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-
Problem Setting with Continous Speed

Input: One task with a deadline and one processor with variable speed s € [0, Smax].
Output: speed of the processor minimizing energy consumption

2/20



Problem Setting with Continous Speed

Input: One task with a deadline and one processor with variable speed s € [0, Smax].
Output: speed of the processor minimizing energy consumption

More precisely,

Task: deadline D and random size W € [Winin, Winax]. The probability distribution

F(w) :=P(W < w) is known to the scheduler.

Energy: At speed s € [0, Smax], the power consumption is P(s) (increasing, convex).
Objective Function: Find a speed profile that minimizes the expected energy consumption to
execute the task while satisfying its deadline.
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|
Problem Setting with Discrete Speeds

Input: A task of random size with a deadline and N processors.
Output: Optimal activation (on/off) of the processors minimizing energy consumption

3/20



|
Problem Setting with Discrete Speeds

Input: A task of random size with a deadline and N processors.
Output: Optimal activation (on/off) of the processors minimizing energy consumption

Task: A task with deadline D and with random size W € [Wiyin, Winax]. The probability
distribution F(w) := P(W < w) is known to the scheduler.

Energy: When active (resp. inactive) , each processor power consumption is Py, (resp. Pigie).
Speed-up: When n processors are active, the effective speed (work executed per time unit) is
sp, increasing concave in n. The power function is

P(sp) := nPoy + (N — n)Piqle.

Objective Function: Find a processor activation profile that minimizes the expected energy
consumption to execute the task while satisfying its deadline.
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Speed-up function is concave

speed
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n: number of active processors

The function n — s, is increasing and concave.
The function P(s,) : s, — nPoy + (N — n)Piqie is increasing and convex in s.
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Deterministic Size: Constant Speed

Wmax ¢$--------

Y

W = Wnax-
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Deterministic Size: Constant Speed

Wmax ¢------- W*(t) - t

W = Wnax-
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Deterministic Size: Constant Speed
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By convexity, the optimal solution uses a constant speed: s* = Bax
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Stochastic case: Procrastination
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Stochastic case: Procrastination

The optimal speed should increase over time, to take advantage of small sizes.
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Speed selection as a function of the workload

Winax
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Speed selection as a function of the workload

Wmax
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Speed selection as a function of the workload

Since the speed controller does not know the size of the task in advance, it is natural to take
decisions as a function of w (the work already executed) instead as a function of time.

A

Winax
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-
Feasibility

The problem is feasible iff

W,
smax Z Bax .

When the scheduler uses the maximal speed from the start, it must be able to complete the
largest possible task Wi before the deadline D.

If there is no slack ( Dsmax = Wmax), then the unique solution is :
Use full speed from the start.

Also, we may assume w.l.0.0. that the deadline constraint is always met with equality
(otherwise add an initial phase where nothing happens).
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Continuous case: Mathematical Formulation

Power per work unit:
dt  P(s)
= P(s)— = 1
Q(s) = P(s) 5, = M)
Since P(0) = 0 and P is convex, @ is non-decreasing.
The optimal speed is a measurable function

s [0, Wiax] = [0, Smax] minimizing

*Winax

Expected energy = / P(W > w) Q(s(w)) dw,
0

Wmax
/ dw D
0 s(w)

s.t.

9/20



Continuous case: Mathematical Formulation

Power per work unit:
dt  P(s)
= P(s)— = 1
Q(s) = P(s) 5, = M)
Since P(0) = 0 and P is convex, @ is non-decreasing.
The optimal speed is a measurable function

s [0, Wiax] = [0, Smax] minimizing

*Winax

Expected energy — / P(W > w) Q(s(w)) dw,
0

Wmax
/ dw D
0 s(w)

This problem was solved by [Lorch, 2001] when Q(s) = s*, k > 1 and syax = 400 using an
abominable trick. In all cases, the solution uses unbounded speeds.

s.t.
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Constrained Optimisation: Pontryagin Principle

The Hamiltonian is H(7(w),s(w), A(w),w) = F(w)Q(s(w)) — A(w)/s(w), where A\(w) is

the Lagrangian multiplier. The Pontryagin maximum principle says that the optimal solution
s*, \* satisfies

(w), ,
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Constrained Optimisation: Pontryagin Principle

The Hamiltonian is H(7(w),s(w), A(w),w) = F(w)Q(s(w)) — A(w)/s(w), where A\(w) is
the Lagrangian multiplier. The Pontryagin maximum principle says that the optimal solution
s*, \* satisfies
1 H(r(w), s*(w), X*(w), w) < H(r(w), s(
/ 1/s* Fe
2 2 (w) — 2 () 2A/E W) AF (W)@

T T

Using Eq. 2: A*(w) is a constant (denoted \*).
; . (* 2 * —

Using Eq. 1 (s'(w)Q(s' (W) = 21,

(P(s) convex implies s?Q’(s) is non-decreasing).
In the classical case (Q(s) = Cs?),

s*(w) = K FE(w) ™3 A siax,

if it is in [0, smax]. Unique non-negative solution

Wmax
K is a constant s.t. / 1/s* =D.
0
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Pontryagin, continued

[llustration of the solution s* for a uniform distribution of the size of the job. Here K satisfies

Wmax 1
/ (K Fe(w)Y3 v > dw = D.
0

Smax

1/s
A

K
KFe(w)'/3

1/5max
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|
Discrete Case: A Convex Programming Solution (1)

Theorem

There exists an optimal profile that is increasing a.e. J

Using Luzin's Theorem we can focus on a set of measure 1 — € over which s is continuous and

finish the proof by noticing that the set of bounded increasing functions is compact.

t
A
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A Convex Programming Solution (I1)

Focusing on increasing speed profiles, they only change at most N — 1 times, at points

X1,...,Xn—1- The problem becomes a convex program:
N i
Minimize ZQ(S,-)/ FS(w)dw (2)
i=1 Xi-1
N Xj — Xj
£y 2o p 3

if F is continuous, then the objective function is differentiable and an optimizer can be
computed by using, e.g., interior point methods (see Boyd, 2004).

Otherwise, one can rely on algorithms from derivative-free optimization theory (see Conn,
Scheinberg, Vicente, 2009).

Can we do better than numerical computation via convex programming?
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Structural Properties (1)

In the rest, we assume that F is continuous and P is strictly convex (both assumptions are
almost always true in practice).

Proposition

Let o be an optimal schedule. Then, o* uses a consecutive set of speeds.
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Structural Properties (II)

Proposition
The optimal schedule always uses the maximal speed vy . J
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Lagrangian Relaxation

Using the multipliers v € RM and A € Ry, the Lagrangian function is

L(x, A\, v) ZQS, /Xi Fe(w)dw
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Lagrangian Relaxation

Using the multipliers v € RM and A € Ry, the Lagrangian function is

L(x, A\, v) ZQS, /Xi Fe(w)dw
N N-1
+)\<Z—D>+ZV, — Xi+1)-

i=1 i
ﬁ
8X,'

— 05 (Q(s) — Qs141))FE(x) + A (1 o1 )+— _o.

Si Si+1
If only speeds > s, are used in the optimal solution then v; = 0 for all i > m by

complementary slackness. The unique optimizer must satisfy for all i > m,

SiP(SiJrl) — 5,'+1P(S,') FC(X') _ SmP(5m+1) - 5m+1P(5m) FC(X ) (4)
Siy1 — Si ’ Sm+1 — Sm "
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|
Algorithm Using Dichotomy

Computing the optimal schedule when some speeds are not used in the optimal solution;

U=N;L:=1;

While U > L

do
m:= [(U+L)/2];
Solve for x,, using speeds s, ..., Sy, where x,11,...,xy are given by (4); (*)
If x,, <0 Then L := m; Else U := m;

od

Complexity: log,(/N)x (complexity of solving one-dimensional eq. for x,).

An explicit solution for (*) exists for specific distributions (uniform for ex.).
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An example

Let us consider the case where Q(s) = s, the job is uniform over [0, 10] with deadline D = 4
or D = 6 and the possible speeds are 0,1, 2, 3.

In that case, the optimal solution is given in the following figure. (with D =6 and D =4

resp.)
t
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Extensions

@ Can be used for hardware design (via dynamic programming, (with E. Thierry));
@ Several jobs (exponential growth, (with A. Girault & S. Plassart));
o Soft deadline alternatives (via rate decay, (with J. Anselmi & L.-S. Rebuffi)).
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That's all folks!



