
Optimal Processor speeds

Jonatha Anselmi and Bruno Gaujal
Inria and Univ. Grenoble Alpes

Aussois, 2024

Problem Setting with Continous Speed

Input: One task with a deadline and one processor with variable speed s ∈ [0, smax].
Output: speed of the processor minimizing energy consumption

More precisely,
Task: deadline D and random size W ∈ [Wmin,Wmax]. The probability distribution
F (w) := P(W ≤ w) is known to the scheduler.
Energy: At speed s ∈ [0, smax], the power consumption is P(s) (increasing, convex).
Objective Function: Find a speed profile that minimizes the expected energy consumption to
execute the task while satisfying its deadline.

2 / 20

Problem Setting with Continous Speed

Input: One task with a deadline and one processor with variable speed s ∈ [0, smax].
Output: speed of the processor minimizing energy consumption

More precisely,
Task: deadline D and random size W ∈ [Wmin,Wmax]. The probability distribution
F (w) := P(W ≤ w) is known to the scheduler.
Energy: At speed s ∈ [0, smax], the power consumption is P(s) (increasing, convex).
Objective Function: Find a speed profile that minimizes the expected energy consumption to
execute the task while satisfying its deadline.

2 / 20

Problem Setting with Discrete Speeds

Input: A task of random size with a deadline and N processors.
Output: Optimal activation (on/off) of the processors minimizing energy consumption

Task: A task with deadline D and with random size W ∈ [Wmin,Wmax]. The probability
distribution F (w) := P(W ≤ w) is known to the scheduler.
Energy: When active (resp. inactive) , each processor power consumption is Pon (resp. Pidle).
Speed-up: When n processors are active, the effective speed (work executed per time unit) is
sn, increasing concave in n. The power function is

P(sn) := nPon + (N − n)Pidle.

Objective Function: Find a processor activation profile that minimizes the expected energy
consumption to execute the task while satisfying its deadline.

3 / 20

Problem Setting with Discrete Speeds

Input: A task of random size with a deadline and N processors.
Output: Optimal activation (on/off) of the processors minimizing energy consumption

Task: A task with deadline D and with random size W ∈ [Wmin,Wmax]. The probability
distribution F (w) := P(W ≤ w) is known to the scheduler.
Energy: When active (resp. inactive) , each processor power consumption is Pon (resp. Pidle).
Speed-up: When n processors are active, the effective speed (work executed per time unit) is
sn, increasing concave in n. The power function is

P(sn) := nPon + (N − n)Pidle.

Objective Function: Find a processor activation profile that minimizes the expected energy
consumption to execute the task while satisfying its deadline.

3 / 20

Speed-up function is concave

n: number of active processors
• • • • •

1 2 3 N

speed

•

•
•
••smax

•

•
•

•
s2

•

The function n → sn is increasing and concave.
The function P(sn) : sn → nPon + (N − n)Pidle is increasing and convex in s.

4 / 20

Deterministic Size: Constant Speed

w

t•

•

D

Wmax

W = Wmax.

5 / 20

Deterministic Size: Constant Speed

w

t

w∗(t) =
Wmax

D
t

•

•

D

Wmax

W = Wmax.

5 / 20

Deterministic Size: Constant Speed

w

t

w∗(t) =
Wmax

D
t

•

•

D

Wmax

w(t)

W = Wmax.

By convexity, the optimal solution uses a constant speed: s∗ =
Wmax

D
.

5 / 20

Stochastic case: Procrastination

tDDDDD

w

WmaxWmaxWmaxWmaxWmax

w∗(t)

The optimal speed should increase over time, to take advantage of small sizes.

6 / 20

Stochastic case: Procrastination

tDDDDD

w

WmaxWmaxWmaxWmaxWmax

w∗(t)

The optimal speed should increase over time, to take advantage of small sizes.

6 / 20

Speed selection as a function of the workload

tDDDDD

WmaxWmaxWmaxWmaxWmax

w(t)

wWmaxWmaxWmaxWmaxWmax

t

DDDDD

τ(w)

7 / 20

Speed selection as a function of the workload

tDDDDD

WmaxWmaxWmaxWmaxWmax

w(t)

∫ D

0
s(t)dt = Wmax

wWmaxWmaxWmaxWmaxWmax

t

DDDDD

τ(w)

7 / 20

Speed selection as a function of the workload

Since the speed controller does not know the size of the task in advance, it is natural to take
decisions as a function of w (the work already executed) instead as a function of time.

tDDDDD

WmaxWmaxWmaxWmaxWmax

w(t)

∫ D

0
s(t)dt = Wmax

wWmaxWmaxWmaxWmaxWmax

t

DDDDD

τ(w)

∫ Wmax

0

1

s(w)
dw = D

7 / 20

Feasibility

The problem is feasible iff

smax ≥
Wmax

D
.

When the scheduler uses the maximal speed from the start, it must be able to complete the
largest possible task Wmax before the deadline D.

If there is no slack (Dsmax = Wmax), then the unique solution is :
Use full speed from the start.

Also, we may assume w.l.o.o. that the deadline constraint is always met with equality
(otherwise add an initial phase where nothing happens).

8 / 20

Continuous case: Mathematical Formulation

Power per work unit:

Q(s) := P(s)
dt

dw
=

P(s)

s
, (1)

Since P(0) = 0 and P is convex, Q is non-decreasing.
The optimal speed is a measurable function
s : [0,Wmax] → [0, smax] minimizing

Expected energy =

∫ Wmax

0
P(W ≥ w)Q(s(w))dw ,

s.t. ∫ Wmax

0

dw

s(w)
= D.

This problem was solved by [Lorch, 2001] when Q(s) = sk , k > 1 and smax = +∞ using an
abominable trick. In all cases, the solution uses unbounded speeds.

9 / 20

Continuous case: Mathematical Formulation

Power per work unit:

Q(s) := P(s)
dt

dw
=

P(s)

s
, (1)

Since P(0) = 0 and P is convex, Q is non-decreasing.
The optimal speed is a measurable function
s : [0,Wmax] → [0, smax] minimizing

Expected energy =

∫ Wmax

0
P(W ≥ w)Q(s(w))dw ,

s.t. ∫ Wmax

0

dw

s(w)
= D.

This problem was solved by [Lorch, 2001] when Q(s) = sk , k > 1 and smax = +∞ using an
abominable trick. In all cases, the solution uses unbounded speeds.

9 / 20

Constrained Optimisation: Pontryagin Principle

The Hamiltonian is H(τ(w), s(w), λ(w),w) = F c(w)Q(s(w))− λ(w)/s(w), where λ(w) is
the Lagrangian multiplier. The Pontryagin maximum principle says that the optimal solution
s∗, λ∗ satisfies

1. H(τ∗(w), s∗(w), λ∗(w),w) ≤ H(τ(w), s(w), λ(w),w) for all w ≤ Wmax.

2. λ∗′(w) = λ∗(w)
∂(1/s∗(w))

∂τ
+

∂(F c(w)Q(s∗(w)))

∂τ
.

Using Eq. 2: λ∗(w) is a constant (denoted λ∗).

Using Eq. 1: (s∗(w))2Q ′(s∗(w)) =
λ∗

F c(w)
if it is in [0, smax]. Unique non-negative solution

(P(s) convex implies s2Q ′(s) is non-decreasing).
In the classical case (Q(s) = Cs2),

s∗(w) = K F c(w)−1/3 ∧ smax,

K is a constant s.t.

∫ Wmax

0
1/s∗ = D.

10 / 20

Constrained Optimisation: Pontryagin Principle

The Hamiltonian is H(τ(w), s(w), λ(w),w) = F c(w)Q(s(w))− λ(w)/s(w), where λ(w) is
the Lagrangian multiplier. The Pontryagin maximum principle says that the optimal solution
s∗, λ∗ satisfies

1. H(τ∗(w), s∗(w), λ∗(w),w) ≤ H(τ(w), s(w), λ(w),w) for all w ≤ Wmax.

2. λ∗′(w) = λ∗(w)
∂(1/s∗(w))

∂τ
+

∂(F c(w)Q(s∗(w)))

∂τ
.

Using Eq. 2: λ∗(w) is a constant (denoted λ∗).

Using Eq. 1: (s∗(w))2Q ′(s∗(w)) =
λ∗

F c(w)
if it is in [0, smax]. Unique non-negative solution

(P(s) convex implies s2Q ′(s) is non-decreasing).
In the classical case (Q(s) = Cs2),

s∗(w) = K F c(w)−1/3 ∧ smax,

K is a constant s.t.

∫ Wmax

0
1/s∗ = D.

10 / 20

Pontryagin, continued

Illustration of the solution s∗ for a uniform distribution of the size of the job. Here K satisfies∫ Wmax

0

(
K F c(w)1/3 ∨ 1

smax

)
dw = D.

w

Wmax

1/s

K

1/smax

KF c(w)1/3

D

11 / 20

Discrete Case: A Convex Programming Solution (I)

Theorem

There exists an optimal profile that is increasing a.e.

Using Luzin’s Theorem we can focus on a set of measure 1− ε over which s is continuous and
finish the proof by noticing that the set of bounded increasing functions is compact.

•
wa

•
wb

•
w ′
b

•
wc w

t

•

1

sℓ

•

1

sh •
τ ′(w)

• 1

sh

•
1

sℓ

•

τ(w)

12 / 20

A Convex Programming Solution (II)

Focusing on increasing speed profiles, they only change at most N − 1 times, at points
x1, . . . , xN−1. The problem becomes a convex program:

Minimize
N∑
i=1

Q(si)

∫ xi

xi−1

F c(w)dw (2)

s.t.
N∑
i=1

xi − xi−1

si
= D. (3)

if F is continuous, then the objective function is differentiable and an optimizer can be
computed by using, e.g., interior point methods (see Boyd, 2004).
Otherwise, one can rely on algorithms from derivative-free optimization theory (see Conn,
Scheinberg, Vicente, 2009).
Can we do better than numerical computation via convex programming?

13 / 20

Structural Properties (I)

In the rest, we assume that F is continuous and P is strictly convex (both assumptions are
almost always true in practice).

Proposition

Let σ∗ be an optimal schedule. Then, σ∗ uses a consecutive set of speeds.

• •
ε q(ε)

•
w

t

•

1

si−1

•

1

si+1 •

τ(x∗)

1

si

τ(x)

14 / 20

Structural Properties (II)

Proposition

The optimal schedule always uses the maximal speed vN .

•
ε
′
• •

ε
•

Wmax w

t

•

1

sN−2

•

1

sN−1

•

1

sN
•

τ(x∗)

1

sN−1

τ(x)

15 / 20

Lagrangian Relaxation

Using the multipliers ν ∈ RM
+ and λ ∈ R+, the Lagrangian function is

L(x , λ, ν) =
N∑
i=1

Q(si)

∫ xi

xi−1

F c(w)dw

+ λ

(
N∑
i=1

xi − xi−1

si
− D

)
+

N−1∑
i=0

νi (xi − xi+1).

∂L

∂xi
= 0 ⇔ (Q(si)− Q(si+1))F

c(xi) + λ

(
1

si
− 1

si+1

)
+ νi − νi−1 = 0.

If only speeds ≥ sm are used in the optimal solution then νi = 0 for all i ≥ m by
complementary slackness. The unique optimizer must satisfy for all i ≥ m,

siP(si+1)− si+1P(si)

si+1 − si
F c(xi) =

smP(sm+1)− sm+1P(sm)

sm+1 − sm
F c(xm). (4)

16 / 20

Lagrangian Relaxation

Using the multipliers ν ∈ RM
+ and λ ∈ R+, the Lagrangian function is

L(x , λ, ν) =
N∑
i=1

Q(si)

∫ xi

xi−1

F c(w)dw

+ λ

(
N∑
i=1

xi − xi−1

si
− D

)
+

N−1∑
i=0

νi (xi − xi+1).

∂L

∂xi
= 0 ⇔ (Q(si)− Q(si+1))F

c(xi) + λ

(
1

si
− 1

si+1

)
+ νi − νi−1 = 0.

If only speeds ≥ sm are used in the optimal solution then νi = 0 for all i ≥ m by
complementary slackness. The unique optimizer must satisfy for all i ≥ m,

siP(si+1)− si+1P(si)

si+1 − si
F c(xi) =

smP(sm+1)− sm+1P(sm)

sm+1 − sm
F c(xm). (4)

16 / 20

Algorithm Using Dichotomy

Computing the optimal schedule when some speeds are not used in the optimal solution;

U := N; L := 1;
While U > L
do

m := ⌊(U + L)/2⌋;
Solve for xm using speeds sm, . . . , sN , where xm+1, . . . , xN are given by (4); (*)
If xm ≤ 0 Then L := m; Else U := m;

od

Complexity: log2(N)× (complexity of solving one-dimensional eq. for xm).

An explicit solution for (*) exists for specific distributions (uniform for ex.).

17 / 20

An example

Let us consider the case where Q(s) = s2, the job is uniform over [0, 10] with deadline D = 4
or D = 6 and the possible speeds are 0, 1, 2, 3.
In that case, the optimal solution is given in the following figure. (with D = 6 and D = 4
resp.)

w
• • •
5/2 17/2 10

t

•

•

5/2

11/2
6

•

•
1

•
2

•3
τ(w)

w
• •
4 10

t

•

•

4

2

•

•

2

•

3

τ(w)

18 / 20

An example

Let us consider the case where Q(s) = s2, the job is uniform over [0, 10] with deadline D = 4
or D = 6 and the possible speeds are 0, 1, 2, 3.
In that case, the optimal solution is given in the following figure. (with D = 6 and D = 4
resp.)

w
• • •
5/2 17/2 10

t

•

•

5/2

11/2
6

•

•
1

•
2

•3

2

τ(w)

w
• •
4 10

t

•

•

4

2

•

•

2

•

3

1

3

τ(w)

18 / 20

Extensions

Can be used for hardware design (via dynamic programming, (with E. Thierry));

Several jobs (exponential growth, (with A. Girault & S. Plassart));

Soft deadline alternatives (via rate decay, (with J. Anselmi & L.-S. Rebuffi)).

19 / 20

That’s all folks!

20 / 20

