

Strategies for querying large-scale scientific data

<u>Ana Gainaru</u>, Liz Dulac, Greg Eisenhauer, Norbert Podhorszki, Scott Klasky

17th Scheduling for large-scale systems workshop, Aussois, France, June 24 - 27, 2024

ORNL is managed by UT-Battelle LLC for the US Department of Energy

gainarua@ornl.gov

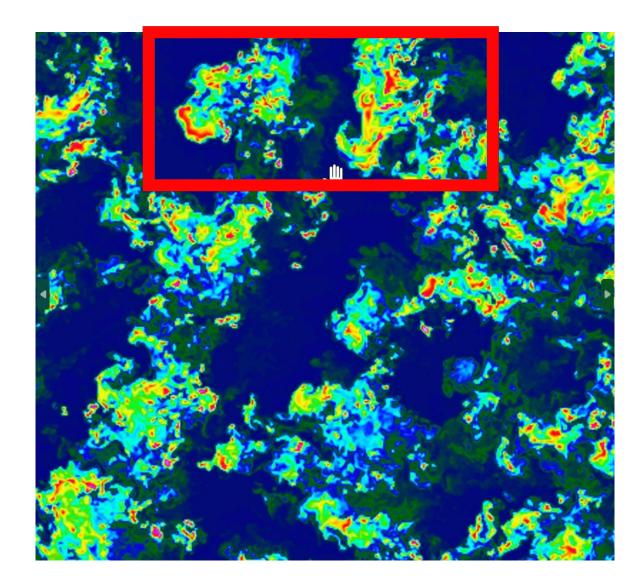
Queries for scientific data

- High performance I/O abstraction to allow for on-line/off-line memory/file data subscription service
 - Can deal with TB/s
 - In-situ/post mortem analysis
 - Operators

- Why queries?
 - Visualize in real time
 - Analyze on scientists' laptops
 - Remote access
 - -A

Application	Nodes/GPUs	Data Size per step	I/O speed
SPECFEM3D	3200/19200	250 TB	~2 TB/sec
GTC	512/3072	2.6 TB	~2 TB/sec
XGC	512/3072	64 TB	1.2 TB/sec
LAMMPS	512/3072	457 GB	1 TB/sec

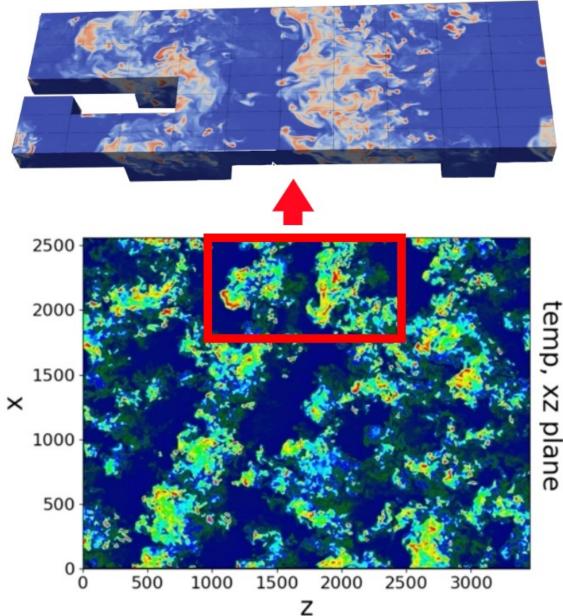
Contributors



Typical query example

• S3D combustion data

- 1.5 TB per step (including temp, velocity, species information, etc)
- Visualize 2D slices of temperature
 - Identify areas of interest
- Implementation
 - Compute stats for blocks of data



Complex queries

CAK RIDGE Vational Laboratory

- Queries on derived data
 - Quantities of interest that are not directly generated by the application
 - Magnitude of the velocity
 - Magnitude of the curl of the velocity
 - Needed for visualizing or training digital twins using quantities of interest

X

Current solutions for derived variables

- Writer side solutions
 - Workflows include analysis codes running with applications computing and storing the required derived data
- Reader side solutions
 - Visualization/analysis technology capable of computing derived variables on the fly (e.g. Paraview)

Offload this task to the I/O library

 Choose for the application the best strategy for computing the derived variables IO::CreateDerived("Magnitude", velocityData); for (i=0; i < simulationLoops; i++) { // Compute new values for velocityData;

IO::WriteToStorage(velocityData);

IO::WriteToStorage(anyData);

Write

Compute Stats Aggregate	Data Aggregate Stats	Write Data	Write Stats
-------------------------	----------------------	------------	-------------

Query

Read Data that fits a Query

- Normal behavior (simple queries)
 - Trade-off between granularity of the stats and read size

IO::CreateDerived("Magnitude", velocityData); IO::WriteToStorage(anyData);

Write

	Compute Derived	Stats	Stats for D	Agg S + D	Write Data	Write D	Write Stats	D
--	-----------------	-------	-------------	-----------	------------	---------	-------------	---

Query

Read Data that fits a Query

• **Store** (Writer side solution)

- The derived variables are computed during the write operation and both statistics and data for derived variables are stored on storage

IO::CreateDerived("Magnitude", velocityData); IO::WriteToStorage(anyData);

Keda dii Dala

Write

	Compute Stats	Aggregate Data	Agg	gregate Stats	Write Data	Write Stats
Qı	Jery					
	Poad all Data	Compute Dori		Kaap aply th	o data that fits	

• Expression (Reader side solution)

- Only the math expression is being saved during the write operation and the derived variables are computed during the read operation.

IO::CreateDerived("Magnitude", velocityData); IO::WriteToStorage(anyData);

Write

Compute Derived	Stats	Stats for D	Agg S + D	Write Data	Write Stats	Write Stats D
Query					_	
Read Data that fits c	a Query	Compute I	Derived			

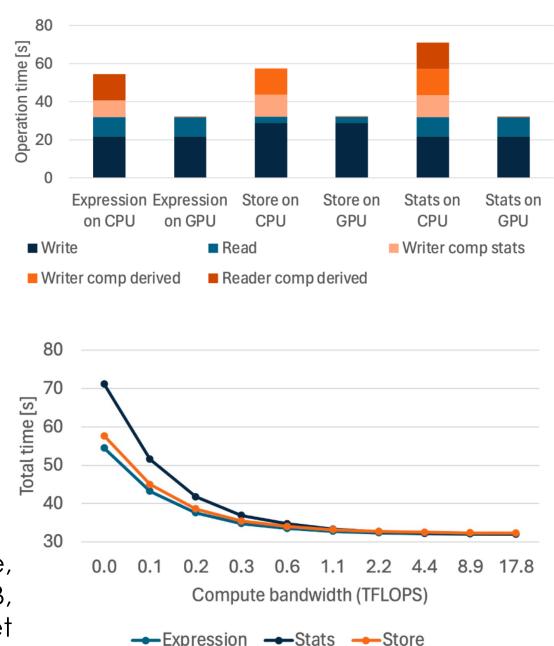
• Stats (Hybrid solution)

- Derived variables are computed during the write operation and only metadata is stored

Trade-off between strategies

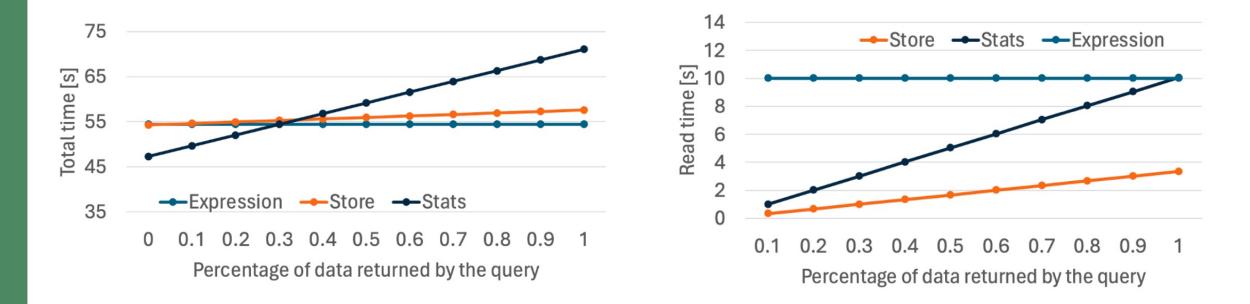
• What are the most important factors?

T_W	Total write time
T_R	Total read time
$T_{C\{op\}}$	Total time for computing operation <i>op</i>
$T_{W\{data\}}$	Total time for writing <i>data</i>
$T_{R\{data\}}$	Total time for reading <i>data</i>
T _{meta}	Time to compute/update metadata
T _{filter}	Time to filter irrelevant data for a query
$\check{B}_{\{op\}}$	Bandwidth for operation <i>op</i>
$O_{exp}(f)$	Number of ops in computing $exp(f)$
$D_{exp}(f)$	Amount of data accessed for $exp(f)$
$\hat{Q_i}$	Percentage of data that query <i>i</i> will read
S	Size of a variable
D	Storage footprint
nVar	Number of variables required by the derived Op

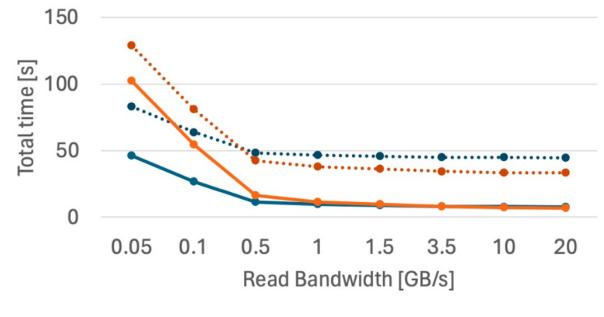

Metric	Frontier	Perlmutter
CPU (GFLOPS)	250	35
GPU (TFLOPS)	25	9.5
B _{GPUmem} (TB/s)	1.5	1.6
B_{write} (GB/s)	1.6	1
B _{read} (GB/s)	3.5	1.13

Compute FLOPS

- Store and Expression have similar performance
 - For complex kernels Expression is the best (since we are reading the entire dataset)
- Heavyweight kernels wanting to use the Stats strategy
 - Will have to pay the price of a less performant write operation.


3 primary variables with magnitude, each of 11.7GB, and reading the entire dataset

Percentage of data being read


For the same case as before, queries that return over 30% of the data are more costly with Stats Looking just at the read time (assuming the data exists and we want to continuously query it)

CAK RIDGE National Laboratory

Network bandwidth

- The Expression strategy is not efficient for remote access
 - Should only be used for analysis on local clusters
 - For both lightweight Add and heavyweight Curl
- A decrease in kernel complexity or an increase in compute capability influences the turning point
 - e.g. on the GPU on Frontier the Stats strategy is a better choice for read bandwidths lower than 3 GB/s even if the entire derived dataset is read).

---- Stats Add Stats Curl ---- Expr Add Expr Curl

Total time to write and read for different reading bandwidths when the 40% of the derived data is required for analysis.

Problem statement

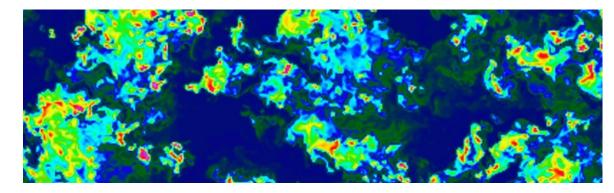
- Given a set of primary and derived variables (size, complexity)
- Given nodes with different compute capabilities
- For a given read pattern (in-situ/file-based, multiple queries, exploratory/fixed pattern, remote/local)

- What is the strategy for each derived variable?
 - Future: which compute resource to use for each derived variable and where to cache data; granularity of the query

Solution used

- For each variable
 - Compute the cost of each strategy using the model
- For file-based queries, the objective is to minimize the total execution time

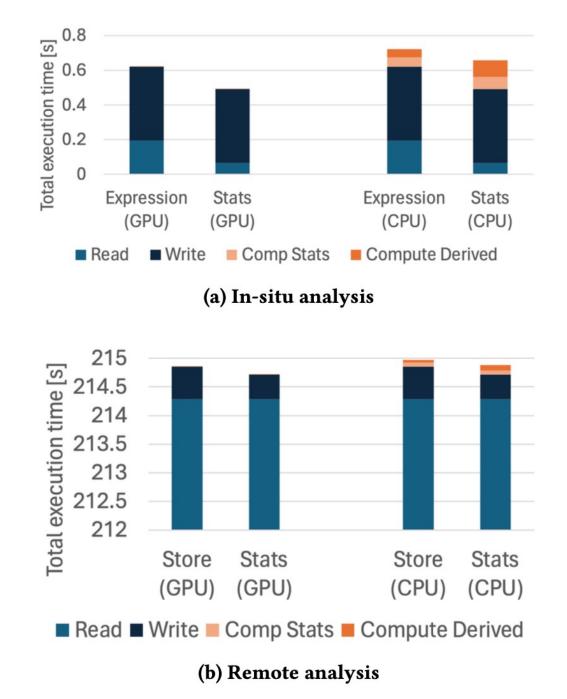
Time reader 2


• For the in-situ query, the objective is to balance the writer and reader

Time sim step i		Time writer step i		
Time reader step i-1		Time analysis step i-1		

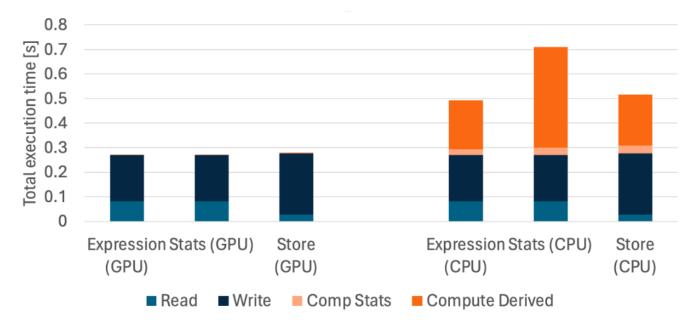
Applications on Frontier

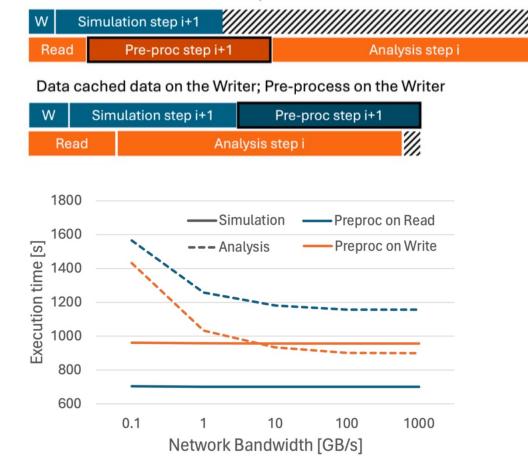
• The S3D simulation



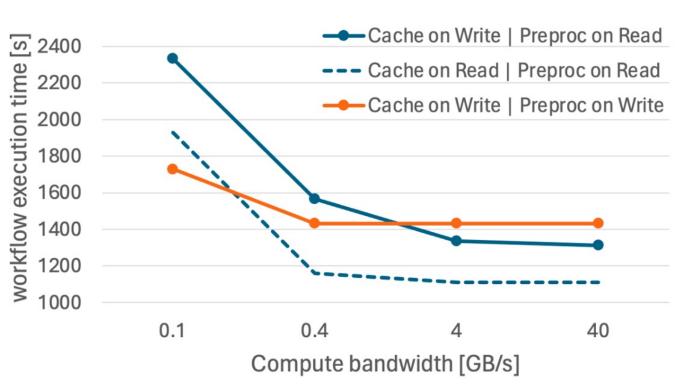
- Generates 1.5 TB of data in each step through 24 primary variables
- Particles are stored in 3D arrays of 280x280x1280 size
 - Velocity is stored using 3 of separate variables, each requiring 64 GB on 900 ranks
- Query on magnitude either in-situ or on remote laptop, plot of temp
- The e3sm simulation
 - Outputs model data at the 6-hourly interval generating around 24 GB through 9 primary variables on 96 ranks
 - Tropical cyclone track code queries the magnitude of curl of velocity

S3D


- The magnitude derived variable has a size equal to the number of particles
 - The Store strategy adds 64 GB of data for each simulated step
 - For 900 ranks the stats are12 MB
- The Expression strategy requires storing 256 GB on the remote site


E3SM

- The size of the curl variables is 4 GB
 - The Store strategy adds 28 GB
 - The stats for 96 ranks is 1 MB
- Stats strategy is 1.5x slower
 - Curl has high complexity
 - The curl values are needed by the analysis



Al training coupled with simulation

Data cached on the Writer; Pre-process on the Reader

- Caching strategies
 - Need to consider the cost of recomputing
 - How long to cache? Eviction strategies need to be weighted

19

Conclusion

- Simple models work for file-based case
 - Straight forward input parameters
 - Easy to understand trade-offs
 - Offloading derived variable computation to I/O libraries offers flexibility in switching strategies
- Future work
 - Include compute on storage/ compute in-transit
 - Include pre/post processing as derived variable
 - In-situ performance needs to be modeled better: stochastic behavior
 - Given an energy cap, query granularity