Scheduling jobs under a variable number of processors

Joachim Cendrier¹ Anne Benoit¹ Frédéric Vivien¹

¹ENS Lyon, LIP, ROMA

Aussois, June 27, 2024

Motivation

- Growing concern about energy consumption and environmental impact of data centers
- **D**ata centers with renewable energies \Rightarrow variable power
- Current algorithms inefficient: designed to run with a fixed amount of energy
- Our work: Conception and development of new scheduling algorithms to optimize Goodput and Yield, while handling power variations

Table of Contents

1 Model

2 Algorithms

8 Results

4 Conclusion

3/17

Mode

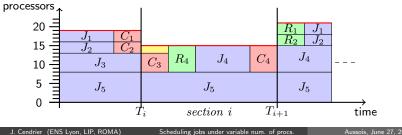
Model

Problem: Scheduling *m* infinite parallel rigid jobs under variable number of processors, in each section

- A job J_i can be checkpointed and recovered with cost in time C and R
- Knowledge of the length T_i and the number of available processors P_i for each section
- P is bounded in $[P_{\min}, P_{\max}]$ and $|P_{i+1} P_i| \leq \delta$

Additional constraint:

Never lose work (i.e., checkpoint enough before section change)



Model

Goodput objective function

Goal: Maximize processor utilization during a section

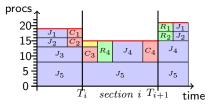
$$Goodput([T_i, T_{i+1}]) = \frac{\sum_{j=1}^{m} p_j W_{j,i}}{P_i(T_{i+1} - T_i)}$$

where $W_{j,i}$ is the duration of the useful work done by job J_j during section $[T_i, T_{i+1}]$

Goodput maximization:

- Using as many processors as possible
- Minimizing time spent on checkpoints and recoveries
- Consequence:

Some jobs may be **constantly running**, others can always be **idle**



Model

Yield objective function

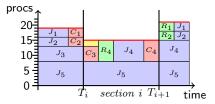
Goal: Maximize, at the end of each section, the minimum progress of all jobs

$$minYield(t) = \min_{j \in [1,m]} Yield(t,j)$$
$$Yield(t,j) = \frac{W_j(t)}{t}$$

where $W_j(t)$ is the duration of the useful work done by job J_j since the beginning

MinYield maximization:

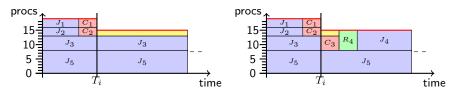
- Changing running jobs
- Consequence: Higher total checkpoint and recovery costs



Goodput Algorithms

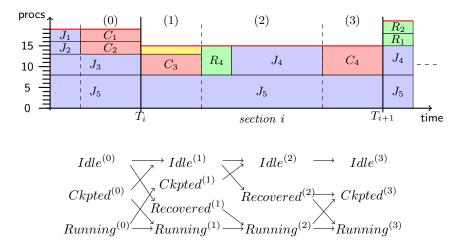
Optimize Goodput at the end of the section, with decisions at the end and at the beginning of the section:

- Greedy Goodput:
 - End: checkpoint some jobs to ensure at least δ processors available
 - Beginning: sort jobs by decreasing number of processors, then select them as long as there are free processors for the section
 - Temporal Complexity: $\mathcal{O}(m)$
- Dynamic Programming by section (DP Goodput): DP that maximizes the goodput, deciding which jobs will be executed during the section
 - Temporal Complexity slow version: $\mathcal{O}(mP_{\max}^3)$
 - Temporal Complexity fast version: $\mathcal{O}(mP_{\max}^2)$



Algorithms

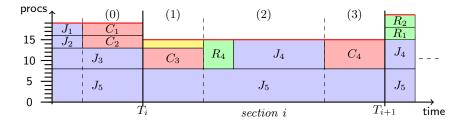
Dynamic Programming



13 different state sequences for the jobs

Dynamic Programming

$$G_j(P_i^{(1)}, P_i^{(2)}, P_i^{(3)}) = G_{j-1}(P_i^{(1)} - \alpha p_j, P_i^{(2)} - \beta p_j, P_i^{(3)} - \gamma p_j) + p_j(\alpha W_j^{(1)} + \beta W_j^{(2)} + \gamma W_j^{(3)})$$



 Dynamic programming by adding jobs and processors of each phase one by one

9/17

Yield algorithms: similar than goodput algorithms.

Bi-criteria algorithms:

- Target Yield *target*: If target is satisfied, it is a DPG, otherwise it is a DPY
 Temporal Complexity: \$\mathcal{O}(mP_{max}^2)\$
- Target Goodput *target*: DP with an upper bound on idle time (unused processors and time spent on checkpoint and recover) per section

• Temporal Complexity: $\mathcal{O}(mP_{\max}^3T)$

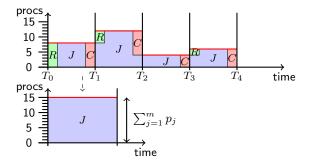
- Dynamic Programming Bi by section (DP BiC Y): Same idea as for goodput, with a multiplying coefficient for Yield:
 - Temporal Complexity: $\mathcal{O}(mP_{\max}^2)$

$$G_j(args) = G_{j-1}(args) + \underbrace{\widetilde{p_j W_j}}_{YieldPart} \underbrace{(2 - Yield(j))^Y}_{YieldPart}$$

where W_j is the potentiel duration of the useful work for job J_j

Bounds

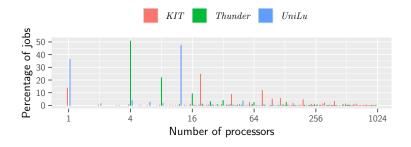
- Max Goodput: all processors are constantly used for useful work
- Max minYield: modular work area



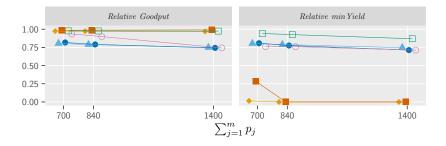
Goodput and minYield divided by Max Goodput and Max minYield respectively to obtain **relative** Goodput and **relative** minYield

Methodology

- 3 differents workloads for job sizes
- \blacksquare 1000 sections of average length egals to 5 checkpoints/recoveries
- Number of available processors is in [140,700] with variation up to 70 processors between two sections
- System is slightly overloaded
- Geometric mean on 10 instances



Impact of the overall load

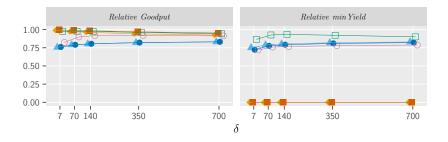


- Decrease in relative Goodput of target Yield
- Decrease of all relative minYield

J. Cendrier (ENS Lyon, LIP, ROMA)

Scheduling jobs under variable num. of procs.

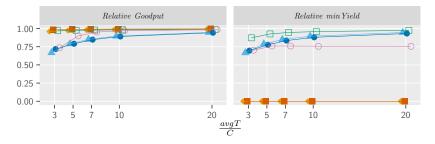
Impact of variability on number of processors



Balancing of the relative Goodput for all algorithmsHigher relative minYield

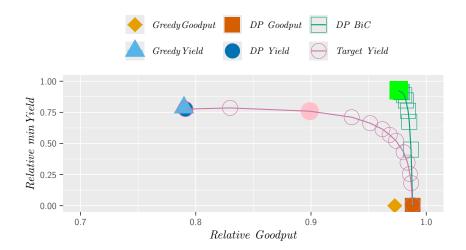
J. Cendrier (ENS Lyon, LIP, ROMA)

Impact of the average section length



Small section duration implies greater impact of decisions

Pareto comparaison



Trade-off Goodput-minYield
But DP BiC achieves to maintain high Goodput with high Yield

Conclusion

- Modelisation of a scheduling problem with variable number of processors
- Design of multiple dynamic programming algorithms
- Simulations that give results close to the maximum bounds
- Future work:
 - Have jobs with a limited duration, release date, deadlines,...
 - Relaxing hypotheses on section