
Dynamic Tasks Scheduling with Multiple
Priorities on Heterogeneous Computing
Systems
17th Scheduling for Large Scale Systems Workshop, Aussois

Bérenger Bramas, Mathieu Faverge, Abdou Guermouche, Hayfa
Tayeb

June 24-27, 2024

The challenges of heterogeneity:
• Increased complexity
• Additional programming effort
• When and how to make use of the different resources ?

2 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Heterogeneous modern computing systems

2 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• HPC applications taskified

• Task-based Runtime System

> Resources management
> Data management
> Task scheduling

Scheduling goals

• Reduce the execution time

> Efficiently use the
heterogeneous resources

• Maximize the degree of
parallelism

3 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Task-based programming model

3 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• HPC applications taskified
• Task-based Runtime System

> Resources management
> Data management
> Task scheduling

Scheduling goals

• Reduce the execution time

> Efficiently use the
heterogeneous resources

• Maximize the degree of
parallelism

Task-based programming model

3 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• HPC applications taskified
• Task-based Runtime System

> Resources management

> Data management
> Task scheduling

Scheduling goals

• Reduce the execution time

> Efficiently use the
heterogeneous resources

• Maximize the degree of
parallelism

Task-based programming model

3 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• HPC applications taskified
• Task-based Runtime System

> Resources management
> Data management

> Task scheduling

Scheduling goals

• Reduce the execution time

> Efficiently use the
heterogeneous resources

• Maximize the degree of
parallelism

Task-based programming model

3 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• HPC applications taskified
• Task-based Runtime System

> Resources management
> Data management
> Task scheduling

Scheduling goals

• Reduce the execution time

> Efficiently use the
heterogeneous resources

• Maximize the degree of
parallelism

Task-based programming model

3 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• HPC applications taskified
• Task-based Runtime System

> Resources management
> Data management
> Task scheduling

Scheduling goals

• Reduce the execution time

> Efficiently use the
heterogeneous resources

• Maximize the degree of
parallelism

Task-based programming model

3 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• HPC applications taskified
• Task-based Runtime System

> Resources management
> Data management
> Task scheduling

Scheduling goals
• Reduce the execution time

> Efficiently use the
heterogeneous resources

• Maximize the degree of
parallelism

Task-based programming model

3 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• HPC applications taskified
• Task-based Runtime System

> Resources management
> Data management
> Task scheduling

Scheduling goals
• Reduce the execution time

> Efficiently use the
heterogeneous resources

• Maximize the degree of
parallelism

Task-based programming model

3 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• HPC applications taskified
• Task-based Runtime System

> Resources management
> Data management
> Task scheduling

Scheduling goals
• Reduce the execution time

> Efficiently use the
heterogeneous resources

• Maximize the degree of
parallelism

Task-based programming model

3 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

- PaRSEC : is an engine that provides multiple languages for
describing the task graph.

- Legion : is a data-centric parallel programming system for
writing portable HPC programs.

- StarPU : is a task programming library using Sequential Task
Flow (STF) model.

Some advantages of StarPU include:
• A programmer can implement a custom scheduler.
• StarPU offers the execution time estimation of a task provided

by a history-based performance model.

4 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Among the task-based runtime systems

4 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

- PaRSEC : is an engine that provides multiple languages for
describing the task graph.

- Legion : is a data-centric parallel programming system for
writing portable HPC programs.

- StarPU : is a task programming library using Sequential Task
Flow (STF) model.

Some advantages of StarPU include:
• A programmer can implement a custom scheduler.
• StarPU offers the execution time estimation of a task provided

by a history-based performance model.

Among the task-based runtime systems

4 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• push operation, when a task becomes ready to execute.
• pop operation, when a resource is idle and asks for a task to

execute.

5 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Dynamic scheduling in StarPU

5 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• First, an affinity-based strategy

• A better strategy ? A
resource-based strategy

CPU

GPU

0 5 10 15 20 25

→ makespan=20

Dependencies Task Graph
Dynamic construction

6 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Example scheduling on heterogeneous system

6 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• First, an affinity-based strategy

• A better strategy ? A
resource-based strategy

CPU

GPU

0 5 10 15 20 25

→ makespan=20

Dependencies Task Graph
Dynamic construction

Example scheduling on heterogeneous system

6 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• First, an affinity-based strategy

• A better strategy ? A
resource-based strategy

CPU

GPU

0 5 10 15 20 25

→ makespan=26
→ idle time !

→
makespan=20

Dependencies Task Graph
Dynamic construction

Example scheduling on heterogeneous system

6 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• First, an affinity-based strategy

• A better strategy ? A
resource-based strategy

CPU

GPU

0 5 10 15 20 25

→ makespan=20

Dependencies Task Graph
Dynamic construction

Example scheduling on heterogeneous system

6 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• First, an affinity-based strategy

• A better strategy ? A
resource-based strategy

CPU

GPU

0 5 10 15 20 25

→ makespan=20

Dependencies Task Graph
Dynamic construction

Example scheduling on heterogeneous system

6 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• First, an affinity-based strategy

• A better strategy ? A
resource-based strategy

CPU

GPU

0 5 10 15 20 25

→ makespan=20

Dependencies Task Graph
Dynamic construction

Example scheduling on heterogeneous system

6 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• Affinity-based: assign tasks to resources based on task’s
preference for a specific resource: HeteroPrio (Agullo et al.),..

• Resource-centric: aim to maximize resource utilization by
allocating tasks to processors based on resource availability and
workload: work stealing (Lima et al.),..

• Task-centric: focus on improving task execution time and
reducing task waiting time: Dmdas (Augonnet et al.),..

Our goal ?
Find a trade-off between resource affinity, task criticality, data
locality, and workload balancing on the resources.

7 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Existing scheduling strategies

7 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• Affinity-based: assign tasks to resources based on task’s
preference for a specific resource: HeteroPrio (Agullo et al.),..

• Resource-centric: aim to maximize resource utilization by
allocating tasks to processors based on resource availability and
workload: work stealing (Lima et al.),..

• Task-centric: focus on improving task execution time and
reducing task waiting time: Dmdas (Augonnet et al.),..

Our goal ?
Find a trade-off between resource affinity, task criticality, data
locality, and workload balancing on the resources.

Existing scheduling strategies

7 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• Affinity-based: assign tasks to resources based on task’s
preference for a specific resource: HeteroPrio (Agullo et al.),..

• Resource-centric: aim to maximize resource utilization by
allocating tasks to processors based on resource availability and
workload: work stealing (Lima et al.),..

• Task-centric: focus on improving task execution time and
reducing task waiting time: Dmdas (Augonnet et al.),..

Our goal ?
Find a trade-off between resource affinity, task criticality, data
locality, and workload balancing on the resources.

Existing scheduling strategies

7 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• Affinity-based: assign tasks to resources based on task’s
preference for a specific resource: HeteroPrio (Agullo et al.),..

• Resource-centric: aim to maximize resource utilization by
allocating tasks to processors based on resource availability and
workload: work stealing (Lima et al.),..

• Task-centric: focus on improving task execution time and
reducing task waiting time: Dmdas (Augonnet et al.),..

Our goal ?
Find a trade-off between resource affinity, task criticality, data
locality, and workload balancing on the resources.

Existing scheduling strategies

7 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

General idea of our scheduler MultiPrio implemented into StarPU

8 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Introduction of the MultiPrio scheduler

8 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Priority queue per memory node (RAM, GPU memory, ...) that
contains tasks with scores sorted in a lexicographical order.

Introduction of the MultiPrio scheduler

8 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

For a newly ready task, we compute the scores for the different
memory nodes.

9 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Scheduling with Multiple Priorities (PUSH)

9 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

For a newly ready task, we compute the scores for the different
memory nodes.

Scheduling with Multiple Priorities (PUSH)

9 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

(1) Resource Affinity: Gain/Acceleration Heuristic

gain(t, a) =

1 |A| = 1

(δ(t,a2nd)−δ(t,a))+|hd(a)|
2∗|hd(a)| a is the fastest

(δ(t,a1st)−δ(t,a))+|hd(a)|
2∗|hd(a)| else

δ(t, a): estimated execution time of t; hd(a): the highest execution time difference

Example of the gain
heuristic calculation
with 3 tasks and 2
architecture types:

tA tB tC
δ(t, a1) 1ms 5ms 20ms
δ(t, a2) 20ms 10ms 10ms
gain(t, a1) 1 0.631 0.236
gain(t, a2) 0 0.368 0.763

10 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Scheduling with Multiple Priorities (PUSH)

10 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

(2) Task Criticality: NOD Heuristic
This heuristic calculates a criticality score for a task.

NOD(t) =
∑

si∈λ+(t,Pm)

1
|λ−(si ,Pm)|

λ−(t): predecessors of t; λ+(t): successors of t; Pm: processing units

A task is prioritized if it has more successors
that will be released, which will create more
workload and improve the parallelism.

(gain,NOD(ti))

(gain,NOD(ti)) (gain,NOD(ti))

NGain scores are equal for the
same type of task

11 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Scheduling with Multiple Priorities (PUSH)

11 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

(2) Task Criticality: NOD Heuristic
This heuristic calculates a criticality score for a task.

NOD(t) =
∑

si∈λ+(t,Pm)

1
|λ−(si ,Pm)|

λ−(t): predecessors of t; λ+(t): successors of t; Pm: processing units

A task is prioritized if it has more successors
that will be released, which will create more
workload and improve the parallelism.

(gain,NOD(ti))

(gain,NOD(ti)) (gain,NOD(ti))

NGain scores are equal for the
same type of task

Scheduling with Multiple Priorities (PUSH)

11 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

(3) Data Locality
Locality Strategy - Sum of Data Hosted heuristic (Bramas, 2019)

LS SDH2(m, t) =

 ∑
d∈DR

t,m

d .size

+

 ∑
d∈DW

t,m

d .size2

 (1)

Dt,m: the set of data used by task t that is on memory node m.
DR

t,m and DW
t,m: the sets of data used by t that is on m and is

accessed in read and write mode, respectively.

→ Select the task with the most available data on the current
node from the top priority queue.

12 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Scheduling with Multiple Priorities (POP)

12 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

(3) Data Locality
Locality Strategy - Sum of Data Hosted heuristic (Bramas, 2019)

LS SDH2(m, t) =

 ∑
d∈DR

t,m

d .size

+

 ∑
d∈DW

t,m

d .size2

 (1)

Dt,m: the set of data used by task t that is on memory node m.
DR

t,m and DW
t,m: the sets of data used by t that is on m and is

accessed in read and write mode, respectively.

→ Select the task with the most available data on the current
node from the top priority queue.

Scheduling with Multiple Priorities (POP)

12 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Applications
• CHAMELEON: A dense linear algebra library. (Regular)
• TBFMM: Task-based Fast Multipole Method. (Irregular)
• QR MUMPS: Sparse direct linear solver. (Highly irregular)

Platforms
• Intel-V100:

> 2 Intel Xeon Gold 6142 CPUs (16 cores each, 2.6GHz)
> 384 GB of memory
> 2 Nvidia V100 GPUs (16 GB each)

• AMD-A100:
> 2 AMD Zen3 EPYC 7513 CPUs (32 cores each, 2.6GHz)
> 512 GB of memory
> 2 Nvidia A100 GPUs (40 GB each)

13 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Experimental Setup

13 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• Dmdas Scheduler:
> Highly tuned for dense linear algebraic routines (Cholesky).
> Over-prioritizes accelerators (GPUs), leading to under-utilization

of CPUs.
→ Priorities over Affinity

• HeteroPrio Scheduler:
> Highly tuned for task-based FMM.
> A semi-automatic scheduler where users must provide

acceleration ratio per task type.
→ Affinity over Priorities

• MultiPrio Scheduler:
> Affinity and criticality scores.
> Effective utilization of both CPU and GPU resources for highly

parallelized DAGs (sparse QR)
→ Finding a compromise

14 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Schedulers Comparison

14 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

• Dmdas Scheduler:
> Highly tuned for dense linear algebraic routines (Cholesky).
> Over-prioritizes accelerators (GPUs), leading to under-utilization

of CPUs.
→ Priorities over Affinity

• HeteroPrio Scheduler:
> Highly tuned for task-based FMM.
> A semi-automatic scheduler where users must provide

acceleration ratio per task type.
→ Affinity over Priorities

• MultiPrio Scheduler:
> Affinity and criticality scores.
> Effective utilization of both CPU and GPU resources for highly

parallelized DAGs (sparse QR)
→ Finding a compromise

Schedulers Comparison

14 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Matrix sizes
between 5k to 120k
Runs with 1, 2, 4 and 8 gpu
streams

• Regular application
• Long critical path
• User-defined priorities

optimized by experts offline

Performance is affected by:
→ task-criticality (priorities)
→ data locality

hi
gh

er
is

be
tt

er

15 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Chameleon dense linear algebra kernels

15 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Problem size:
1M particles
Tree height: 6
Runs with 1, 2, 4 and 8
gpu streams

• Irregular application
• Disconnected DAG
• No user priorities

Results are affected by:
→ resource affinity
→ data locality

lo
we

ri
s

be
tt

er

16 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

TBFMM: Task-based FMM

16 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Various sparse
matrices
Runs with 1, 2, 4
and 8 gpu streams

• Highly irregular
application

• No user priorities

Performance is
affected by:
→ resource affinity
→ task criticality
→ data locality

17 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

QR MUMPS: Sparse QR factorization

17 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

MultiPrio scheduler:
• Implemented in StarPU using priority queues data structures.

https://gitlab.inria.fr/htayeb/starpu-multiprio-scheduler
• Assigns affinity and criticality scores. (compromise)
• Allows slower workers to assist busy faster workers

(heterogeneity)
• Minimizes data transfers with locality heuristic.

Proven Efficiency:
• Up to 40% improvement over Dmdas in qr mumps.
• Efficient for irregular workloads.
• Increased parallelism in the DAG leads to better efficiency.

18 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Conclusion

18 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

https://gitlab.inria.fr/htayeb/starpu-multiprio-scheduler

Promising directions ..
• Data locality:

> Refine data locality heuristic to reduce the data transfers
between different memory nodes, especially when the problem
size is larger than the available storage.

• Energy Efficiency:
> Incorporate energy efficiency heuristics in the score per task.
> Re-balance workload between CPUs and accelerators without

compromising performance.
→ Energy efficiency metric (Gflops/Watt)

Thank you !
Hayfa is looking for a postdoc position in France next spring.

This work is supported by the TEXTAROSSA project G.A. n.956831, as part of
the EuroHPC initiative.

19 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Future Work

19 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Promising directions ..
• Data locality:

> Refine data locality heuristic to reduce the data transfers
between different memory nodes, especially when the problem
size is larger than the available storage.

• Energy Efficiency:
> Incorporate energy efficiency heuristics in the score per task.
> Re-balance workload between CPUs and accelerators without

compromising performance.
→ Energy efficiency metric (Gflops/Watt)

Thank you !
Hayfa is looking for a postdoc position in France next spring.

This work is supported by the TEXTAROSSA project G.A. n.956831, as part of
the EuroHPC initiative.

Future Work

19 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

