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Context: Data needs long-term storage

Data: Users generate large amounts of data that must be 
stored for long periods of time.
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Resilience: Given the importance of some data, storage 
systems implement replication policies to tolerate failures.

Cloud: A cloud solution enables users to access a diverse 
range of heterogeneous storage nodes distributed across 
multiple locations.



Context: Erasure coding reduces storage overhead

Erasure coding: Encodes data 
into chunks so that when the 
data is needed, only a subset of 
the chunks is needed to 
recover the original data

● N: Number of chunks
● Parity chunks: Added 

chunks to ensure data 
reconstruction from a 
subset

● K: N - Parity chunks. 
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Example with N=5 and K=3: Can survive N - K (2) 
nodes failures

Each chunk is stored in a different location.



Motivations

Storage is not free 

Heterogeneity

Chunking cost time

Current solutions are static, 
even though the workload 
can be dynamic
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Time to chunk 400 MB of data. Varying N and K



Model
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Constraint: for each data                                             
computed using                          and a Poisson 
binomial distribution function  

Nodes:
                             
Size 
Probability                                          

            to fail at least once
Write bandwidth 

Data:
Need to store                          

            m’ is unknown
Size M(D_i)



Problem Statement
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 Given a set of 
heterogeneous nodes, for 
each of the m' (unknown) data 
to be stored, what values of N 
and K and which subset of 
nodes should be chosen to 
reduce storage overhead, 
chunking, and upload time, 
and to store as much data as 
possible while maintaining 
reliability greater than 99%?



DynoStore
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Design of DynoStore

A wide-area distribution system 
designed to manage data across 
heterogeneous storage systems
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To address these challenges, we propose Dynostore: a model and algorithms for 
dynamically replicating data across heterogeneous nodes, aiming to optimize load balance, 
reduce space and time costs, while ensuring a certain level of reliability. This model is 
generic and adaptable to other scenarios.
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To address these challenges, we propose Dynostore: a model and algorithms for 
dynamically replicating data across heterogeneous nodes, aiming to optimize load balance, 
reduce space and time costs, while ensuring a certain level of reliability. This model is 
generic and adaptable to other scenarios.

D-Rex



Algorithms
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From the state-of-the-art

HDFS 2.0: 3x replication          200% storage overhead

HDFS 3.0 default configuration: Erasure coding using Reed-Solomon (6,3): A 
data is split into 6 blocks and 3 blocks of parity are added         50% storage 
overhead

HDFS 3.0 alternative configuration: Erasure coding replication using 
Reed-Solomon (3,2)        66% storage overhead

GlusterFS: Erasure coding with 4 blocks of data for 2 blocks of parity        50% 
storage overhead
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Greedy algorithm: Min Storage

Goal: Minimum use of disk space for each new piece of data to store

Steps to store Data D_i:

1. x = 0
2. N = Number of nodes - x
3. Candidate = N nodes with largest available memory
4. Choose K as big as possible such that:
5. For each node in Candidate:

○ If node’s memory < M(D_i)/K
■ x += 1
■ Goto 2.
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Proposed algorithm
1. system_saturation = 1 - (free_storage on exponential_function((smallest 

data,0),(       ,1)))
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Proposed algorithm
1. system_saturation = 1 - (free_storage on exponential_function((smallest 

data,0),(       ,1)))
2. For every combination of nodes, with K as big as possible:

a. time_overhead = chunking+upload time using (N,K)
b. space_overhead = (M(D_i)/K)*N
c. saturation_score = mean system_saturation on each node after adding M(D_i)/K
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S1, S2, S4 (N=3, K=1)

S1, S2, S3 (N=3, K=1)

S1, S2, S3, S4 (N=4, K=2)

…
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Proposed algorithm
1. system_saturation = 1 - (free_storage on exponential_function((smallest 

data,0),(       ,1)))
2. For every combination of nodes, with K as big as possible:

a. time_overhead = chunking+upload time using (N,K)
b. space_overhead = (M(D_i)/K)*N
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6. Return combination associated with max(total_score) 19



Experiments
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500 data to store using the 10 most used nodes or the 10 worst nodes from 
backblaze

21

Fast and reliable nodes Slowest, and least reliable nodes

Mean AFR = 6.5Mean AFR = 1.2

Algorithms: Random - Greedy - D-Rex - HDFS - GlusterFS



500 data to store using the 10 most used nodes: Number of data stored
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Higher 
Better



500 data to store using the 10 worst nodes: Number of data stored
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Peu de résilience = vaut mieux utiliser peu de noeuds du coup²

Higher 
Better



500 data to store using the 10 most used nodes: Storage per data
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Lower 
Better



500 data to store using the 10 worst nodes: Storage per data
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Min Storage used all the small nodes with good reliability

Lower 
Better



500 data to store using the 10 most used nodes: Sum of upload time per data
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Lower 
Better



500 data to store using the 10 worst nodes: Sum of upload time per data
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Lower 
Better



Conclusion

● Summary:
○ Current replication schemes are static and do not manage heterogeneous 

storage
○ We show that it is possible to reduce chunking + upload times and storage 

cost by exploiting system saturation and nodes specifications

● Limitations:
○ The use case of slow and unreliable storage nodes is not common
○ Past disk failures rate do not necessarily represent future failure rates
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Future works

1. Network simulator (mininet)
2. “Real life” experiments using Globus Compute
3. Real applications (cctv, …)
4. Dynamically add/remove nodes

29


