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Problem Setting with Continous Speed

Input: One task with a deadline and one processor with variable speed s ∈ [0, smax].
Output: speed of the processor minimizing energy consumption

More precisely,
Task: deadline D and random size W ∈ [Wmin,Wmax]. The probability distribution
F (w) := P(W ≤ w) is known to the scheduler.
Energy: At speed s ∈ [0, smax], the power consumption is P(s) (increasing, convex).
Objective Function: Find a speed profile that minimizes the expected energy consumption to
execute the task while satisfying its deadline.

2 / 20



Problem Setting with Continous Speed

Input: One task with a deadline and one processor with variable speed s ∈ [0, smax].
Output: speed of the processor minimizing energy consumption

More precisely,
Task: deadline D and random size W ∈ [Wmin,Wmax]. The probability distribution
F (w) := P(W ≤ w) is known to the scheduler.
Energy: At speed s ∈ [0, smax], the power consumption is P(s) (increasing, convex).
Objective Function: Find a speed profile that minimizes the expected energy consumption to
execute the task while satisfying its deadline.

2 / 20



Problem Setting with Discrete Speeds

Input: A task of random size with a deadline and N processors.
Output: Optimal activation (on/off) of the processors minimizing energy consumption

Task: A task with deadline D and with random size W ∈ [Wmin,Wmax]. The probability
distribution F (w) := P(W ≤ w) is known to the scheduler.
Energy: When active (resp. inactive) , each processor power consumption is Pon (resp. Pidle).
Speed-up: When n processors are active, the effective speed (work executed per time unit) is
sn, increasing concave in n. The power function is

P(sn) := nPon + (N − n)Pidle.

Objective Function: Find a processor activation profile that minimizes the expected energy
consumption to execute the task while satisfying its deadline.
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Speed-up function is concave

n: number of active processors
• • • • •

1 2 3 N

speed

•

•
•
••smax

•

•
•

•
s2

•

The function n → sn is increasing and concave.
The function P(sn) : sn → nPon + (N − n)Pidle is increasing and convex in s.
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Deterministic Size: Constant Speed
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Deterministic Size: Constant Speed
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By convexity, the optimal solution uses a constant speed: s∗ =
Wmax

D
.
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Stochastic case: Procrastination
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The optimal speed should increase over time, to take advantage of small sizes.
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Speed selection as a function of the workload
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Speed selection as a function of the workload
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Speed selection as a function of the workload

Since the speed controller does not know the size of the task in advance, it is natural to take
decisions as a function of w (the work already executed) instead as a function of time.

tDDDDD
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∫ D

0
s(t)dt = Wmax
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1

s(w)
dw = D
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Feasibility

The problem is feasible iff

smax ≥
Wmax

D
.

When the scheduler uses the maximal speed from the start, it must be able to complete the
largest possible task Wmax before the deadline D.

If there is no slack ( Dsmax = Wmax), then the unique solution is :
Use full speed from the start.

Also, we may assume w.l.o.o. that the deadline constraint is always met with equality
(otherwise add an initial phase where nothing happens).
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Continuous case: Mathematical Formulation

Power per work unit:

Q(s) := P(s)
dt

dw
=

P(s)

s
, (1)

Since P(0) = 0 and P is convex, Q is non-decreasing.
The optimal speed is a measurable function
s : [0,Wmax] → [0, smax] minimizing

Expected energy =

∫ Wmax

0
P(W ≥ w)Q(s(w))dw ,

s.t. ∫ Wmax

0

dw

s(w)
= D.

This problem was solved by [Lorch, 2001] when Q(s) = sk , k > 1 and smax = +∞ using an
abominable trick. In all cases, the solution uses unbounded speeds.
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Constrained Optimisation: Pontryagin Principle

The Hamiltonian is H(τ(w), s(w), λ(w),w) = F c(w)Q(s(w))− λ(w)/s(w), where λ(w) is
the Lagrangian multiplier. The Pontryagin maximum principle says that the optimal solution
s∗, λ∗ satisfies

1. H(τ∗(w), s∗(w), λ∗(w),w) ≤ H(τ(w), s(w), λ(w),w) for all w ≤ Wmax.

2. λ∗′(w) = λ∗(w)
∂(1/s∗(w))

∂τ
+

∂(F c(w)Q(s∗(w)))

∂τ
.

Using Eq. 2: λ∗(w) is a constant (denoted λ∗).

Using Eq. 1: (s∗(w))2Q ′(s∗(w)) =
λ∗

F c(w)
if it is in [0, smax]. Unique non-negative solution

(P(s) convex implies s2Q ′(s) is non-decreasing).
In the classical case (Q(s) = Cs2),

s∗(w) = K F c(w)−1/3 ∧ smax,

K is a constant s.t.

∫ Wmax

0
1/s∗ = D.
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Pontryagin, continued

Illustration of the solution s∗ for a uniform distribution of the size of the job. Here K satisfies∫ Wmax

0

(
K F c(w)1/3 ∨ 1

smax

)
dw = D.

w

Wmax

1/s

K

1/smax

KF c(w)1/3

D
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Discrete Case: A Convex Programming Solution (I)

Theorem

There exists an optimal profile that is increasing a.e.

Using Luzin’s Theorem we can focus on a set of measure 1− ε over which s is continuous and
finish the proof by noticing that the set of bounded increasing functions is compact.
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A Convex Programming Solution (II)

Focusing on increasing speed profiles, they only change at most N − 1 times, at points
x1, . . . , xN−1. The problem becomes a convex program:

Minimize
N∑
i=1

Q(si )

∫ xi

xi−1

F c(w)dw (2)

s.t.
N∑
i=1

xi − xi−1

si
= D. (3)

if F is continuous, then the objective function is differentiable and an optimizer can be
computed by using, e.g., interior point methods (see Boyd, 2004).
Otherwise, one can rely on algorithms from derivative-free optimization theory (see Conn,
Scheinberg, Vicente, 2009).
Can we do better than numerical computation via convex programming?

13 / 20



Structural Properties (I)

In the rest, we assume that F is continuous and P is strictly convex (both assumptions are
almost always true in practice).

Proposition

Let σ∗ be an optimal schedule. Then, σ∗ uses a consecutive set of speeds.

• •
ε q(ε)

•
w

t
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1
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si+1 •
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τ(x)
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Structural Properties (II)

Proposition

The optimal schedule always uses the maximal speed vN .

•
ε
′
• •

ε
•

Wmax w

t
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Lagrangian Relaxation

Using the multipliers ν ∈ RM
+ and λ ∈ R+, the Lagrangian function is

L(x , λ, ν) =
N∑
i=1

Q(si )

∫ xi

xi−1

F c(w)dw

+ λ

(
N∑
i=1

xi − xi−1

si
− D

)
+

N−1∑
i=0

νi (xi − xi+1).

∂L

∂xi
= 0 ⇔ (Q(si )− Q(si+1))F

c(xi ) + λ

(
1

si
− 1

si+1

)
+ νi − νi−1 = 0.

If only speeds ≥ sm are used in the optimal solution then νi = 0 for all i ≥ m by
complementary slackness. The unique optimizer must satisfy for all i ≥ m,

siP(si+1)− si+1P(si )

si+1 − si
F c(xi ) =

smP(sm+1)− sm+1P(sm)

sm+1 − sm
F c(xm). (4)
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Algorithm Using Dichotomy

Computing the optimal schedule when some speeds are not used in the optimal solution;

U := N; L := 1;
While U > L
do

m := ⌊(U + L)/2⌋;
Solve for xm using speeds sm, . . . , sN , where xm+1, . . . , xN are given by (4); (*)
If xm ≤ 0 Then L := m; Else U := m;

od

Complexity: log2(N)× (complexity of solving one-dimensional eq. for xm).

An explicit solution for (*) exists for specific distributions (uniform for ex.).
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An example

Let us consider the case where Q(s) = s2, the job is uniform over [0, 10] with deadline D = 4
or D = 6 and the possible speeds are 0, 1, 2, 3.
In that case, the optimal solution is given in the following figure. (with D = 6 and D = 4
resp.)
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Extensions

Can be used for hardware design (via dynamic programming, (with E. Thierry));

Several jobs (exponential growth, (with A. Girault & S. Plassart));

Soft deadline alternatives (via rate decay, (with J. Anselmi & L.-S. Rebuffi)).
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That’s all folks!
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