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The challenges of heterogeneity:
• Increased complexity
• Additional programming effort
• When and how to make use of the different resources ?
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Heterogeneous modern computing systems
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• HPC applications taskified

• Task-based Runtime System

> Resources management
> Data management
> Task scheduling

Scheduling goals

• Reduce the execution time

> Efficiently use the
heterogeneous resources

• Maximize the degree of
parallelism
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Task-based programming model
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- PaRSEC : is an engine that provides multiple languages for
describing the task graph.

- Legion : is a data-centric parallel programming system for
writing portable HPC programs.

- StarPU : is a task programming library using Sequential Task
Flow (STF) model.

Some advantages of StarPU include:
• A programmer can implement a custom scheduler.
• StarPU offers the execution time estimation of a task provided

by a history-based performance model.
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Among the task-based runtime systems
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• push operation, when a task becomes ready to execute.
• pop operation, when a resource is idle and asks for a task to

execute.
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Dynamic scheduling in StarPU
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• First, an affinity-based strategy

• A better strategy ? A
resource-based strategy

CPU

GPU

0 5 10 15 20 25

→ makespan=20

Dependencies Task Graph
Dynamic construction

6 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Example scheduling on heterogeneous system
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• Affinity-based: assign tasks to resources based on task’s
preference for a specific resource: HeteroPrio (Agullo et al.),..

• Resource-centric: aim to maximize resource utilization by
allocating tasks to processors based on resource availability and
workload: work stealing (Lima et al.),..

• Task-centric: focus on improving task execution time and
reducing task waiting time: Dmdas (Augonnet et al.),..

Our goal ?
Find a trade-off between resource affinity, task criticality, data
locality, and workload balancing on the resources.
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Existing scheduling strategies
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General idea of our scheduler MultiPrio implemented into StarPU
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Introduction of the MultiPrio scheduler
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Priority queue per memory node (RAM, GPU memory, ...) that
contains tasks with scores sorted in a lexicographical order.

Introduction of the MultiPrio scheduler
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For a newly ready task, we compute the scores for the different
memory nodes.
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Scheduling with Multiple Priorities (PUSH)
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(1) Resource Affinity: Gain/Acceleration Heuristic

gain(t, a) =



1 |A| = 1

(δ(t,a2nd )−δ(t,a))+|hd(a)|
2∗|hd(a)| a is the fastest

(δ(t,a1st)−δ(t,a))+|hd(a)|
2∗|hd(a)| else

δ(t, a): estimated execution time of t; hd(a): the highest execution time difference

Example of the gain
heuristic calculation
with 3 tasks and 2
architecture types:

tA tB tC
δ(t, a1) 1ms 5ms 20ms
δ(t, a2) 20ms 10ms 10ms
gain(t, a1) 1 0.631 0.236
gain(t, a2) 0 0.368 0.763
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Scheduling with Multiple Priorities (PUSH)
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(2) Task Criticality: NOD Heuristic
This heuristic calculates a criticality score for a task.

NOD(t) =
∑

si∈λ+(t,Pm)

1
|λ−(si ,Pm)|

λ−(t): predecessors of t; λ+(t): successors of t; Pm: processing units

A task is prioritized if it has more successors
that will be released, which will create more
workload and improve the parallelism.

(gain,NOD(ti ))

(gain,NOD(ti )) (gain,NOD(ti ))

NGain scores are equal for the
same type of task
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Scheduling with Multiple Priorities (PUSH)
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(3) Data Locality
Locality Strategy - Sum of Data Hosted heuristic (Bramas, 2019)

LS SDH2(m, t) =

 ∑
d∈DR

t,m

d .size

+

 ∑
d∈DW

t,m

d .size2

 (1)

Dt,m: the set of data used by task t that is on memory node m.
DR

t,m and DW
t,m: the sets of data used by t that is on m and is

accessed in read and write mode, respectively.

→ Select the task with the most available data on the current
node from the top priority queue.
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Scheduling with Multiple Priorities (POP)
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Applications
• CHAMELEON: A dense linear algebra library. (Regular)
• TBFMM: Task-based Fast Multipole Method. (Irregular)
• QR MUMPS: Sparse direct linear solver. (Highly irregular)

Platforms
• Intel-V100:

> 2 Intel Xeon Gold 6142 CPUs (16 cores each, 2.6GHz)
> 384 GB of memory
> 2 Nvidia V100 GPUs (16 GB each)

• AMD-A100:
> 2 AMD Zen3 EPYC 7513 CPUs (32 cores each, 2.6GHz)
> 512 GB of memory
> 2 Nvidia A100 GPUs (40 GB each)
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Experimental Setup
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• Dmdas Scheduler:
> Highly tuned for dense linear algebraic routines (Cholesky).
> Over-prioritizes accelerators (GPUs), leading to under-utilization

of CPUs.
→ Priorities over Affinity

• HeteroPrio Scheduler:
> Highly tuned for task-based FMM.
> A semi-automatic scheduler where users must provide

acceleration ratio per task type.
→ Affinity over Priorities

• MultiPrio Scheduler:
> Affinity and criticality scores.
> Effective utilization of both CPU and GPU resources for highly

parallelized DAGs (sparse QR)
→ Finding a compromise

14 — Dynamic Task Scheduling — M.Faverge — June 24-27, 2024

Schedulers Comparison
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Matrix sizes
between 5k to 120k
Runs with 1, 2, 4 and 8 gpu
streams

• Regular application
• Long critical path
• User-defined priorities

optimized by experts offline

Performance is affected by:
→ task-criticality (priorities)
→ data locality
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Chameleon dense linear algebra kernels
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Problem size:
1M particles
Tree height: 6
Runs with 1, 2, 4 and 8
gpu streams

• Irregular application
• Disconnected DAG
• No user priorities

Results are affected by:
→ resource affinity
→ data locality
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TBFMM: Task-based FMM
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Various sparse
matrices
Runs with 1, 2, 4
and 8 gpu streams

• Highly irregular
application

• No user priorities

Performance is
affected by:
→ resource affinity
→ task criticality
→ data locality
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QR MUMPS: Sparse QR factorization
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MultiPrio scheduler:
• Implemented in StarPU using priority queues data structures.

https://gitlab.inria.fr/htayeb/starpu-multiprio-scheduler
• Assigns affinity and criticality scores. (compromise)
• Allows slower workers to assist busy faster workers

(heterogeneity)
• Minimizes data transfers with locality heuristic.

Proven Efficiency:
• Up to 40% improvement over Dmdas in qr mumps.
• Efficient for irregular workloads.
• Increased parallelism in the DAG leads to better efficiency.
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Conclusion
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https://gitlab.inria.fr/htayeb/starpu-multiprio-scheduler


Promising directions ..
• Data locality:

> Refine data locality heuristic to reduce the data transfers
between different memory nodes, especially when the problem
size is larger than the available storage.

• Energy Efficiency:
> Incorporate energy efficiency heuristics in the score per task.
> Re-balance workload between CPUs and accelerators without

compromising performance.
→ Energy efficiency metric (Gflops/Watt)

Thank you !
Hayfa is looking for a postdoc position in France next spring.

This work is supported by the TEXTAROSSA project G.A. n.956831, as part of
the EuroHPC initiative.
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Future Work
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