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Context: Data needs long-term storage

Data: Users generate large amounts of data that must be
stored for long periods of time.

Resilience: Given the importance of some data, storage
systems implement replication policies to tolerate failures.

Cloud: A cloud solution enables users to access a diverse
range of heterogeneous storage nodes distributed across

multiple locations.
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Context: Erasure coding reduces storage overhead

Erasure coding: Encodes data : _ Y. . )
nto chunks so that when the Example with N=5 a:jnd fK'| 3: Can survive N - K (2)
nodes failures
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Each chunk is stored in a different location.

e K: N - Parity chunks.



Motivations

Storage is not free
Heterogeneity
Chunking cost time

Current solutions are static,
even though the workload
can be dynamic

Storage overhead (MB)

800 A

750 A

700 A

650 A

600 -

550 ~

500 A

450 A

Time to chunk 400 MB of data. Varying N and K

Sample Scatter Plot

&<

L

6.4

®
7.5
®

8,6
® 9,7
e 108
® 11,9
12,10 13.11
® 14,12
15,13
@ ° 16,14 17,15 18.16
° o o : 19,17 20,18
5] ° °

T T T T

Q O Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

) Q $) Q 9 Q “

$ S $ $ < = & &

Ava._ time (ms)




Model

Nodes:
S={51,...,5}
Size M (.S;)
Probability 0 < Pryije (Si, 1) < 1
to fail at least once
Write bandwidth B(.S;)

. Chunk
Data. pla‘cj:stent
Need to store D ={Ds,..., D}
m’ |S unknown < M(D i) M(D _i)/K(D_i)
Size M(D i) N
chunks
Constraint: for each data P.iiase (D;) > Reliability_threshold M(D_i)

computed using Pr,in..(S(D;),t)and a Poisson
binomial distribution function



Problem Statement

Given a set of
heterogeneous nodes, for
each of the m' (unknown) data
to be stored, what values of N
and K and which subset of
nodes should be chosen to
reduce storage overhead,
chunking, and upload time,
and to store as much data as
possible while maintaining
reliability greater than 99%?

M(D_i) S M(D_i)/K(D_i)

Chunks
placement

} N(D_i)
chunks
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DeS I g f Of Dyn OStO re %} Serverless applications
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Design of DynoStore

A wide-area distribution system
designed to manage data across
heterogeneous storage systems

D-Rex
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From the state-of-the-art

HDFS 2.0: 3x replication === 200% storage overhead

HDFS 3.0 default configuration: Erasure coding using Reed-Solomon (6,3): A
data is split into 6 blocks and 3 blocks of parity are added === 50% storage
overhead

HDFS 3.0 alternative configuration: Erasure coding replication using
Reed-Solomon (3,2) == 66% storage overhead

GlusterFS: Erasure coding with 4 blocks of data for 2 blocks of parity == 50%
storage overhead
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Greedy algorithm: Min Storage

Goal: Minimum use of disk space for each new piece of data to store

Steps to store Data D _i:

Xx=0

N = Number of nodes - x

Candidate = N nodes with largest available memory

Choose K as big as possible such that: Py,.iu0.(D;) = Reliability threshold

For each node in Candidate:
o If node’s memory < M(D _i)/K

m X+=1

m Goto 2.

o bk b=
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Proposed algorithm

1.

system saturatlon = 1 - (free_storage on exponential_function((smallest
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Proposed algorithm

1.

system_saturation = 1 - (free_storage on exponential function((smallest
data,0),(1(8),1)))

For every combination of nodes, with K as big as possible:

a. time overhead = chunking+upload time using (N,K)
b. space overhead = (M(D_i)/K)*N
c. saturation score = mean system_saturation on each node after adding M(D _i)/K

S1, S2, S3 (N=3, K=1)

S1, S2, S4 (N=3, K=1)

S1, S2, S3, S4 (N=4, K=2)
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Proposed algorithm

1.

system_saturation = 1 - (free_storage on exponential function((smallest
data,0),(1(8),1)))

For every combination of nodes, with K as big as possible:

a. time overhead = chunking+upload time using (N,K)

b. space overhead = (M(D_i)/K)*N

c. saturation score = mean system_saturation on each node after adding M(D _i)/K
Candidates = set of combinations on pareto front using time overhead,

space_overhead and saturation_score

Pareto Front

20 30
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Proposed algorithm

1.

system_saturation = 1 - (free_storage on exponential function((smallest
data,0),(1(8),1)))

For every combination of nodes, with K as big as possible:

a. time overhead = chunking+upload time using (N,K)
b. space overhead = (M(D_i)/K)*N
c. saturation score = mean system_saturation on each node after adding M(D _i)/K

Candidates = set of combinations on pareto front using time_overhead,
space_overhead and saturation_score

For each candidate |, and for x in time overhead, space overhead and
saturation_score, compute x_progress = 1- (x(j) - min(x))/(max(x) - min(x))
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Proposed algorithm

1.

system_saturation = 1 - (free_storage on exponential function((smallest
data,0),(1(8),1)))

For every combination of nodes, with K as big as possible:

a. time overhead = chunking+upload time using (N,K)

b. space overhead = (M(D_i)/K)*N

c. saturation score = mean system_saturation on each node after adding M(D _i)/K
Candidates = set of combinations on pareto front using time overhead,

space_overhead and saturation_score

For each candidate |, and for x in time overhead, space overhead and
saturation_score, compute x_progress = 1- (x(j) - min(x))/(max(x) - min(x))
For each candidate |, compute total score(j) = time _overhead progress +
(space_overhead progress +

saturation_score progress/2)*system_saturation
18



Proposed algorithm

1.

system_saturation = 1 - (free_storage on exponential function((smallest
data,0),(1(8),1)))

For every combination of nodes, with K as big as possible:

a. time overhead = chunking+upload time using (N,K)
b. space overhead = (M(D_i)/K)*N
c. saturation score = mean system_saturation on each node after adding M(D _i)/K

Candidates = set of combinations on pareto front using time overhead,
space_overhead and saturation_score

For each candidate |, and for x in time overhead, space overhead and
saturation_score, compute x_progress = 1- (x(j) - min(x))/(max(x) - min(x))
For each candidate |, compute total score(j) = time _overhead progress +
(space_overhead progress +

saturation_score progress/2)*system_saturation

Return combination associated with max(total score) 1
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500 data to store using the 10 most used nodes or the 10 worst nodes from

backblaze

Fast and reliable nodes

Storage space (TB) of the 10 best nodes

4

4,00 6,50 9,00 11,50 14,00 16,50

Mean AFR =1.2

Slowest, and least reliable nodes

Storage space (TB) of the 10 worst nodes
4

4,00 6,90 9,80 12,70 15,60 18,50

Mean AFR =6.5

Algorithms: Random - Greedy - D-Rex - HDFS - GlusterFS
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500 data to store using the 10 most used nodes: Number of data stored

Number of data stored
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500 data to store using the 10 worst nodes: Number of data stored

Number of data stored
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500 data to store using the 10 most used nodes: Storage per data

Storage per data
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500 data to store using the 10 worst nodes: Storage per data

Storage per data
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500 data to store using the 10 most used nodes: Sum of upload time per data

Upload time per data
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500 data to store using the 10 worst nodes: Sum of upload time per data

Upload time per data
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Conclusion

e Summary:
o Current replication schemes are static and do not manage heterogeneous
storage
o We show that it is possible to reduce chunking + upload times and storage
cost by exploiting system saturation and nodes specifications

e Limitations:
o The use case of slow and unreliable storage nodes is not common
o Past disk failures rate do not necessarily represent future failure rates

28



Future works

A\ e

Network simulator (mininet)
“‘Real life” experiments using Globus Compute

Real applications (ccty, ...)
Dynamically add/remove nodes

globus
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