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Background



Scheduling with Rejection

• Topic of the paper: Scheduling n independent jobs on m machines

• With a possibility to reject some jobs

• Solution (S)
• Accepted jobs (AS) + associated schedule

• Rejected jobs (RS)

• Objective

• minimize(ZS = CS +
∑

j∈RS
RejectionCostj)

• where CS denotes the makespan of jobs in AS
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Scheduling with Rejection

• Many studies including

• Bartal et al.1: (2− 1
m
)-approx algo in O(n log n)

• Ou et al.2: ( 3
2
+ ϵ)-approx algo in O(n log n + n

ϵ
)

• Liu and Lu3: ( 3
2
− 1

2m
)-approx algo in O(n3logn)

• Our paper: 5
4 (1 + ϵ)-approx algo in O(m3(m + n) log1+ϵ ρ)

• Assumption: Rejection costs proportional to processing times

1Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.:

Multi-processor scheduling with rejection. SIAM Journal Disc Math 13(1), 64-78, 2000
2Ou, J., Zhong, X., Wang, G.: An improved heuristic for parallel machine scheduling

with rejection. European Journal of Operational Research 241(3), 653-661, 2015
3Liu, P., Lu, X.: New approximation algorithms for machine scheduling with rejection

on single and parallel machine. Journal of Comb Optimization 40(4), 929-952, 2020
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https://www.sciencedirect.com/science/article/abs/pii/S0377221714006885
https://www.sciencedirect.com/science/article/abs/pii/S0377221714006885


Context – Qarnot platform

• Scheduling pbs in the context of Qarnot platform (PULSE project)

• Qarnot: Cloud provider with highly distributed computational units

• Recycling heat of computations to provide heat to the hosts

• Avoiding energy waste on cooling systems

Traditional Datacenter

Jobs

Traditional computer

- Executing jobs

Qarnot Computing

Jobs

Boilers

- Executing jobs
- Heating water

Traditional computer

- Executing jobs

• Today: boiler maintenance

scheduled at time T

• Goal: schedule maintenance

close to T and minimize energy
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Problem Formulation - Scheduling with Rejection

• Inputs:

• n non-preemptive independent jobs:
• ∀j ∈ {1, ..., n}, pj : processing time

• ∀j ∈ {1, ..., n}, ρpj : cost to run on expensive machine (ρ is fixed)

• m identical machines on boiler (cheap)

• ∞ identical machines on e.g. public provider (expensive)

• Constraints:

• Each job requires exactly one machine

• Each machine can run at most one job at a time

• All boiler machines are turned ON when any job running on boiler

• Outputs (Decision variables):

• ∀i ∈ {1, ...,m},Xi is the list of jobs assigned to the cheap machine i

• Definitions:

• CS = max
i∈{1,...,m}

∑
j∈Xi

pj (no dependencies)

• RS =
∑

j /∈(Xi )i∈{1,...,m}

pj

• Objective:

minimize(ZS = m ∗ CS + ρRS)
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Problem Visualization - Scheduling with Rejection

• Left figure shows boiler machines vs time

• Blue is occupied time; Pink is idle time

• Right figure shows the jobs on expensive machines (called rejected)

• Objective: ZS = m ∗ CS + ρRS

• m ∗ CS : energy on boiler

• ρRS : energy on traditional resources
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Solution for a makespan bound T



Maintenance with target T

• Optimal Solution if maintenance is scheduled at time T

• Z opt = m ∗ T + ρRopt(T )

• Our goal: find CS and RS such that

• ZS = m ∗ CS + ρRS ≤ 5
4
Z opt
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Our approach for fixed makespan T

• Idea from Caprara et al.4 for Multiple Subset Sum Problem solution

0
1
4T

3
8T

1
2T

3
4T T

G : Long jobs
N1: Long jobs

N2: Long jobs
N3: Long jobs

P: Short jobs

• For fitting in T , only possible long job combinations on a machine:

• One job possibilities: (G), (N1), (N2), (N3)

• Two job possibilities: (N1,N2), (N1,N3), (N2,N2), (N2,N3), (N3,N3)

• Three job possibilities: (N2,N3,N3), (N3,N3,N3)

• Our solution for fixed makespan T :

• Use only these combinations of long jobs (at most 5
4
T makespan)

• Finally, assign short jobs greedily within makespan ≤ 5
4
T

4Caprara, A., Kellerer, H., Pferschy, U.: A 3/4-approximation algorithm for multiple

subset sum. Journal of Heuristics 9(2), 99–111 (March 2003)
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Our algorithm for fixed makespan T : FillMaxArea

• Assume: m=5, |G |=0, |N1|=5, |N2|=1, |N3|=5, |P|=17

• l0, l1, l2 and l3 stand for the number of machines that run no long

job, one long job, two long jobs and three long jobs, respectively

• Fix (l0, l1, l2, l3) = (1, 1, 2, 1)

Times

Machines

5
4TT

l0

l1

l2

l3

1

2

4

5
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Our algorithm for fixed makespan T : FillMaxArea

• Assume: m=5, |G |=0, |N1|=4, |N2|=1, |N3|=5, |P|=17

• l0, l1, l2 and l3 stand for the number of machines that run no long

job, one long job, two long jobs and three long jobs, respectively

• Fix (l0, l1, l2, l3) = (1, 1, 2, 1)

Times

Machines

5
4TT

l0

l1

l2

l3

1

2

4

5

• Start with singletons, i.e. (G ), (N1), (N2), (N3)

• No job in G =⇒ Take the longest job in N1
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Our algorithm for fixed makespan T : FillMaxArea

• Assume: m=5, |G |=0, |N1|=3, |N2|=0, |N3|=5, |P|=17

• l0, l1, l2 and l3 stand for the number of machines that run no long

job, one long job, two long jobs and three long jobs, respectively

• Fix (l0, l1, l2, l3) = (1, 1, 2, 1)

Times

Machines

5
4TT

l0

l1

l2

l3

1

2

4

5

• Now assign pairs,i.e. (N1,N2), (N1,N3), (N2,N2), (N2,N3), (N3,N3)

• Longest job in N2 and longest job in N1
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Our algorithm for fixed makespan T : FillMaxArea

• Assume: m=5, |G |=0, |N1|=2, |N2|=0, |N3|=4, |P|=17

• l0, l1, l2 and l3 stand for the number of machines that run no long

job, one long job, two long jobs and three long jobs, respectively

• Fix (l0, l1, l2, l3) = (1, 1, 2, 1)

Times

Machines

5
4TT

l0

l1

l2

l3

1

2

4

5

• Assign pairs,i.e. (N2,N1), (N3,N1), (N2,N2), (N3,N2), (N3,N3)

• No job in N2 =⇒ Longest job in N3 and longest job in N1
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Our algorithm for fixed makespan T : FillMaxArea

• Assume: m=5, |G |=0, |N1|=2, |N2|=0, |N3|=1, |P|=17

• l0, l1, l2 and l3 stand for the number of machines that run no long

job, one long job, two long jobs and three long jobs, respectively

• Fix (l0, l1, l2, l3) = (1, 1, 2, 1)

Times

Machines

5
4TT

l0

l1

l2

l3

1

2

4

5

• Assign triplets, i.e. (N3,N3,N2), (N3,N3,N3)

• No job in N2 =⇒ 3 longest jobs in N3
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Our algorithm for fixed makespan T : FillMaxArea

• Assume: m=5, |G |=0, |N1|=2, |N2|=0, |N3|=1, |P|=6

• l0, l1, l2 and l3 stand for the number of machines that run no long

job, one long job, two long jobs and three long jobs, respectively

• Fix (l0, l1, l2, l3) = (1, 1, 2, 1)

Times

Machines

5
4TT

l0

l1

l2

l3

1

2

4

5

• Assign P jobs greedily while makespan ≤ 5
4T
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Our algorithm for fixed makespan T : FillMaxArea

• Assume: m=5, |G |=0, |N1|=2, |N2|=0, |N3|=1, |P|=6

• l0, l1, l2 and l3 stand for the number of machines that run no long

job, one long job, two long jobs and three long jobs, respectively

• Fix (l0, l1, l2, l3) = (1, 1, 2, 1)

Times

Machines

5
4TT

l0

l1

l2

l3

1

2

4

5

• Find solution for each (l0, l1, l2, l3) → O(m3) iterations

• Choose solution with largest
∑

j∈AcceptedJobs

pj
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FillMaxArea - Main result

Overall algorithm:

• Iterate above algorithm for all l0, l1, l2, l3 such that
∑

li = m

• there are ”only” Θ(m3) such quadruplets...

• and keep the solution that minimizes ZS = m ∗ CS + ρRS

RESULT

For any T , let † be the solution obtained by FillMaxArea(J,m,T ).

Then, C † ≤ 5
4T and R† ≤ R∗(T ), where R∗(T ) = minS,CS≤T RS .

Sketch of Proof:

• C † ≤ 5
4T : straightforward given the upper bounds of combinations

• FillMaxArea allocates as much work as possible on the boiler given

l0, l1, l2, l3
• R† ≤ R∗(T )
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FillMaxArea - Main result

RESULT

For any T , let † be the solution obtained by FillMaxArea(J,m,T ).

Then, C † ≤ 5
4T and R† ≤ R∗(T ), where R∗(T ) = minS,CS≤T RS .

LEMMA

For any T , let † be the solution obtained by FillMaxArea(J,m,T ).

We can bound its cost by: Z † ≤ 5
4Tm + ρR∗(T ).

Proof:

• Remember: Cost of † is Z † = m ∗ C † + ρR†

• C † ≤ 5
4T

• R† ≤ R∗(T )

• Z † ≤ 5
4
Tm + ρR∗(T ) ≤ 5

4
Z opt
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Determining the makespan

bound T



Determining Makespan: BEKP method

• If COPT is known =⇒ FillMaxArea(COPT ) is a 5
4 -approx. algorithm

• In the general problem COPT is not known...

• Assume: Lower and Upper bound (L and U) on makespan such that

• Rejecting all jobs when makespan COPT ≤ L and COPT ≥ U is valid

• Iterate over remaining makespans

L L(1 + ϵ)
...

L(1 + ϵ)k ≥ U

• ϵ: User defined small coefficient

• Iteration number: k = ⌈ log( U
L )

log(1+ϵ)⌉
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Determining Makespan: BEKP method

Algorithm 1 BEKP(J,m)

1: The solution where all jobs are rejected is X0

2: Compute U and L

3: Set k as the first value such that (1 + ϵ)kL ≥ U

4: for each Ci ∈ {L, (1 + ϵ)L, (1 + ϵ)2L, ..., (1 + ϵ)kL} do
5: Xi = FillMaxArea(J,m,Ci )

6: return A schedule with the lowest cost among X0 and all Xi
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Determining Makespan: BEKP method

Algorithm 2 BEKP(J,m)

1: The solution where all jobs are rejected is X0

2: Compute U and L

3: Set k as the first value such that (1 + ϵ)kL ≥ U

4: for each Ci ∈ {L, (1 + ϵ)L, (1 + ϵ)2L, ..., (1 + ϵ)kL} do
5: Xi = FillMaxArea(J,m,Ci )

6: return A schedule with the lowest cost among X0 and all Xi

WHAT IS LEFT?

• Compute L and U

• Proof: BEKP is a 5
4 (1 + ϵ)-approximation algorithm.
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Computing L and U

• W: sum of all processing times of jobs in ready queue

• R∗(C ): minimum possible area for the rejected jobs for makespan C

• Lower bound function on the cost: f (C ) = Cm + ρR∗(C )

• f (C ) ≥ Cm • f (C ) ≥ Cm+ρ(W−Cm)

Makespan C

Cost Z

Cm

ρW − (ρ− 1)Cm

ρW f (C )

4ρW
5

L U

• H = 4ρW
5 (We set this value)
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Computing L and U

Makespan C

Cost Z

Cm

ρW − (ρ− 1)Cm

ρW f (C )

4ρW
5

L U

• If we reject all jobs for makespan values ≤ L and ≥ U, worst cost:
ZX0

ZOPT ≤ ρW
4ρW
5

= 5
4 (Valid solution)

• Remember: k = ⌈ log( U
L )

log(1+ϵ)⌉
• U = 4ρW

5m and L = ρW
5m(ρ−1) =⇒ U

L = 4(ρ− 1)

For ρ ≤ 10 and ϵ ≥ 0.05, k = 74 (Cheap iteration)
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Proof of the approximation ratio

THEOREM

For any positive ϵ, BEKP is a 5
4 (1 + ϵ)-approximation algorithm.

Proof

• For COPT < L or COPT > U already proved.

For L ≤ COPT ≤ U :

L COPTCi (1 + ϵ)COPT ≥ U

• Xi : Solution by using Ci

• ZXi ≤ 5
4mCi + ρR∗(Ci )

• As COPT ≤ Ci

• R∗(Ci ) ≤ R∗(COPT )

• As Ci ≤ (1 + ϵ)COPT

• ZXi ≤ 5
4
(1 + ϵ)mCOPT + ρR∗(COPT ) ≤ 5

4
(1 + ϵ)ZOPT
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Conclusion - Future work



Conclusion

• In practice (simulations)

• Very good qualitative results (much lower than 5
4
)

• Low computational time (Km3(m + n) where m machines, n jobs)

• BEKP compared to LIULU
• Improves approximation ratio (for proportional rejection costs)

• Proportional rejection costs can be extended to other contexts

• Improves complexity wrt total number of jobs

• Next step: consider other scheduling problems related to Qarnot

• With deadlines (each job has a duration and a deadline)
• the true problem is online and non clairvoyant...

• probably very difficult to prove something...
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Thank You



Backup slides



Experiments



Experimental setting

• Run in sequential on Miriel nodes of Plafrim

• 2 INTEL Xeon E5-2680v3 12-core 2.50 GHz processors with 128 GB

• Processing times are generated through lognormal distribution

• Mean 3

• Standard deviations (σ): ”0.5”, ”0.7”, and ”1.0”

• Large σ means higher variance in processing times

• Number of machines: m = 20

• Number of jobs: n = 4m

• Our simulation code is available as free software in5

5Beaumont, O., Eyraud-Dubois, L., Korkmaz, E., Pilla, L.L.: Experimental codes and

results for the paper “a 5/4(1+ϵ)-approximation algorithm for scheduling with

rejection costs proportional to processing times”.

https://inria.hal.science/hal-04517532, accessed: March 25, 2024
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Methods compared

• BEKP: Our method

• O(m3(m + n) log1+ϵ ρ)

• 5
4
(1 + ϵ) approximation

• LIULU : The algorithm proposed by Liu and Lu6

• O(n3 log n)

• ( 3
2
− 1

2m
) approximation

• Assumes arbitrary rejection costs

• LPT : A cheap and naive solution (No rejection)

• Uses Longest Processing Time first method

6Liu, P., Lu, X.: New approximation algorithms for machine scheduling with rejection

on single and parallel machine. Journal of Comb Optimization 40(4), 929-952 (2020)
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Comparison of scheduler costs

ρ = 4
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• Each box-plot represents 30 different experimental cases

• LPT : No guarantee on the cost bound

• BEKP: Better costs in general compared to LIULU
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Our algorithm for fixed makespan T

Algorithm 3 FillMaxArea(J,m,T )

1: Generate G , N1, N2, N3 and P subsets of J

2: for each j = (l0, l1, l2, l3) such that l0+ l1+ l2+ l3 = m and l1+2l2+3l3 ≤ n

do

3: Xj ← ∅
4: Xj ← Xj ∪ AssignFrom({(G), (N1), (N2), (N3)}, l1)
5: Xj ← Xj∪AssignFrom({(N2,N1), (N3,N1), (N2,N2), (N3,N2), (N3,N3)}, l2)
6: Xj ← Xj ∪ AssignFrom({(N3,N3,N2), (N3,N3,N3)}, l3)
7: If l0 + |Xj | < m, discard Xj

8: Add jobs from P greedily (in any order) to Xj , keeping makespan ≤ 5
4
T

9: X ∗ = {Xj |max
j

AXj }

10: return X ∗
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Our algorithm for fixed makespan T

Algorithm 4 AssignFrom(combs, l)

1: Result ← ∅
2: Remove all combinations from combs where at least one set within the

combination is empty

3: while |Result| ≤ l and combs is not empty do

4: Denote by (K1,K2, ...,Kk) the first combination in combs

5: j1 ← the largest job from K1, j2 ← the largest remaining job from K2 ...

6: Continue until jk ← the largest remaining job from Kk

7: Result = Result ∪ (j1, j2, ..., jk)

8: Remove all combinations from combs where at least one set within the

combination is empty

9: return Result
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Comparison of real-life scheduler running times
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Figure 1: Comparison of LPT , LIULU and BEKP using m = 20 for different

number of jobs, different values for ρ and σ. Each box-plot represents 30

different experimental cases for the corresponding configuration.
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Methods compared

• BEKP: Our method

• O(m3(m + n) log1+ϵ ρ)

• 5
4
(1 + ϵ) approximation

• LIULU : The algorithm proposed by Liu and Lu7

• O(n3 log n)

• ( 3
2
− 1

2m
) approximation

• Assumes arbitrary rejection costs

• LPT : A cheap and naive solution (No rejection)

• Uses Longest Processing Time first method

• Lower Bound: Reference method

• ILP: xi = 1 if job is accepted; else xi = 0

• ∀i ∈ J,C ≥ xipi and C ≥
∑

i∈J(xipi )/m

• minimize Cm +
∑

i∈J ρ(1− xi )pi

• No performance optimization for methods
7Liu, P., Lu, X.: New approximation algorithms for machine scheduling with rejection

on single and parallel machine. Journal of Comb Optimization 40(4), 929-952 (2020)
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Comparison of scheduler costs
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• Each box-plot represents 30 different experimental cases

• LPT : No guarantee on the cost bound

• BEKP: Better costs in general compared to LIULU
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