C m+\rho R^{*}(C)$

Computing L and U

- W: sum of all processing times of jobs in ready queue
- $R^{*}(C)$: minimum possible area for the rejected jobs for makespan C
- Lower bound function on the cost: $f(C)=C m+\rho R^{*}(C)$
- $f(C) \geq C m$

Computing L and U

- W: sum of all processing times of jobs in ready queue
- $R^{*}(C)$: minimum possible area for the rejected jobs for makespan C
- Lower bound function on the cost: $f(C)=C m+\rho R^{*}(C)$
- $f(C) \geq C m$
- $f(C) \geq C m+\rho(W-C m)$

Computing L and U

- W: sum of all processing times of jobs in ready queue
- $R^{*}(C)$: minimum possible area for the rejected jobs for makespan C
- Lower bound function on the cost: $f(C)=C m+\rho R^{*}(C)$
- $f(C) \geq C m \quad$ - $f(C) \geq C m+\rho(W-C m)$

Computing L and U

- W: sum of all processing times of jobs in ready queue
- $R^{*}(C)$: minimum possible area for the rejected jobs for makespan C
- Lower bound function on the cost: $f(C)=C m+\rho R^{*}(C)$
- $f(C) \geq C m$
- $f(C) \geq C m+\rho(W-C m)$

- $H=\frac{4 \rho W}{5}$ (We set this value)

Computing L and U

- If we reject all jobs for makespan values $\leq L$ and $\geq U$, worst cost:
(:) $\frac{Z^{X_{0}}}{Z^{\circ P T}} \leq \frac{\rho W}{\frac{4 \rho W}{5}}=\frac{5}{4}$ (Valid solution)

Computing L and \mathbf{U}

- If we reject all jobs for makespan values $\leq L$ and $\geq U$, worst cost:
(:) $\frac{Z^{X_{0}}}{Z O P T} \leq \frac{\rho W}{\frac{4 \rho W}{5}}=\frac{5}{4}$ (Valid solution)
- Remember: $k=\left\lceil\frac{\log \left(\frac{U}{L}\right)}{\log (1+\epsilon)}\right\rceil$
- $U=\frac{4 \rho W}{5 m}$ and $L=\frac{\rho W}{5 m(\rho-1)} \Longrightarrow \frac{U}{L}=4(\rho-1)$
(i) For $\rho \leq 10$ and $\epsilon \geq 0.05, k=74$ (Cheap iteration)

Proof of the approximation ratio

THEOREM

For any positive $\epsilon, \mathcal{B E K P}$ is a $\frac{5}{4}(1+\epsilon)$-approximation algorithm.

Proof

- For $C^{O P T}<L$ or $C^{O P T}>U$ already proved.

Proof of the approximation ratio

THEOREM

For any positive $\epsilon, \mathcal{B E K P}$ is a $\frac{5}{4}(1+\epsilon)$-approximation algorithm.

Proof

- For $C^{O P T}<L$ or $C^{O P T}>U$ already proved. For $L \leq C^{O P T} \leq \boldsymbol{U}$:

Proof of the approximation ratio

THEOREM

For any positive $\epsilon, \mathcal{B E K P}$ is a $\frac{5}{4}(1+\epsilon)$-approximation algorithm.

Proof

- For $C^{O P T}<L$ or $C^{O P T}>U$ already proved. For $L \leq C^{O P T} \leq \boldsymbol{U}$:

- X_{i} : Solution by using C_{i}
- $Z^{X_{i}} \leq \frac{5}{4} m C_{i}+\rho R^{*}\left(C_{i}\right)$

Proof of the approximation ratio

THEOREM

For any positive $\epsilon, \mathcal{B E K P}$ is a $\frac{5}{4}(1+\epsilon)$-approximation algorithm.

Proof

- For $C^{O P T}<L$ or $C^{O P T}>U$ already proved. For $L \leq C^{O P T} \leq \boldsymbol{U}$:

- X_{i} : Solution by using C_{i}
- $Z^{X_{i}} \leq \frac{5}{4} m C_{i}+\rho R^{*}\left(C_{i}\right)$
- As $C^{O P T} \leq C_{i}$
- $R^{*}\left(C_{i}\right) \leq R^{*}\left(C^{O P T}\right)$

Proof of the approximation ratio

THEOREM

For any positive $\epsilon, \mathcal{B E K P}$ is a $\frac{5}{4}(1+\epsilon)$-approximation algorithm.

Proof

- For $C^{O P T}<L$ or $C^{O P T}>U$ already proved. For $L \leq C^{O P T} \leq \boldsymbol{U}$:

- X_{i} : Solution by using C_{i}
- $Z^{X_{i}} \leq \frac{5}{4} m C_{i}+\rho R^{*}\left(C_{i}\right)$
- As $C^{O P T} \leq C_{i}$
- $R^{*}\left(C_{i}\right) \leq R^{*}\left(C^{O P T}\right)$
- As $C_{i} \leq(1+\epsilon) C^{\text {OPT }}$
- $Z^{X_{i}} \leq \frac{5}{4}(1+\epsilon) m C^{O P T}+\rho R^{*}\left(C^{O P T}\right) \leq \frac{5}{4}(1+\epsilon) Z^{O P T}$

Conclusion - Future work

Conclusion

- In practice (simulations)
- Very good qualitative results (much lower than $\frac{5}{4}$)

- BEKP compared to $\mathcal{L I U L U}$
- Improves approximation ratio (for proportional rejection costs)
- Proportional rejection costs can be extended to other contexts
- Improves complexity wrt total number of jobs
- Next step: consider other scheduling problems related to Qarnot
- With deadlines (each job has a duration and a deadline)
- the true problem is online and non clairvoyant...
- probably very difficult to prove something...

Thank You

Backup slides

Experiments

Experimental setting

- Run in sequential on Miriel nodes of Plafrim
- 2 INTEL Xeon E5-2680v3 12-core 2.50 GHz processors with 128 GB
- Processing times are generated through lognormal distribution
- Mean 3
- Standard deviations (σ) : "0.5", "0.7", and "1.0"
- Large σ means higher variance in processing times
- Number of machines: $m=20$
- Number of jobs: $n=4 m$
- Our simulation code is available as free software in ${ }^{5}$

[^2]
Methods compared

- BEKP: Our method
- $\mathcal{O}\left(m^{3}(m+n) \log _{1+\epsilon} \rho\right)$
- $\frac{5}{4}(1+\epsilon)$ approximation
- $\mathcal{L I U L U}$: The algorithm proposed by Liu and Lu^{6}
- $\mathcal{O}\left(n^{3} \log n\right)$
- $\left(\frac{3}{2}-\frac{1}{2 m}\right)$ approximation
- Assumes arbitrary rejection costs
- $\mathcal{L P T}$: A cheap and naive solution (No rejection)
- Uses Longest Processing Time first method

[^3]
Comparison of scheduler costs

- Each box-plot represents 30 different experimental cases
- $\mathcal{L P T}$: No guarantee on the cost bound
- $\mathcal{B E K}$ P: Better costs in general compared to $\mathcal{L I U} \mathcal{L U}$

Our algorithm for fixed makespan T

```
Algorithm 3 FillMaxArea(J, m, T)
1: Generate \(G, N_{1}, N_{2}, N_{3}\) and \(P\) subsets of \(J\)
2: for each \(j=\left(l_{0}, l_{1}, l_{2}, l_{3}\right)\) such that \(l_{0}+l_{1}+l_{2}+l_{3}=m\) and \(I_{1}+2 l_{2}+3 l_{3} \leq n\)
    do
    3: \(\quad X_{j} \leftarrow \emptyset\)
    4: \(\quad X_{j} \leftarrow X_{j} \cup\) AssignFrom \(\left(\left\{(G),\left(N_{1}\right),\left(N_{2}\right),\left(N_{3}\right)\right\}, l_{1}\right)\)
    5: \(\quad X_{j} \leftarrow X_{j} \cup\) AssignFrom \(\left(\left\{\left(N_{2}, N_{1}\right),\left(N_{3}, N_{1}\right),\left(N_{2}, N_{2}\right),\left(N_{3}, N_{2}\right),\left(N_{3}, N_{3}\right)\right\}, l_{2}\right)\)
    6: \(\quad X_{j} \leftarrow X_{j} \cup\) AssignFrom \(\left(\left\{\left(N_{3}, N_{3}, N_{2}\right),\left(N_{3}, N_{3}, N_{3}\right)\right\}, l_{3}\right)\)
    7: \(\quad\) If \(I_{0}+\left|X_{j}\right|<m\), discard \(X_{j}\)
    8: \(\quad\) Add jobs from \(P\) greedily (in any order) to \(X_{j}\), keeping makespan \(\leq \frac{5}{4} T\)
    9: \(X^{*}=\left\{X_{j} \mid \max A^{X_{j}}\right\}\)
10: return \(X^{*}\)
```


Our algorithm for fixed makespan T

```
Algorithm 4 AssignFrom(combs, I)
    : Result \(\leftarrow \emptyset\)
    2: Remove all combinations from combs where at least one set within the
        combination is empty
    3: while \(\mid\) Result \(\mid \leq I\) and combs is not empty do
    4: Denote by \(\left(K_{1}, K_{2}, \ldots, K_{k}\right)\) the first combination in combs
    5: \(\quad j_{1} \leftarrow\) the largest job from \(K_{1}, j_{2} \leftarrow\) the largest remaining job from \(K_{2} \ldots\)
    6: Continue until \(j_{k} \leftarrow\) the largest remaining job from \(K_{k}\)
    7: \(\quad\) Result \(=\) Result \(\cup\left(j_{1}, j_{2}, \ldots, j_{k}\right)\)
    8: Remove all combinations from combs where at least one set within the
        combination is empty
    return Result
```


Comparison of real-life scheduler running times

Figure 1: Comparison of $\mathcal{L P} \mathcal{T}, \mathcal{L I U L U}$ and $\mathcal{B E K} \mathcal{P}$ using $m=20$ for different number of jobs, different values for ρ and σ. Each box-plot represents 30 different experimental cases for the corresponding configuration.

Methods compared

- BEKP: Our method
- $\mathcal{O}\left(m^{3}(m+n) \log _{1+\epsilon} \rho\right)$
- $\frac{5}{4}(1+\epsilon)$ approximation
- $\mathcal{L I U L U}$: The algorithm proposed by Liu and Lu^{7}
- $\mathcal{O}\left(n^{3} \log n\right)$
- $\left(\frac{3}{2}-\frac{1}{2 m}\right)$ approximation
- Assumes arbitrary rejection costs
- $\mathcal{L P T}$: A cheap and naive solution (No rejection)
- Uses Longest Processing Time first method
- Lower Bound: Reference method
- ILP: $x_{i}=1$ if job is accepted; else $x_{i}=0$
- $\forall i \in J, C \geq x_{i} p_{i}$ and $C \geq \sum_{i \in J}\left(x_{i} p_{i}\right) / m$
- minimize $C m+\sum_{i \in J} \rho\left(1-x_{i}\right) p_{i}$
- No performance optimization for methods

[^4]
Comparison of scheduler costs

－Each box－plot represents 30 different experimental cases
－ $\mathcal{L P T}$ ：No guarantee on the cost bound
－ $\mathcal{B E K}$ P：Better costs in general compared to $\mathcal{L I U L U}$

[^0]: ${ }^{1}$ Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multi-processor scheduling with rejection. SIAM Journal Disc Math 13(1), 64-78, 2000 ${ }^{2} \mathrm{Ou}, \mathrm{J} .$, Zhong, X., Wang, G.: An improved heuristic for parallel machine scheduling with rejection. European Journal of Operational Research 241(3), 653-661, 2015
 ${ }^{3}$ Liu, P., Lu, X.: New approximation algorithms for machine scheduling with rejection on single and parallel machine. Journal of Comb Optimization 40(4), 929-952, 2020

[^1]: ${ }^{4}$ Caprara, A., Kellerer, H., Pferschy, U.: A 3/4-approximation algorithm for multiple subset sum. Journal of Heuristics 9(2), 99-111 (March 2003)

[^2]: ${ }^{5}$ Beaumont, O., Eyraud-Dubois, L., Korkmaz, E., Pilla, L.L.: Experimental codes and results for the paper "a $5 / 4(1+\epsilon)$-approximation algorithm for scheduling with rejection costs proportional to processing times".
 https://inria.hal.science/hal-04517532, accessed: March 25, 2024

[^3]: ${ }^{6}$ Liu, P., Lu, X.: New approximation algorithms for machine scheduling with rejection on single and parallel machine. Journal of Comb Optimization 40(4), 929-952 (2020)

[^4]: ${ }^{7}$ Liu, P., Lu, X.: New approximation algorithms for machine scheduling with rejection on single and parallel machine. Journal of Comb Optimization 40(4), 929-952 (2020)

