EX
REPUBLIQUE

QL pa . .« 7
2 lrezia— LOBRI] “Mikitix @ P QARNOT Z%Sf

2(1 + ¢)-Approximation Algorithm for
Scheduling with Rejection Costs Proportional

to Processing Times

Olivier Beaumont ! Rémi Bouzel®> Lionel Eyraud-Dubois’
Esragul Korkmaz' Laercio Lima Pilla’ Alexandre Van Kempen?

24/06/2024, 17th Scheduling for large-scale systems workshop
Yinria Center of the University of Bordeaux, LaBRI, UMR 5800, Talence, France

2Qarnot Computing, Montrouge, France

Background

Scheduling with Rejection

e Topic of the paper: Scheduling n independent jobs on m machines
e With a possibility to reject some jobs

e Solution (S)
o Accepted jobs (AS) + associated schedule
e Rejected jobs (R®)

e Objective

e minimize(Z° = C° 4+ 3. RejectionCost;)
JERS
e where C° denotes the makespan of jobs in AS

1/15

Scheduling with Rejection

e Many studies including
e Bartal et al.": (2 — L)-approx algo in O(nlog n)
e Ou et al.?: (% + ¢)-approx algo in O(nlogn + %)

3 1

e Liu and Lu*: (2 — ;L)-approx algo in O(n*logn)

e Our paper: 2(1+ €)-approx algo in O(m*(m + n)log, . p)

e Assumption: Rejection costs proportional to processing times

IBartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.:
Multi-processor scheduling with rejection. SIAM Journal Disc Math 13(1), 64-78, 2000
2Qu, J., Zhong, X., Wang, G.: An improved heuristic for parallel machine scheduling
with rejection. European Journal of Operational Research 241(3), 653-661, 2015
3Liu, P., Lu, X.: New approximation algorithms for machine scheduling with rejection
on single and parallel machine. Journal of Comb Optimization 40(4), 929-952, 2020
2/15

https://epubs.siam.org/doi/abs/10.1137/S0895480198335041
https://epubs.siam.org/doi/abs/10.1137/S0895480198335041
https://www.sciencedirect.com/science/article/abs/pii/S0377221714006885
https://www.sciencedirect.com/science/article/abs/pii/S0377221714006885

Context — Qarnot platform

e Scheduling pbs in the context of Qarnot platform (PULSE project)
e Qarnot: Cloud provider with highly distributed computational units
e Recycling heat of computations to provide heat to the hosts
e Avoiding energy waste on cooling systems

Traditional Datacenter Qarnot Computing
Jobs Jobs
Traditional computer Boilers Traditional computer
- Executing jobs - Executing jobs - Executing jobs
- Heating water

e Today: boiler maintenance
scheduled at time T

e Goal: schedule maintenance

close to T and minimize energg//
15

Problem Formulation - Scheduling with Rejection

e Inputs:
e n non-preemptive independent jobs:
e Vj € {1,...,n},pj: processing time
e Vj € {1,...,n}, ppj: cost to run on expensive machine (p is fixed)
e m identical machines on boiler (cheap)
e oo identical machines on e.g. public provider (expensive)

Constraints:

e Each job requires exactly one machine
e Each machine can run at most one job at a time
e All boiler machines are turned ON when any job running on boiler

Outputs (Decision variables):
e Vi€ {1,....,m}, X is the list of jobs assigned to the cheap machine /
Definitions:

e C°5= max Y p; (no dependencies)
ie{1,..., m} Jex:
* RS = > P
JE(Xiie(1,...,m}
Objective:

minimize(Z° = m* C° + pR¥)

4/15

Problem Visualization - Scheduling with Rejection

e Left figure shows boiler machines vs time

e Blue is occupied time; Pink is idle time

e Right figure shows the jobs on expensive machines (called rejected)

Machines

= - Time

e Objective: Z° = mx CS + pR®
e mx CS: energy on boiler

e pRS: energy on traditional resources
P gy

5/15

Solution for a makespan bound T

Maintenance with target T

e Optimal Solution if maintenance is scheduled at time T
o Z¥P' =mx T + pR®P(T)
e Our goal: find C° and RS such that

Machines

Time

° ZS:m*CS—i—pRS

IN
Bl

Zopt

6/15

Our approach for fixed makespan T

e Idea from Caprara et al.* for Multiple Subset Sum Problem solution

1 3 1 3
0 A VY al T
| | |

|
I G: Long jobs
[SN ;- Long jobs
I S NV,: Long jobs

I S V;: Long jobs
IR P Short jobs

e For fitting in T, only possible long job combinations on a machine:
e One job possibilities: (G), (N1), (N2), (Ns)
e Two job possibilities: (N1, N2), (N1, N3), (N2, No), (N2, N3), (N3, N3)
e Three job possibilities: (N2, N3, N3), (N3, N3, N3)

e Our solution for fixed makespan T:
e Use only these combinations of long jobs (at most %T makespan)
e Finally, assign short jobs greedily within makespan < %T

4Caprara, A., Kellerer, H., Pferschy, U.: A 3/4-approximation algorithm for multiple
subset sum. Journal of Heuristics 9(2), 99-111 (March 2003)

7/15

Our algorithm for fixed makespan T : FillMaxArea

G‘:O’ N1|:5’ |N2|:1, |N3|:5, |P|:17

e lp, h, hh and 3 stand for the number of machines that run no long

e Assume: m=b5,

job, one long job, two long jobs and three long jobs, respectively
[FIX (/0,/1,/2, /3) = (1, 1, 2, 1)

Machines

5

/
g

h
h

8/15

Our algorithm for fixed makespan T : FillMaxArea

G‘:O’ N1|:4’ |N2|:1, |N3|:5, |P|:17

e lp, h, hh and 3 stand for the number of machines that run no long

e Assume: m=b5,

job, one long job, two long jobs and three long jobs, respectively
[FIX (/0,/1,/2, /3) = (1, 1, 2, 1)

Machines

e Start with singletons, i.e. (G),(Ny), (N>), (N3)
e No job in G = Take the longest job in N;
8/15

Our algorithm for fixed makespan T : FillMaxArea

G|=0, |N1|=3, [No|=0, |N3|=5, |P|=17

e lp, h, hh and 3 stand for the number of machines that run no long

e Assume: m=b5,

job, one long job, two long jobs and three long jobs, respectively
[FIX (/0,/1,/2, /3) = (1, 1, 2, 1)

Machines

e Now assign pairs,i.e. (Ny, No), (N1, N3), (Na, N), (Na, N3), (N3, N3)
e Longest job in N> and longest job in N;
8/15

Our algorithm for fixed makespan T : FillMaxArea

G|=0, |Ny|=2, |No|=0, | N5|=4, |P|=17

e lp, h, hh and 3 stand for the number of machines that run no long

e Assume: m=b5,

job, one long job, two long jobs and three long jobs, respectively
[FIX (/0,/1,/2, /3) = (1, 1, 2, 1)

Machines

[Assign pairs,i.e. (NQ,Nl),(N3,Nl),(NQ,NQ),(Ng,Nz),(N37N3)

e No job in N, = Longest job in N3 and longest job in N;
8/15

Our algorithm for fixed makespan T : FillMaxArea

G|=0, |My|=2, |No|=0, | N5|=1, |P|=17

e lp, h, hh and 3 stand for the number of machines that run no long

e Assume: m=b5,

job, one long job, two long jobs and three long jobs, respectively
[FIX (/0,/1,/2, /3) = (1, 1, 2, 1)

Machines

Times

e Assign triplets, i.e. (N3, N3, Nb), (N3, N3, N3)
e No job in N, = 3 longest jobs in N3
8/15

Our algorithm for fixed makespan T : FillMaxArea

e Assume: m=5, |G|=0, |N;|=2, |N»2|=0, |N3|=1, |P|=6
e lp, h, hh and 3 stand for the number of machines that run no long
job, one long job, two long jobs and three long jobs, respectively

o Fix (/0,/17 /2./ /3) = (1,]., 2, 1)

Machines

|
h --_--
]

8/15

Our algorithm for fixed makespan T : FillMaxArea

e Assume: m=5, |G|=0, |N;|=2, |N»|=0, |N3|=1, |P|=6

e Iy, i, b and /5 stand for the number of machines that run no long
job, one long job, two long jobs and three long jobs, respectively

o Fix (lo,h,h,5)=1(1,1,2, 1)

Machines
/ SI
g
° . I R
h s --

e Find solution for each (ly, h, b, 5) — O(m?) iterations

e Choose solution with largest > pj
j€AcceptedJobs

8/15

FillMaxArea - Main result

Overall algorithm:

e lterate above algorithm for all I, /1, b, 3 such that > /i = m
e there are "only” ©(m?®) such quadruplets...
e and keep the solution that minimizes Z° = m x C 4 pR®

For any T, let 1 be the solution obtained by FillMaxArea(J, m, T).
Then, CT < 2T and RT < R*(T), where R*(T) = ming cs<7 RS.

9/15

FillMaxArea - Main result

Overall algorithm:

e lterate above algorithm for all I, /1, b, 3 such that > /i = m
e there are "only” ©(m?®) such quadruplets...
e and keep the solution that minimizes Z° = m x C 4 pR®

For any T, let 1 be the solution obtained by FillMaxArea(J, m, T).
Then, CT < 2T and RT < R*(T), where R*(T) = ming cs<7 RS.

Sketch of Proof:

o CT < %T . straightforward given the upper bounds of combinations
e FillMaxArea allocates as much work as possible on the boiler given

lo, by 2y 13
e RT < R*(T)

9/15

FillMaxArea - Main result

RESULT

For any T, let 1 be the solution obtained by FillMaxArea(J, m, T).
Then, CT < 2T and RT < R*(T), where R*(T) = ming cs<7 RS.

\. J

LEMMA

For any T, let T be the solution obtained by FillMaxArea(J, m, T).
We can bound its cost by: ZT < 2Tm+ pR*(T).

9/15

FillMaxArea - Main result

RESULT

For any T, let 1 be the solution obtained by FillMaxArea(J, m, T).
Then, CT < 2T and RT < R*(T), where R*(T) = ming cs<7 RS.

\. J

LEMMA

For any T, let T be the solution obtained by FillMaxArea(J, m, T).
We can bound its cost by: ZT < 2Tm+ pR*(T).

Proof:

e Remember: Cost of tis ZI = mx* CT 4 pRt
o Cf < %T
o Rt < R*(T)
o ZI < 2Tm+ pR*(T) < 2Z°%*
Do/1s

Determining the makespan
bound T

Determining Makespan: BEKP method

e If COPT is known = FillMaxArea(COPT) is a 2-approx. algorithm

In the general problem C9PT is not known...

Assume: Lower and Upper bound (L and U) on makespan such that

e Rejecting all jobs when makespan C°" < L and C9°T > U is valid

Iterate over remaining makespans

| | | | | |
[[[[[|

Li(1+¢) L(1+ef>U

e: User defined small coefficient

log(¥) ‘|
log(1+e)

Iteration number: k = [

10/15

Determining Makespan: BEKP method

Algorithm 1 BEKXP(J, m)

@ @ PR

The solution where all jobs are rejected is Xo

Compute U and L

Set k as the first value such that (1 +€)*L > U

for each G € {L, (1 +¢€)L, (1 +€)’L,...,(1 + €)L} do
Xi = FillMaxArea(J, m, C;)

return A schedule with the lowest cost among Xy and all X;

11/15

Determining Makespan: BEKP method

Algorithm 2 BEXP(J, m)

@ PR

The solution where all jobs are rejected is Xo

Compute U and L

Set k as the first value such that (14 ¢)*L > U

for each G € {L, (1 +¢€)L, (1 +€)°L,...,(1 + €)*L} do
Xi = FillMaxArea(J, m, C;)

return A schedule with the lowest cost among Xy and all X;

e Compute L and U

e Proof: BEKP is a 2(1 + ¢€)-approximation algorithm.

11/15

Computing L and U

e W: sum of all processing times of jobs in ready queue
e R*(C): minimum possible area for the rejected jobs for makespan C
e Lower bound function on the cost: f(C) = Cm+ pR*(C)

12/15

Computing L and U

e W: sum of all processing times of jobs in ready queue
e R*(C): minimum possible area for the rejected jobs for makespan C
e Lower bound function on the cost: f(C) = Cm+ pR*(C)

° f(C) > Cm

12/15

Computing L and U

e W: sum of all processing times of jobs in ready queue
e R*(C): minimum possible area for the rejected jobs for makespan C
e Lower bound function on the cost: f(C) = Cm+ pR*(C)

e f(C)>Cm o f(C) > Cm+p(W—Cm)

12/15

Computing L and U

e W: sum of all processing times of jobs in ready queue
e R*(C): minimum possible area for the rejected jobs for makespan C
e Lower bound function on the cost: f(C) = Cm+ pR*(C)

e f(C)>Cm o f(C)> Cm+p(W—Cm)
Cost Z
pW f(C)
Cm

pW —(p—1)Cm

Makespan C

12/15

Computing L and U

e W: sum of all processing times of jobs in ready queue
e R*(C): minimum possible area for the rejected jobs for makespan C
e Lower bound function on the cost: f(C) = Cm+ pR*(C)

° f(C) > Cm
Cost Z

o f(C) > Cm+p(W—-Cm)

o £(C)

4w ~~~Cm

5

pW —(p+1)Cm

L U Makespan C

o H= 4’;W (We set this value)

12/15

Computing L and U

Cost Z
pW f(C)

4pW J\ / Cm

oW —(p+1)Cm

L U Makespan C

e If we reject all jobs for makespan values < L and > U, worst cost:
X .)
© Zp5 < £ =2 (Valid solution)
5

13/15

Computing L and U

Cost Z
pW f(C)
4pW 4\\/\¥ Cm
5
oW —(p+1)Cm

L

U Makespan C

e If we reject all jobs for makespan values < L and > U, worst cost:

X0 . .
© Zp5 < £% =2 (Valid solution)
5

log(¥) "
log(1+€)

e Remember: k= |

e U=2%and L= L% — Y—_y(p-1)

L
(Cheap iteration)

5m 5m(p—1)

@ For p <10 and e > 0.05, k = 74

13/15

Proof of the approximation ratio

5
4

For any positive €, BEXP is a 2(1 + ¢)-approximation algorithm.

Proof

e For COPT < [or COPT > U already proved.

14/15

Proof of the approximation ratio

5
4

For any positive €, BEXP is a 2(1 + ¢)-approximation algorithm.

Proof
e For COPT < [or COPT > U already proved. For L < C9PT < U:

} T I I I I I I I I I I T ‘ T I I 1
L COPTC; (1+4€)COPT >U

14/15

Proof of the approximation ratio

5
4

For any positive €, BEXP is a 2(1 + ¢)-approximation algorithm.

Proof
e For COPT < [or COPT > U already proved. For L < C9PT < U:

} T I I I I I I I I I I T ‘ T I I 1
L COPTC; (1+4€)COPT >U

e X;: Solution by using C;
o ZXi < %mC, +pR*(C,')

14/15

Proof of the approximation ratio

5
4

For any positive €, BEXP is a 2(1 + ¢)-approximation algorithm.

Proof
e For COPT < [or COPT > U already proved. For L < C9PT < U:

} T I I I I I I I I I I T ‘ T I I 1
L COPTC; (1+4€)COPT >U

e X;: Solution by using C;
o ZXi < %mC, +pR*(C,')
e As COPT < (;

o R*(C,) S R*(COPT)

14/15

Proof of the approximation ratio

For any positive ¢, BEKXP is a (1 + €)-approximation algorithm.

4

Proof

e For COPT < [or COPT > U already proved. For L < C9PT < U:

|
I
L COPTC; (1+4€)COPT >U

X;: Solution by using C;
zZXi < %mC, + pR*(C,)
o As COPT < ¢
o R*(C,) S R*(COPT)
As G < (1+€)COPT
O ZX,‘ S %(1+€)mCOPT+pR*(COPT) S %(1+€)ZOPT

14/15

Conclusion - Future work

Conclusion

e In practice (simulations)

e Very good qualitative results (much lower than %)
o Low computational time (Km?(m + n) where m machines, n jobs)

e BEKP compared to LIULU

e Improves approximation ratio (for proportional rejection costs)
e Proportional rejection costs can be extended to other contexts
e Improves complexity wrt total number of jobs

e Next step: consider other scheduling problems related to Qarnot

e With deadlines (each job has a duration and a deadline)
e the true problem is online and non clairvoyant...

e probably very difficult to prove something...

15/15

Thank You

Backup slides

Experiments

Experi tal setting

e Run in sequential on Miriel nodes of Plafrim

e 2 INTEL Xeon E5-2680v3 12-core 2.50 GHz processors with 128 GB
Processing times are generated through lognormal distribution

e Mean 3

e Standard deviations (o): "0.5", "0.7", and "1.0"
e Large o means higher variance in processing times

e Number of machines: m = 20

Number of jobs: n =4m

Our simulation code is available as free software in®

5Beaumont, O., Eyraud-Dubois, L., Korkmaz, E., Pilla, L.L.: Experimental codes and
results for the paper “a 5/4(1+¢)-approximation algorithm for scheduling with
rejection costs proportional to processing times”.

https://inria.hal.science/hal-04517532, accessed: March 25, 2024
17/15

https://inria.hal.science/hal-04517532

Methods compared

e BEKP: Our method

o O(m(m+ n)log,...)
e 2(1+€) approximation

o LTULU: The algorithm proposed by Liu and Lu®

o O(n*logn)
e (2 — ;) approximation

e Assumes arbitrary rejection costs

e LPT: A cheap and naive solution (No rejection)

e Uses Longest Processing Time first method

SLiu, P., Lu, X.: New approximation algorithms for machine scheduling with rejection

on single and parallel machine. Journal of Comb Optimization 40(4), 929-952 (2020)
18/15

Comparison of scheduler costs

©

c

3 p=4

@

2106

o

T - 8
g 104 -
% 8
Q1.02

o

° }
R — e

o 0 ~ S

[} (=] o —

o 0

8 LPT 8 LIULU ® BEKP

e Each box-plot represents 30 different experimental cases
e LPT: No guarantee on the cost bound
e BEKP: Better costs in general compared to LZU LU

19/15

Our algorithm for fixed makespan T

Algorithm 3 FillMaxArea(J, m, T)

1: Generate G, N1, N>, N3 and P subsets of J
for each j = (lo, h, b, k) such that h+h+h+k =mand h+2h+3k <n
do
Xj <0
Xj < Xj U AssignFrom({(G), (N1), (N2), (N3)}, h)
Xj < XjUAssignFrom({(Nz, N1), (N3, N1), (N2, N2), (N3, N2), (N3, N3)}, k)
Xj < Xj U AssignFrom({(Ns, N3, N), (N3, N3, N3)}, 5)
If lo + |Xj| < m, discard X;
Add jobs from P greedily (in any order) to Xj, keeping makespan <
X* = {X;| max A%}
10: return X~ '

b

T

5
4

© O N> TO R W

20/ 15

Our algorithm for fixed makespan T

Algorithm 4 AssignFrom(combs, I)

1: Result + 0
Remove all combinations from combs where at least one set within the

B

combination is empty
while |Result| < | and combs is not empty do
Denote by (Ki, K, ..., Kk) the first combination in combs
1 < the largest job from Ki, j» < the largest remaining job from K ...
Continue until jx < the largest remaining job from Kj
Result = Result U (j1, j2, .-+, jk)
Remove all combinations from combs where at least one set within the

QO N o o W

combination is empty

9: return Result

21/15

Comparison of real-life scheduler running times

p=15 p=4 p=15 p=4
- -

40 75 N
—_ 3 P =)
) - = g s0 - Te
520 - -+ = 8 5 - - &
8 8 25 + b
@ ° + . L + L L
Es - = .

° T 150
Q Q
g g 2 8
@50 - - 5 T100{ = R
w - - |g w + &
2 - ’ 5 -, -
w ~ < 0 ~ e 0 ~ = v ~ <
S S = S S = S S = S S =
o o
& LPT & LIULU ® BEKP & LPT & LIULU ® BEKP

Figure 1: Comparison of LPT, LIULU and BEIP using m = 20 for different
number of jobs, different values for p and o. Each box-plot represents 30

different experimental cases for the corresponding configuration.

22/15

Methods compared

e BEKP: Our method

o O(m*(m + n)log; . p)
e 2(1+€) approximation

e LTULU: The algorithm proposed by Liu and Lu’

o O(n*logn)
° (% — ﬁ approximation

e Assumes arbitrary rejection costs

e LPT: A cheap and naive solution (No rejection)

e Uses Longest Processing Time first method

e Lower Bound: Reference method
e ILP: x; = 1 if job is accepted; else x; = 0
o Vic J,C>xpiand C >3 (xipi)/m
e minimize Cm + ZV.GJ (1 — x;)pi

e No performance optimization for methods

“Liu, P., Lu, X.: New approximation algorithms for machine scheduling with rejection
on single and parallel machine. Journal of Comb Optimization 40(4), 929-952 (2020)

23/15

Comparison of scheduler costs

p=15 p=4 p=15 p=4
2 2
é 1.10 g c§ 1.015 8
2 . = Lot : -
2105 — S Q . i s
: . ¥ s 1.IJ B
4 j | Y Th . +
£ 1.00 -l a— £ 1.000
= =
Q @ 1.015
1.10
S g 3 &
(0] = [0) 1.010 =
2 1.05 U & = <)
oA L ML B B, Wl
(5 L |) e =
T 1.00 N “ N 0 1.000 - + T +
o o o [Te) o
S S -, S - S S = o o =
& LPT & LIULU & BEKP @ LPT & LIULU # BEKP

e Each box-plot represents 30 different experimental cases
e LPT: No guarantee on the cost bound

e BEKP: Better costs in general compared to LZU LU
24/15

	Background
	Solution for a makespan bound T
	Determining the makespan bound T
	Conclusion - Future work
	Backup slides
	Experiments

