
D-rex: Dynamic Data Replication for
Heterogeneous Storage Nodes

June 23, 2024

Maxime Gonthier, Dante D. Sanchez-Gallegos
Jesus Carretero, Kyle Chard, Ian Foster

(Disclaimer: ongoing work - topic defined by a new postdoc (me :o))

1

Table of contents:
● Context and motivation
● Model and Problem Statement
● Design of DynoStore: our data replication system
● Current algorithmic solutions
● Greedy algorithm
● Proposed algorithm
● First results

2

Context: Data needs long-term storage

Data: Users generate large amounts of data that must be
stored for long periods of time.

3

Resilience: Given the importance of some data, storage
systems implement replication policies to tolerate failures.

Cloud: A cloud solution enables users to access a diverse
range of heterogeneous storage nodes distributed across
multiple locations.

Context: Erasure coding reduces storage overhead

Erasure coding: Encodes data
into chunks so that when the
data is needed, only a subset of
the chunks is needed to
recover the original data

● N: Number of chunks
● Parity chunks: Added

chunks to ensure data
reconstruction from a
subset

● K: N - Parity chunks.
4

Example with N=5 and K=3: Can survive N - K (2)
nodes failures

Each chunk is stored in a different location.

Motivations

Storage is not free

Heterogeneity

Chunking cost time

Current solutions are static,
even though the workload
can be dynamic

5

Time to chunk 400 MB of data. Varying N and K

Model

6

Constraint: for each data
computed using and a Poisson
binomial distribution function

Nodes:

Size
Probability

 to fail at least once
Write bandwidth

Data:
Need to store

 m’ is unknown
Size M(D_i)

Problem Statement

7

 Given a set of
heterogeneous nodes, for
each of the m' (unknown) data
to be stored, what values of N
and K and which subset of
nodes should be chosen to
reduce storage overhead,
chunking, and upload time,
and to store as much data as
possible while maintaining
reliability greater than 99%?

DynoStore

8

Design of DynoStore

A wide-area distribution system
designed to manage data across
heterogeneous storage systems

9

To address these challenges, we propose Dynostore: a model and algorithms for
dynamically replicating data across heterogeneous nodes, aiming to optimize load balance,
reduce space and time costs, while ensuring a certain level of reliability. This model is
generic and adaptable to other scenarios.

Design of DynoStore

A wide-area distribution system
designed to manage data across
heterogeneous storage systems

10

To address these challenges, we propose Dynostore: a model and algorithms for
dynamically replicating data across heterogeneous nodes, aiming to optimize load balance,
reduce space and time costs, while ensuring a certain level of reliability. This model is
generic and adaptable to other scenarios.

D-Rex

Algorithms

11

From the state-of-the-art

HDFS 2.0: 3x replication 200% storage overhead

HDFS 3.0 default configuration: Erasure coding using Reed-Solomon (6,3): A
data is split into 6 blocks and 3 blocks of parity are added 50% storage
overhead

HDFS 3.0 alternative configuration: Erasure coding replication using
Reed-Solomon (3,2) 66% storage overhead

GlusterFS: Erasure coding with 4 blocks of data for 2 blocks of parity 50%
storage overhead

12

Greedy algorithm: Min Storage

Goal: Minimum use of disk space for each new piece of data to store

Steps to store Data D_i:

1. x = 0
2. N = Number of nodes - x
3. Candidate = N nodes with largest available memory
4. Choose K as big as possible such that:
5. For each node in Candidate:

○ If node’s memory < M(D_i)/K
■ x += 1
■ Goto 2.

13

Proposed algorithm
1. system_saturation = 1 - (free_storage on exponential_function((smallest

data,0),(,1)))

14

1

0

Proposed algorithm
1. system_saturation = 1 - (free_storage on exponential_function((smallest

data,0),(,1)))
2. For every combination of nodes, with K as big as possible:

a. time_overhead = chunking+upload time using (N,K)
b. space_overhead = (M(D_i)/K)*N
c. saturation_score = mean system_saturation on each node after adding M(D_i)/K

15

S1, S2, S4 (N=3, K=1)

S1, S2, S3 (N=3, K=1)

S1, S2, S3, S4 (N=4, K=2)

…

Proposed algorithm
1. system_saturation = 1 - (free_storage on exponential_function((smallest

data,0),(,1)))
2. For every combination of nodes, with K as big as possible:

a. time_overhead = chunking+upload time using (N,K)
b. space_overhead = (M(D_i)/K)*N
c. saturation_score = mean system_saturation on each node after adding M(D_i)/K

3. Candidates = set of combinations on pareto front using time_overhead,
space_overhead and saturation_score

16

Proposed algorithm
1. system_saturation = 1 - (free_storage on exponential_function((smallest

data,0),(,1)))
2. For every combination of nodes, with K as big as possible:

a. time_overhead = chunking+upload time using (N,K)
b. space_overhead = (M(D_i)/K)*N
c. saturation_score = mean system_saturation on each node after adding M(D_i)/K

3. Candidates = set of combinations on pareto front using time_overhead,
space_overhead and saturation_score

4. For each candidate j, and for x in time_overhead, space_overhead and
saturation_score, compute x_progress = 1- (x(j) - min(x))/(max(x) - min(x))

17

Proposed algorithm
1. system_saturation = 1 - (free_storage on exponential_function((smallest

data,0),(,1)))
2. For every combination of nodes, with K as big as possible:

a. time_overhead = chunking+upload time using (N,K)
b. space_overhead = (M(D_i)/K)*N
c. saturation_score = mean system_saturation on each node after adding M(D_i)/K

3. Candidates = set of combinations on pareto front using time_overhead,
space_overhead and saturation_score

4. For each candidate j, and for x in time_overhead, space_overhead and
saturation_score, compute x_progress = 1- (x(j) - min(x))/(max(x) - min(x))

5. For each candidate j, compute total_score(j) = time_overhead_progress +
(space_overhead_progress +
saturation_score_progress/2)*system_saturation

18

Proposed algorithm
1. system_saturation = 1 - (free_storage on exponential_function((smallest

data,0),(,1)))
2. For every combination of nodes, with K as big as possible:

a. time_overhead = chunking+upload time using (N,K)
b. space_overhead = (M(D_i)/K)*N
c. saturation_score = mean system_saturation on each node after adding M(D_i)/K

3. Candidates = set of combinations on pareto front using time_overhead,
space_overhead and saturation_score

4. For each candidate j, and for x in time_overhead, space_overhead and
saturation_score, compute x_progress = 1- (x(j) - min(x))/(max(x) - min(x))

5. For each candidate j, compute total_score(j) = time_overhead_progress +
(space_overhead_progress +
saturation_score_progress/2)*system_saturation

6. Return combination associated with max(total_score) 19

Experiments

20

500 data to store using the 10 most used nodes or the 10 worst nodes from
backblaze

21

Fast and reliable nodes Slowest, and least reliable nodes

Mean AFR = 6.5Mean AFR = 1.2

Algorithms: Random - Greedy - D-Rex - HDFS - GlusterFS

500 data to store using the 10 most used nodes: Number of data stored

22

Higher
Better

500 data to store using the 10 worst nodes: Number of data stored

23

Peu de résilience = vaut mieux utiliser peu de noeuds du coup²

Higher
Better

500 data to store using the 10 most used nodes: Storage per data

24

Lower
Better

500 data to store using the 10 worst nodes: Storage per data

25

Min Storage used all the small nodes with good reliability

Lower
Better

500 data to store using the 10 most used nodes: Sum of upload time per data

26

Lower
Better

500 data to store using the 10 worst nodes: Sum of upload time per data

27

Lower
Better

Conclusion

● Summary:
○ Current replication schemes are static and do not manage heterogeneous

storage
○ We show that it is possible to reduce chunking + upload times and storage

cost by exploiting system saturation and nodes specifications

● Limitations:
○ The use case of slow and unreliable storage nodes is not common
○ Past disk failures rate do not necessarily represent future failure rates

28

Future works

1. Network simulator (mininet)
2. “Real life” experiments using Globus Compute
3. Real applications (cctv, …)
4. Dynamically add/remove nodes

29

