

$\frac{5}{4}(1+\epsilon)$ -Approximation Algorithm for Scheduling with Rejection Costs Proportional to Processing Times

Olivier Beaumont¹ Rémi Bouzel² Lionel Eyraud-Dubois¹ Esragul Korkmaz¹ Laercio Lima Pilla¹ Alexandre Van Kempen²

24/06/2024, 17th Scheduling for large-scale systems workshop ¹Inria Center of the University of Bordeaux, LaBRI, UMR 5800, Talence, France ²Qarnot Computing, Montrouge, France

Background

- Topic of the paper: Scheduling n independent jobs on m machines
 - With a possibility to **reject** some jobs
- Solution (S)
 - Accepted jobs (A^S) + associated schedule
 - Rejected jobs (R^{S})
- Objective
 - minimize($Z^{S} = C^{S} + \sum_{j \in R^{S}} RejectionCost_{j}$)
 - where $C^{\mathcal{S}}$ denotes the makespan of jobs in $A^{\mathcal{S}}$

Scheduling with Rejection

- Many studies including
 - Bartal et al.¹: $(2 \frac{1}{m})$ -approx algo in $\mathcal{O}(n \log n)$
 - Ou et al.²: $(\frac{3}{2} + \epsilon)$ -approx algo in $\mathcal{O}(n \log n + \frac{n}{\epsilon})$
 - Liu and Lu³: $(\frac{3}{2} \frac{1}{2m})$ -approx algo in $\mathcal{O}(n^3 \log n)$
- Our paper: $\frac{5}{4}(1+\epsilon)$ -approx algo in $\mathcal{O}(m^3(m+n)\log_{1+\epsilon}\rho)$
 - Assumption: Rejection costs proportional to processing times

¹Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multi-processor scheduling with rejection. SIAM Journal Disc Math 13(1), 64-78, 2000 ²Ou, J., Zhong, X., Wang, G.: An improved heuristic for parallel machine scheduling with rejection. European Journal of Operational Research 241(3), 653-661, 2015 ³Liu, P., Lu, X.: New approximation algorithms for machine scheduling with rejection on single and parallel machine. Journal of Comb Optimization 40(4), 929-952, 2020

Context – Qarnot platform

- Scheduling pbs in the context of Qarnot platform (PULSE project)
- Qarnot: Cloud provider with highly distributed computational units
 - Recycling heat of computations to provide heat to the hosts
 - Avoiding energy waste on cooling systems

Traditional Datacenter

- Today: boiler maintenance scheduled at time T
- Goal: schedule maintenance close to T and minimize energy / 15

Problem Formulation - Scheduling with Rejection

- Inputs:
 - *n* non-preemptive independent jobs:
 - $\forall j \in \{1, ..., n\}, p_j$: processing time
 - $\forall j \in \{1, ..., n\}, \rho p_j$: cost to run on expensive machine (ρ is fixed)
 - *m* identical machines on boiler (cheap)
 - ∞ identical machines on e.g. public provider (expensive)
- Constraints:
 - Each job requires exactly one machine
 - Each machine can run at most one job at a time
 - All boiler machines are turned ON when any job running on boiler
- Outputs (Decision variables):
 - $\forall i \in \{1, ..., m\}, X_i$ is the list of jobs assigned to the cheap machine i
- Definitions:

•
$$C^{S} = \max_{i \in \{1,...,m\}} \sum_{j \in X_{i}} p_{j}$$
 (no dependencies)

•
$$R^{\mathcal{S}} = \sum_{j \notin (X_i)_{i \in \{1,\ldots,m\}}} p_j$$

• Objective:

 $\textit{minimize}(Z^{\mathcal{S}} = m * C^{\mathcal{S}} + \rho R^{\mathcal{S}})$

Problem Visualization - Scheduling with Rejection

- Left figure shows boiler machines vs time
 - Blue is occupied time; Pink is idle time
- Right figure shows the jobs on expensive machines (called rejected)

- Objective: $Z^{S} = m * C^{S} + \rho R^{S}$
- $m * C^{S}$: energy on boiler
- ρR^{S} : energy on traditional resources

Solution for a makespan bound $\ensuremath{\mathcal{T}}$

- Optimal Solution if maintenance is scheduled at time T
 - $Z^{opt} = m * T + \rho R^{opt}(T)$
- Our goal: find C^{S} and R^{S} such that

•
$$Z^{\mathcal{S}} = m * C^{\mathcal{S}} + \rho R^{\mathcal{S}} \leq \frac{5}{4} Z^{opt}$$

Our approach for fixed makespan T

• Idea from Caprara et al.⁴ for Multiple Subset Sum Problem solution

- For fitting in *T*, only possible long job combinations on a machine:
 - One job possibilities: (*G*), (*N*₁), (*N*₂), (*N*₃)
 - Two job possibilities: $(N_1, N_2), (N_1, N_3), (N_2, N_2), (N_2, N_3), (N_3, N_3)$
 - Three job possibilities: (*N*₂, *N*₃, *N*₃), (*N*₃, *N*₃, *N*₃)
- Our solution for fixed makespan T:
 - Use only these combinations of long jobs (at most $\frac{5}{4}T$ makespan)
 - Finally, assign short jobs greedily within makespan $\leq rac{5}{4} T$

⁴Caprara, A., Kellerer, H., Pferschy, U.: A 3/4-approximation algorithm for multiple subset sum. Journal of Heuristics 9(2), 99–111 (March 2003)

- Assume: m=5, |G|=0, $|N_1|=5$, $|N_2|=1$, $|N_3|=5$, |P|=17
- *l*₀, *l*₁, *l*₂ and *l*₃ stand for the number of machines that run no long job, one long job, two long jobs and three long jobs, respectively
- Fix $(l_0, l_1, l_2, l_3) = (1, 1, 2, 1)$

- Assume: m=5, |G|=0, $|N_1|=4$, $|N_2|=1$, $|N_3|=5$, |P|=17
- *l*₀, *l*₁, *l*₂ and *l*₃ stand for the number of machines that run no long job, one long job, two long jobs and three long jobs, respectively
- Fix $(l_0, l_1, l_2, l_3) = (1, 1, 2, 1)$

- Start with singletons, i.e. (*G*), (*N*₁), (*N*₂), (*N*₃)
 - No job in $G \implies$ Take the longest job in N_1

- Assume: m=5, |G|=0, $|N_1|=3$, $|N_2|=0$, $|N_3|=5$, |P|=17
- *l*₀, *l*₁, *l*₂ and *l*₃ stand for the number of machines that run no long job, one long job, two long jobs and three long jobs, respectively
- Fix $(l_0, l_1, l_2, l_3) = (1, 1, 2, 1)$

- Now assign pairs, i.e. $(N_1, N_2), (N_1, N_3), (N_2, N_2), (N_2, N_3), (N_3, N_3)$
 - Longest job in N_2 and longest job in N_1

- Assume: m=5, |G|=0, $|N_1|=2$, $|N_2|=0$, $|N_3|=4$, |P|=17
- *l*₀, *l*₁, *l*₂ and *l*₃ stand for the number of machines that run no long job, one long job, two long jobs and three long jobs, respectively
- Fix $(l_0, l_1, l_2, l_3) = (1, 1, 2, 1)$

• Assign pairs, i.e. $(N_2, N_1), (N_3, N_1), (N_2, N_2), (N_3, N_2), (N_3, N_3)$

• No job in $N_2 \implies$ Longest job in N_3 and longest job in N_1

- Assume: m=5, |G|=0, $|N_1|=2$, $|N_2|=0$, $|N_3|=1$, |P|=17
- *l*₀, *l*₁, *l*₂ and *l*₃ stand for the number of machines that run no long job, one long job, two long jobs and three long jobs, respectively
- Fix $(l_0, l_1, l_2, l_3) = (1, 1, 2, 1)$

- Assign triplets, i.e. (*N*₃, *N*₃, *N*₂), (*N*₃, *N*₃, *N*₃)
 - No job in $N_2 \implies 3$ longest jobs in N_3

- Assume: m=5, |G|=0, $|N_1|=2$, $|N_2|=0$, $|N_3|=1$, |P|=6
- *l*₀, *l*₁, *l*₂ and *l*₃ stand for the number of machines that run no long job, one long job, two long jobs and three long jobs, respectively
- Fix $(l_0, l_1, l_2, l_3) = (1, 1, 2, 1)$

• Assign P jobs greedily while makespan $\leq \frac{5}{4}T$

- Assume: m=5, |G|=0, $|N_1|=2$, $|N_2|=0$, $|N_3|=1$, |P|=6
- *l*₀, *l*₁, *l*₂ and *l*₃ stand for the number of machines that run no long job, one long job, two long jobs and three long jobs, respectively
- Fix $(l_0, l_1, l_2, l_3) = (1, 1, 2, 1)$

- Find solution for each $(I_0, I_1, I_2, I_3) \rightarrow \mathcal{O}(m^3)$ iterations
 - Choose solution with largest \sum

j∈AcceptedJob

 p_i

Overall algorithm:

- Iterate above algorithm for all l_0, l_1, l_2, l_3 such that $\sum l_i = m$
- there are "only" $\Theta(m^3)$ such quadruplets...
- and keep the solution that minimizes $Z^{S} = m * C^{S} + \rho R^{S}$

RESULT

For any *T*, let \dagger be the solution obtained by *FillMaxArea*(*J*, *m*, *T*). Then, $C^{\dagger} \leq \frac{5}{4}T$ and $R^{\dagger} \leq R^{*}(T)$, where $R^{*}(T) = \min_{S, C^{S} \leq T} R^{S}$. Overall algorithm:

- Iterate above algorithm for all l_0, l_1, l_2, l_3 such that $\sum l_i = m$
- there are "only" $\Theta(m^3)$ such quadruplets...
- and keep the solution that minimizes $Z^{S} = m * C^{S} + \rho R^{S}$

RESULT

For any *T*, let \dagger be the solution obtained by *FillMaxArea*(*J*, *m*, *T*). Then, $C^{\dagger} \leq \frac{5}{4}T$ and $R^{\dagger} \leq R^{*}(T)$, where $R^{*}(T) = \min_{\mathcal{S}, C^{\mathcal{S}} \leq T} R^{\mathcal{S}}$.

Sketch of Proof:

- $C^{\dagger} \leq \frac{5}{4}T$: straightforward given the upper bounds of combinations
- FillMaxArea allocates as much work as possible on the boiler given l_0, l_1, l_2, l_3
 - $R^{\dagger} \leq R^{*}(T)$

RESULT

For any *T*, let \dagger be the solution obtained by *FillMaxArea*(*J*, *m*, *T*). Then, $C^{\dagger} \leq \frac{5}{4}T$ and $R^{\dagger} \leq R^{*}(T)$, where $R^{*}(T) = \min_{\mathcal{S}, C^{\mathcal{S}} \leq T} R^{\mathcal{S}}$.

LEMMA

For any T, let \dagger be the solution obtained by FillMaxArea(J, m, T). We can bound its cost by: $Z^{\dagger} \leq \frac{5}{4}Tm + \rho R^{*}(T)$.

RESULT

For any *T*, let \dagger be the solution obtained by *FillMaxArea*(*J*, *m*, *T*). Then, $C^{\dagger} \leq \frac{5}{4}T$ and $R^{\dagger} \leq R^{*}(T)$, where $R^{*}(T) = \min_{\mathcal{S}, C^{\mathcal{S}} \leq T} R^{\mathcal{S}}$.

LEMMA

For any T, let \dagger be the solution obtained by FillMaxArea(J, m, T). We can bound its cost by: $Z^{\dagger} \leq \frac{5}{4}Tm + \rho R^{*}(T)$.

Proof:

- Remember: Cost of † is $Z^{\dagger} = m * C^{\dagger} + \rho R^{\dagger}$
- $C^{\dagger} \leq \frac{5}{4}T$
- $R^{\dagger} \leq R^*(T)$
 - $Z^{\dagger} \leq \frac{5}{4}Tm + \rho R^*(T) \leq \frac{5}{4}Z^{opt}$

Determining the makespan bound T

- If C^{OPT} is known \implies *FillMaxArea*(C^{OPT}) is a $\frac{5}{4}$ -approx. algorithm
- In the general problem C^{OPT} is not known...
- Assume: Lower and Upper bound (L and U) on makespan such that
 - Rejecting all jobs when makespan $C^{OPT} \leq L$ and $C^{OPT} \geq U$ is valid
- Iterate over remaining makespans

- $L L(1+\epsilon)$... $L(1+\epsilon)^k \ge U$
- ϵ : User defined small coefficient
- Iteration number: $k = \left\lceil \frac{\log(\frac{U}{L})}{\log(1+\epsilon)} \right\rceil$

Algorithm 1 $\mathcal{BEKP}(J, m)$

- 1: The solution where all jobs are rejected is X_0
- 2: Compute U and L
- 3: Set k as the first value such that $(1 + \epsilon)^k L \ge U$
- 4: for each $C_i \in \{L, (1 + \epsilon)L, (1 + \epsilon)^2L, ..., (1 + \epsilon)^kL\}$ do
- 5: $X_i = FillMaxArea(J, m, C_i)$
- 6: return A schedule with the lowest cost among X_0 and all X_i

Algorithm 2 $\mathcal{BEKP}(J, m)$

- 1: The solution where all jobs are rejected is X_0
- 2: Compute U and L
- 3: Set k as the first value such that $(1 + \epsilon)^k L \ge U$
- 4: for each $C_i \in \{L, (1 + \epsilon)L, (1 + \epsilon)^2L, ..., (1 + \epsilon)^kL\}$ do
- 5: $X_i = FillMaxArea(J, m, C_i)$
- 6: return A schedule with the lowest cost among X_0 and all X_i

WHAT IS LEFT?

- Compute L and U
- Proof: *BEKP* is a $\frac{5}{4}(1+\epsilon)$ -approximation algorithm.

- W: sum of all processing times of jobs in ready queue
- $R^*(C)$: minimum possible area for the rejected jobs for makespan C
- Lower bound function on the cost: $f(C) = Cm + \rho R^*(C)$

- W: sum of all processing times of jobs in ready queue
- $R^*(C)$: minimum possible area for the rejected jobs for makespan C
- Lower bound function on the cost: $f(C) = Cm + \rho R^*(C)$
- $f(C) \ge Cm$

- W: sum of all processing times of jobs in ready queue
- $R^*(C)$: minimum possible area for the rejected jobs for makespan C
- Lower bound function on the cost: $f(C) = Cm + \rho R^*(C)$
- $f(C) \ge Cm$

• $f(C) \geq Cm + \rho(W - Cm)$

- W: sum of all processing times of jobs in ready queue
- $R^*(C)$: minimum possible area for the rejected jobs for makespan C
- Lower bound function on the cost: $f(C) = Cm + \rho R^*(C)$

- W: sum of all processing times of jobs in ready queue
- $R^*(C)$: minimum possible area for the rejected jobs for makespan C
- Lower bound function on the cost: $f(C) = Cm + \rho R^*(C)$

• $H = \frac{4\rho W}{5}$ (We set this value)

• If we reject all jobs for makespan values $\leq L$ and $\geq U$, worst cost: $\underbrace{\frac{Z^{X_0}}{Z^{OPT}} \leq \frac{\rho W}{4\rho W}}_{\frac{E}{S}} = \frac{5}{4}}$ (Valid solution)

• If we reject all jobs for makespan values $\leq L$ and $\geq U$, worst cost: $\underbrace{\frac{Z^{X_0}}{Z^{OPT}} \leq \frac{\rho W}{4\rho W}}_{\frac{4\rho W}{c}} = \frac{5}{4}}$ (Valid solution)

• Remember:
$$k = \left\lceil \frac{\log(\frac{U}{L})}{\log(1+\epsilon)} \right\rceil$$

• $U = \frac{4\rho W}{5m}$ and $L = \frac{\rho W}{5m(\rho-1)} \implies \frac{U}{L} = 4(\rho-1)$
 \Im For $\rho \le 10$ and $\epsilon \ge 0.05$, $k = 74$ (Cheap iteration)

For any positive ϵ , \mathcal{BEKP} is a $\frac{5}{4}(1+\epsilon)$ -approximation algorithm.

Proof

• For $C^{OPT} < L$ or $C^{OPT} > U$ already proved.

For any positive ϵ , \mathcal{BEKP} is a $\frac{5}{4}(1+\epsilon)$ -approximation algorithm.

Proof

For any positive ϵ , \mathcal{BEKP} is a $\frac{5}{4}(1+\epsilon)$ -approximation algorithm.

Proof

- X_i : Solution by using C_i
- $Z^{X_i} \leq \frac{5}{4}mC_i + \rho R^*(C_i)$

For any positive ϵ , \mathcal{BEKP} is a $\frac{5}{4}(1+\epsilon)$ -approximation algorithm.

Proof

- X_i : Solution by using C_i
- $Z^{X_i} \leq \frac{5}{4}mC_i + \rho R^*(C_i)$
- As $C^{O\vec{PT}} \leq C_i$
 - $R^*(C_i) \le R^*(C^{OPT})$

For any positive ϵ , \mathcal{BEKP} is a $\frac{5}{4}(1+\epsilon)$ -approximation algorithm.

Proof

- X_i : Solution by using C_i
- $Z^{X_i} \leq \frac{5}{4}mC_i + \rho R^*(C_i)$
- As $C^{OPT} \leq C_i$
 - $R^*(C_i) \leq R^*(C^{OPT})$
- As $C_i \leq (1+\epsilon)C^{OPT}$ • $Z^{X_i} \leq \frac{5}{4}(1+\epsilon)mC^{OPT} + \rho R^*(C^{OPT}) \leq \frac{5}{4}(1+\epsilon)Z^{OPT}$

Conclusion - Future work

- In practice (simulations)
 - Very good qualitative results (much lower than $\frac{5}{4}$)
 - Low computational time $(Km^3(m+n)$ where m machines, n jobs)
- \mathcal{BEKP} compared to \mathcal{LIULU}
 - Improves approximation ratio (for proportional rejection costs)
 - Proportional rejection costs can be extended to other contexts
 - Improves complexity wrt total number of jobs
- Next step: consider other scheduling problems related to Qarnot
 - With deadlines (each job has a duration and a deadline)
 - the true problem is online and non clairvoyant...
 - probably very difficult to prove something...

Thank You

Backup slides

Experiments

- Run in sequential on Miriel nodes of Plafrim
 - 2 INTEL Xeon E5-2680v3 12-core 2.50 GHz processors with 128 GB
- Processing times are generated through lognormal distribution
 - Mean 3
 - Standard deviations (σ): "0.5", "0.7", and "1.0"
 - Large σ means higher variance in processing times
- Number of machines: m = 20
- Number of jobs: n = 4m
- Our simulation code is available as free software in⁵

⁵Beaumont, O., Eyraud-Dubois, L., Korkmaz, E., Pilla, L.L.: Experimental codes and results for the paper "a $5/4(1+\epsilon)$ -approximation algorithm for scheduling with rejection costs proportional to processing times". https://inria.hal.science/hal-04517532, accessed: March 25, 2024

- \mathcal{BEKP} : Our method
 - $\mathcal{O}(m^3(m+n)\log_{1+\epsilon}\rho)$
 - $\frac{5}{4}(1+\epsilon)$ approximation
- $\ensuremath{\mathcal{LIULU}}$: The algorithm proposed by Liu and $\ensuremath{Lu^6}$
 - $\mathcal{O}(n^3 \log n)$
 - $\left(\frac{3}{2} \frac{1}{2m}\right)$ approximation
 - Assumes arbitrary rejection costs
- \mathcal{LPT} : A cheap and naive solution (No rejection)
 - Uses Longest Processing Time first method

⁶Liu, P., Lu, X.: New approximation algorithms for machine scheduling with rejection on single and parallel machine. Journal of Comb Optimization 40(4), 929-952 (2020)

Comparison of scheduler costs

- Each box-plot represents 30 different experimental cases
- \mathcal{LPT} : No guarantee on the cost bound
- $\mathcal{BEKP}:$ Better costs in general compared to \mathcal{LIULU}

Algorithm 3 FillMaxArea(J, m, T)

- 1: Generate G, N_1 , N_2 , N_3 and P subsets of J
- 2: for each $j = (l_0, l_1, l_2, l_3)$ such that $l_0 + l_1 + l_2 + l_3 = m$ and $l_1 + 2l_2 + 3l_3 \le n$ do

3:
$$X_j \leftarrow \emptyset$$

4:
$$X_j \leftarrow X_j \cup AssignFrom(\{(G), (N_1), (N_2), (N_3)\}, h_1)$$

- 5: $X_j \leftarrow X_j \cup AssignFrom(\{(N_2, N_1), (N_3, N_1), (N_2, N_2), (N_3, N_2), (N_3, N_3)\}, I_2)$
- 6: $X_j \leftarrow X_j \cup AssignFrom(\{(N_3, N_3, N_2), (N_3, N_3, N_3)\}, I_3)$
- 7: If $I_0 + |X_j| < m$, discard X_j
- 8: Add jobs from P greedily (in any order) to X_j , keeping makespan $\leq \frac{5}{4}T$

9:
$$X^* = \{X_j | \max_j A^{X_j}\}$$

10: **return** *X**

Algorithm 4 AssignFrom(combs, I)

- 1: Result $\leftarrow \emptyset$
- 2: Remove all combinations from *combs* where at least one set within the combination is empty
- 3: while $|Result| \leq l$ and *combs* is not empty **do**
- 4: Denote by $(K_1, K_2, ..., K_k)$ the first combination in *combs*
- 5: $j_1 \leftarrow$ the largest job from $K_1, j_2 \leftarrow$ the largest remaining job from $K_2 \dots$
- 6: Continue until $j_k \leftarrow$ the largest remaining job from K_k
- 7: $Result = Result \cup (j_1, j_2, ..., j_k)$
- 8: Remove all combinations from *combs* where at least one set within the combination is empty
- 9: return Result

Comparison of real-life scheduler running times

Figure 1: Comparison of \mathcal{LPT} , \mathcal{LTULU} and \mathcal{BEKP} using m = 20 for different number of jobs, different values for ρ and σ . Each box-plot represents 30 different experimental cases for the corresponding configuration.

Methods compared

- \mathcal{BEKP} : Our method
 - $\mathcal{O}(m^3(m+n)\log_{1+\epsilon}\rho)$
 - $\frac{5}{4}(1+\epsilon)$ approximation
- \mathcal{LIULU} : The algorithm proposed by Liu and Lu⁷
 - $\mathcal{O}(n^3 \log n)$
 - $\left(\frac{3}{2} \frac{1}{2m}\right)$ approximation
 - Assumes arbitrary rejection costs
- \mathcal{LPT} : A cheap and naive solution (No rejection)
 - Uses Longest Processing Time first method
- Lower Bound: Reference method
 - ILP: $x_i = 1$ if job is accepted; else $x_i = 0$
 - $\forall i \in J, C \geq x_i p_i \text{ and } C \geq \sum_{i \in J} (x_i p_i) / m$
 - minimize $Cm + \sum_{i \in J} \rho(1 x_i)p_i$
- No performance optimization for methods

⁷Liu, P., Lu, X.: New approximation algorithms for machine scheduling with rejection on single and parallel machine. Journal of Comb Optimization 40(4), 929-952 (2020)

Comparison of scheduler costs

- Each box-plot represents 30 different experimental cases
- \mathcal{LPT} : No guarantee on the cost bound
- \mathcal{BEKP} : Better costs in general compared to \mathcal{LIULU}