Universidad

Carloslll glObUS Y labs

de Madrid

F.d THE UNIVERSITY OF

<9 CHICAGO

ucdm

D-rex: Dynamic Data Replication for
Heterogeneous Storage Nodes

June 23, 2024

Maxime Gonthier, Dante D. Sanchez-Gallegos
Jesus Carretero, Kyle Chard, lan Foster

(Disclaimer: ongoing work - topic defined by a new postdoc (me :0))

Universidad =% THE UNIVERSITY OF

uc3m | Carlos il globus @9 labs & CHICAGO

de Madrid

Table of contents:
e Context and motivation
Model and Problem Statement
Design of DynoStore: our data replication system
Current algorithmic solutions
Greedy algorithm
Proposed algorithm
First results

Context: Data needs long-term storage

Data: Users generate large amounts of data that must be
stored for long periods of time.

Resilience: Given the importance of some data, storage
systems implement replication policies to tolerate failures.

Cloud: A cloud solution enables users to access a diverse
range of heterogeneous storage nodes distributed across

multiple locations.

— A

TXT

Context: Erasure coding reduces storage overhead

Erasure coding: Encodes data : _ Y. .)
nto chunks so that when the Example with N=5 a:jnd fK'| 3: Can survive N - K (2)
nodes failures

data is needed, only a subset of

the chunks is needed to 50 |, 166 | 166 [166 || 166 | 166
recover the original data MB me | me [me || mB | mB
20 |,/6.66/6.66/6.6616.66/6.66
MB MB | MB | MB}| MB | MB
10 | [3.33.33.43.33.3
e N: Number of chunks e Plie ";1“ R
e |Parity chunks:JAdded
chunks to ensure data 40 | ,|13.3|13.3(13.3/13.3]|13.3
reconstruction from a MB MB | MB | MBI MB | MB
subset

Each chunk is stored in a different location.

e K: N - Parity chunks.

Motivations

Storage is not free
Heterogeneity
Chunking cost time

Current solutions are static,
even though the workload
can be dynamic

Storage overhead (MB)

800 A

750 A

700 A

650 A

600 -

550 ~

500 A

450 A

Time to chunk 400 MB of data. Varying N and K

Sample Scatter Plot

&<

L

6.4

®
7.5
®

8,6
® 9,7
e 108
® 11,9
12,10 13.11
® 14,12
15,13
@ ° 16,14 17,15 18.16
° o o : 19,17 20,18
5] ° °

T T T T

Q O Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

) Q $) Q 9 Q “

$ S $ $ < = & &

Ava._ time (ms)

Model

Nodes:
S={51,...,5}
Size M (.S;)
Probability 0 < Pryije (Si, 1) < 1
to fail at least once
Write bandwidth B(.S;)

. Chunk
Data. pla‘cj:stent
Need to store D ={Ds,..., D}
m’ |S unknown < M(D i) M(D _i)/K(D_i)
Size M(D i) N
chunks
Constraint: for each data P.iiase (D;) > Reliability_threshold M(D_i)

computed using Pr,in..(S(D;),t)and a Poisson
binomial distribution function

Problem Statement

Given a set of
heterogeneous nodes, for
each of the m' (unknown) data
to be stored, what values of N
and K and which subset of
nodes should be chosen to
reduce storage overhead,
chunking, and upload time,
and to store as much data as
possible while maintaining
reliability greater than 99%?

M(D_i) S M(D_i)/K(D_i)

Chunks
placement

} N(D_i)
chunks

Universidad

uc3m | Carlos Ili globus @9 labs

de Madrid

DynoStore

DeS I g f Of Dyn OStO re %} Serverless applications

— . 3
Prod C
rfs:rcse' T:;':e' ProxyStore connector

. :

DynoStore Client

:

API| Gateway

!

Access control

A wide-area distribution system t i
designed to manage data across RS N i e T
heterogeneous storage systems ; !
Health check Data manager <«—> Control policies
A A

Data container Data container Data container Data container Data container

1 2 3 4 n
Native storage Native storage Native storage Native storage Native storage
system 1 system 2 system 3 system 4 system 5

Data container pool

Design of DynoStore

A wide-area distribution system
designed to manage data across
heterogeneous storage systems

D-Rex

a

Producer
users

|

£ Serverless applications
— 0 3
C

Of::f?er ProxyStore connector

! :

DynoStore Client

:

API| Gateway

v

!

Access control

) !

------------ > Metadata Users

!

Health check Data manager <«—> Control policies

"

Data container
1

v

Native storage

Data container Data container Data container Data container
2 3 4 n

v v v v

Native storage Native storage Native storage Native storage

system 1 system 2 system 3 system 4 system 5

10

Universidad

ucdm | Carloslll g[ObUS Y labs

de Madrid

fid THE UNIVERSITY OF

&9 CHICAGO

Algorithms

11

From the state-of-the-art

HDFS 2.0: 3x replication === 200% storage overhead

HDFS 3.0 default configuration: Erasure coding using Reed-Solomon (6,3): A
data is split into 6 blocks and 3 blocks of parity are added === 50% storage
overhead

HDFS 3.0 alternative configuration: Erasure coding replication using
Reed-Solomon (3,2) == 66% storage overhead

GlusterFS: Erasure coding with 4 blocks of data for 2 blocks of parity == 50%
storage overhead

12

Greedy algorithm: Min Storage

Goal: Minimum use of disk space for each new piece of data to store

Steps to store Data D _i:

Xx=0

N = Number of nodes - x

Candidate = N nodes with largest available memory

Choose K as big as possible such that: Py,.iu0.(D;) = Reliability threshold

For each node in Candidate:
o If node’s memory < M(D _i)/K

m X+=1

m Goto 2.

o bk b=

13

Proposed algorithm

1.

system saturatlon = 1 - (free_storage on exponential_function((smallest

14

Proposed algorithm

1.

system_saturation = 1 - (free_storage on exponential function((smallest
data,0),(1(8),1)))

For every combination of nodes, with K as big as possible:

a. time overhead = chunking+upload time using (N,K)
b. space overhead = (M(D_i)/K)*N
c. saturation score = mean system_saturation on each node after adding M(D _i)/K

S1, S2, S3 (N=3, K=1)

S1, S2, S4 (N=3, K=1)

S1, S2, S3, S4 (N=4, K=2)

15

Proposed algorithm

1.

system_saturation = 1 - (free_storage on exponential function((smallest
data,0),(1(8),1)))

For every combination of nodes, with K as big as possible:

a. time overhead = chunking+upload time using (N,K)

b. space overhead = (M(D_i)/K)*N

c. saturation score = mean system_saturation on each node after adding M(D _i)/K
Candidates = set of combinations on pareto front using time overhead,

space_overhead and saturation_score

Pareto Front

20 30

16

Proposed algorithm

1.

system_saturation = 1 - (free_storage on exponential function((smallest
data,0),(1(8),1)))

For every combination of nodes, with K as big as possible:

a. time overhead = chunking+upload time using (N,K)
b. space overhead = (M(D_i)/K)*N
c. saturation score = mean system_saturation on each node after adding M(D _i)/K

Candidates = set of combinations on pareto front using time_overhead,
space_overhead and saturation_score

For each candidate |, and for x in time overhead, space overhead and
saturation_score, compute x_progress = 1- (x(j) - min(x))/(max(x) - min(x))

17

Proposed algorithm

1.

system_saturation = 1 - (free_storage on exponential function((smallest
data,0),(1(8),1)))

For every combination of nodes, with K as big as possible:

a. time overhead = chunking+upload time using (N,K)

b. space overhead = (M(D_i)/K)*N

c. saturation score = mean system_saturation on each node after adding M(D _i)/K
Candidates = set of combinations on pareto front using time overhead,

space_overhead and saturation_score

For each candidate |, and for x in time overhead, space overhead and
saturation_score, compute x_progress = 1- (x(j) - min(x))/(max(x) - min(x))
For each candidate |, compute total score(j) = time _overhead progress +
(space_overhead progress +

saturation_score progress/2)*system_saturation
18

Proposed algorithm

1.

system_saturation = 1 - (free_storage on exponential function((smallest
data,0),(1(8),1)))

For every combination of nodes, with K as big as possible:

a. time overhead = chunking+upload time using (N,K)
b. space overhead = (M(D_i)/K)*N
c. saturation score = mean system_saturation on each node after adding M(D _i)/K

Candidates = set of combinations on pareto front using time overhead,
space_overhead and saturation_score

For each candidate |, and for x in time overhead, space overhead and
saturation_score, compute x_progress = 1- (x(j) - min(x))/(max(x) - min(x))
For each candidate |, compute total score(j) = time _overhead progress +
(space_overhead progress +

saturation_score progress/2)*system_saturation

Return combination associated with max(total score) 1

Universidad

ucdm | Carloslll g[ObUS Y labs

de Madrid

=74 THE UNIVERSITY OF

< CHICAGO

Experiments

20

500 data to store using the 10 most used nodes or the 10 worst nodes from

backblaze

Fast and reliable nodes

Storage space (TB) of the 10 best nodes

4

4,00 6,50 9,00 11,50 14,00 16,50

Mean AFR =1.2

Slowest, and least reliable nodes

Storage space (TB) of the 10 worst nodes
4

4,00 6,90 9,80 12,70 15,60 18,50

Mean AFR =6.5

Algorithms: Random - Greedy - D-Rex - HDFS - GlusterFS

21

500 data to store using the 10 most used nodes: Number of data stored

Number of data stored

500 -

400 A

300 A1

200 A

100 A

Number of data stored

] x 0 — — wn
o = § 5 o ¥ o
£ a ° 2) © 9]
s} c © 0 0 i
A © (¥} o o
w0 - — =

- wn 0
£ .- T w ©
= — (a) [a)

m I o

Algorithm

22

500 data to store using the 10 worst nodes: Number of data stored

Number of data stored

500 -

400 A

300 A

200 A

100 A

Number of data stored

] x 0 — — wn
o = § 5 o * o
£ a o 2) © 9]
s} c © 0N 0 i
e © (¥} o o
w0 - — =

- wn n
£ .- T w ©
= — (a) [a)

m I I

Algorithm

23

500 data to store using the 10 most used nodes: Storage per data

Storage per data

600000 -
500000 -
)
= 400000 A
©
!
g
2 300000 -
(0]
[o)]
o
S
Y 200000
100000 -
0 .
> d £ e ~N ™ T
g A g =) © g
& & S 4 2 g
£ 2 & § G
= - Q Q
m = i £
Algorithm

24

500 data to store using the 10 worst nodes: Storage per data

Storage per data

800000 A

700000 A

600000 -

500000 A

400000 A

300000 A

Storage per data (MB)

200000 A

100000 -

0 -

D-rex
random
GlusterFS

w
o
©
—
S
-
n
£
=

3 replications
HDFS RS(3,2)
HDFS RS(6,3)

Algorithm

500 data to store using the 10 most used nodes: Sum of upload time per data

Upload time per data

3500 A

3000 A

2500 A

2000 A

1500 -

Upload time per data (s)

1000 -

500 A

D-rex
random
GlusterFS

w
o
©
—
S
L
n
£
=

3 replications
HDFS RS(3,2)
HDFS RS(6,3)

Algorithm

500 data to store using the 10 worst nodes: Sum of upload time per data

Upload time per data

4000 -

3000 A

2000 A

Upload time per data (s)

1000 A

D-rex
random
GlusterFS

w
o
©
—
o
o
n
=
=

3 replications
HDFS RS(3,2)
HDFS RS(6,3)

Algorithm

Conclusion

e Summary:
o Current replication schemes are static and do not manage heterogeneous
storage
o We show that it is possible to reduce chunking + upload times and storage
cost by exploiting system saturation and nodes specifications

e Limitations:
o The use case of slow and unreliable storage nodes is not common
o Past disk failures rate do not necessarily represent future failure rates

28

Future works

A\ e

Network simulator (mininet)
“‘Real life” experiments using Globus Compute

Real applications (ccty, ...)
Dynamically add/remove nodes

globus

29

