The I/O Requirements of Various Numerical Linear Algebra Kernels

Julien Langou

Wednesday June 26th 2024

Data Movement Cost: Energy Trends

Google

oulua

+ Export *

I/O complexity: The red-blue pebble game

Hong Jia-Wei, HT Kung Authors 1981/5/11 Publication date Conference Proceedings of the thirteenth annual ACM symposium on Theory of computing 326-333 Pages Publisher ACM Abstract In this paper, the red-blue pebble game is proposed to model the input-output Description complexity of algorithms. Using the pebble game formulation, a number of lower bound results for the I/O requirement are proven. For example, it is shown that to perform the npoint FFT or the ordinary n× n matrix multiplication algorithm with O (S) memory, at least &Ohgr;(n log n/log S) or &Ohgr;(n 3/@@@@ S), respectively, time is needed for the I/O. Similar results are obtained for algorithms for several other problems. All of the lower ...

Total citations Cited by 401

Scholar articles I/O complexity: The red-blue pebble game H Jia-Wei, HT Kung - Proceedings of the thirteenth annual ACM symposium ..., 1981 Cited by 401 - Related articles - All 3 versions

IO lower bound for computer programs

Intel Xeon Processor E5520 (Nehalem)

IO lower bound for computer programs

Intel Xeon Processor E5520 (Nehalem)

For MM

The number of words transferred between slow and fast memory is at least

$$2\left(\frac{n^3}{\sqrt{M}}\right) - 2M$$

where \mathbf{n} is matrix size and \mathbf{M} is size of cache.

See: A Tight I/O Lower Bound for Matrix Multiplication. T. M. Smith, B. Lowery, J. Langou, R. A. van de Geijn https://arxiv.org/abs/1702.02017

IO lower bound for computer programs

Intel Xeon Processor E5520 (Nehalem)

One core Intel Xeon Processor E5520 (nehalem) $\beta^{-1} = 580 \cdot 10^6$ words/sec $\gamma^{-1} = 10.12 \cdot 10^9$ flops/sec $M = 10^6$ words

For MM

The number of words transferred between slow and fast memory is at least

$$2\left(\frac{n^3}{\sqrt{M}}\right) - 2M$$

where **n** is matrix size and **M** is size of cache.

See: A Tight I/O Lower Bound for Matrix Multiplication. T. M. Smith, B. Lowery, J. Langou, R. A. van de Geijn https://arxiv.org/abs/1702.02017

gemm
<pre>for (i = 0; i < m; i++) for (j = 0; j < n; j++) for (k = 0; k < p; k++) C[i][j] += A[i][k] * B[k][j];</pre>

gemm	
<pre>for (i = 0; i < m; i++) for (j = 0; j < n; j++) for (k = 0; k < p; k++) C[i][j] += A[i][k] * B[k][j];</pre>	
syrk	
<pre>for (i = 0; i < n; i++) for (k = 0; k < m; k++) for (j = 0; j <= i; j++) C[i][j] += A[i][k] * A[j][k];</pre>	


```
cholesky
apply givens rot sequence
for (p = 0; p < k; p++) {
                                                                           for (i = 0; i < n; i++) {</pre>
    for (j = 0; j < n - 1; j++) {
                                                                              for (j = 0; j < i; j++) {
        for (i = 0; i < m; i++) {</pre>
           temp = C[j][p] * A[i][j] + S[j][p] * A[i][j + 1];
                                                                                 for (k = 0; k < j; k++) {
           A[i][j + 1] = -S[j][p] * A[i][j] + C[j][p] * A[i][j + 1];
                                                                                    A[i][j] = A[i][k] * A[j][k];
           A[i][j] = temp;
                                                                                 }
       }
                                                                                 A[i][j] /= A[j][j];
    }
                                                                              }
                                                                              for (k = 0; k < i; k++) {</pre>
                                                                                 A[i][i] -= A[i][k] * A[i][k];
```

}

}

A[i][i] = sqrt(A[i][i]);

cgs – Classical Gram-Schmidt **for** (j = 0; j < N; j++) { for (i = 0; i < j; i++) { R[i][j] = 0.0e+00;for (k = 0; k < M; k++)R[i][j] += A[k][i] * A[k][j];for (i = 0; i < j; i++)</pre> for (k = 0; k < M; k++)A[k][i] -= A[k][i] * R[i][j];R[i][i] = 0.0e+00;**for** (k = 0; k < M; k++) R[j][j] += A[k][j] * A[k][j];R[j][j] = sqrt(R[j][j]);for (k = 0; k < M; k++)A[k][j] /= R[j][j];}

```
a2v – geqr2 – Householder QR factorization
for(k = 0; k < N; k++)
norma2 = 0.e+00;
for(i = k+1; i < M; i++){</pre>
   norma2 += A[i][k] * A[i][k];
norma = sqrt( A[k][k] * A[k][k] + norma2);
A[k][k] = ( A[k][k] > 0 ) ? ( A[k][k] + norma ) : ( A[k][k] - norma ) ;
tau[k] = 2.0 / (1.0 + norma2 / (A[k][k] * A[k][k]));
for(i = k+1; i < M; i++){</pre>
  A[i][k] /= A[k][k];
A[k][k] = (A[k][k] > 0) ? (-norma) : (norma);
for(j = k+1; j < N; j++){</pre>
   tau[j] = A[k][j];
   for(i = k+1; i < M; i++){</pre>
         tau[j] += A[i][k] * A[i][j];
   tau[j] = tau[k] * tau[j];
   A[k][j] = A[k][j] - tau[j];
   for(i = k+1; i < M; i++){</pre>
      A[i][j] = A[i][j] - A[i][k] * tau[j];
```

v2q – orgr2 – Construction of Q from Householder for (k = N-1; k > -1; k--)for(j = k+1; j < N; j++){</pre> tau[j] = 0.e+00;for(i = k+1; i < M; i++){</pre> tau[j] += A[i][k] * A[i][j]; for(j = k+1; j < N; j++){</pre> tau[i] *= tau[k];} A[k][k] = 1.0e+00 - tau[k];for(j = k+1; j < N; j++){</pre> A[k][i] = -tau[i];} **for**(j = k+1; j < N; j++){ for(i = k+1; i < M; i++){</pre> A[i][j] = A[i][k] * tau[j];} } for(i = k+1; i < M; i++){</pre> A[i][k] = - A[i][k] * tau[k];}

```
gebd2 – reduction to bidiagonalization
                                                                                                     gehd2 – reduction to Hessenberg form
for(k = 0; k < N; k++){
                                                                                        for (j = 0; j < n-2; j++) {
norma2 = 0.e+00;
                                                                                           norma2 = 0.0;
 for(i = k+1; i < M; i++){</pre>
                                                                                           for ( i = j+2; i < n; i++ ) {</pre>
                                                                                              norma2 += A[i][j] * A[i][j] ;
    norma2 += A[i][k] * A[i][k];
                                                                                           }
 }
                                                                                           norma = sqrt ( A[j+1][j] * A[j+1][j] + norma2 );
 norma = sqrt( A[k][k] * A[k][k] + norma2 );
                                                                                           A[j+1][j] = ( A[j+1][j] > 0 ) ? ( A[j+1][j] + norma ) : ( A[j+1][j] - norma )
A[k][k] = ( A[k][k] > 0 ) ? ( A[k][k] + norma ) : ( A[k][k] - norma ) ;
                                                                                           tau = 2.0 / ( 1.0 + norma2 / ( A[j+1][j] * A[j+1][j] ) );
tauq[k] = 2.0 / (1.0 + norma2 / (A[k][k] * A[k][k]));
                                                                                           for (i = j+2; i < n; i++) {
 for(i = k+1; i < M; i++){</pre>
                                                                                              A[i][j] /= A[j+1][j];
    A[i][k] /= A[k][k];
                                                                                           }
 }
                                                                                           A[j+1][j] = ( A[j+1][j] > 0 ) ? ( - norma ) : ( norma ) ;
A[k][k] = (A[k][k] > 0) ? (-norma) : (norma);
                                                                                           for (i = j+1; i < n; i++) {
 for(j = k+1; j < N; j++){
                                                                                              tmp[i] = A[j+1][i];
   ttmp = A[k][j];
                                                                                              for (k = j+2; k < n; k++) {
    for(i = k+1; i < M; i++){</pre>
                                                                                                 tmp[i] += A[k][j] * A[k][i];
       ttmp += A[i][k] * A[i][j];
                                                                                              }
    ttmp = tauq[k] * ttmp;
                                                                                           for (i = j+1; i < n; i++) {</pre>
   A[k][i] = A[k][i] - ttmp;
                                                                                              tmp[i] *= tau ;
   for(i = k+1; i < M; i++){</pre>
                                                                                           }
       A[i][j] = A[i][j] - A[i][k] * ttmp;
                                                                                           for (i = j+1 ; i < n ; i++) {</pre>
    }
                                                                                              A[j+1][i] -= tmp[i];
 }
                                                                                           }
 norma2 = 0.e+00;
                                                                                           for (i = j+2; i < n; i++) {</pre>
for(j = k+2; j < N; j++){
                                                                                              for (k = j+1; k < n; k++) {
    norma2 += A[k][j] * A[k][j];
                                                                                                 A[i][k] -= A[i][j] * tmp[k];
 }
                                                                                              }
 norma = sqrt( A[k][k+1] * A[k][k+1] + norma2);
A[k][k+1] = (A[k][k+1] > 0) ? (A[k][k+1] + norma) : (A[k][k+1] - norma);
                                                                                           for (i = 0; i < n; i++) {
                                                                                              tmp[i] = A[i][i+1];
taup[k] = 2.0 / (1.0 + norma2 / (A[k][k+1] * A[k][k+1]));
for(j = k+2; j < N; j++){</pre>
                                                                                              for (k = j+2; k < n; k++) {</pre>
                                                                                                 tmp[i] += A[i][k] * A[k][j];
    A[k][j] /= A[k][k+1];
                                                                                              }
 }
A[k][k+1]= ( A[k][k+1] > 0 ) ? ( - norma ) : ( norma ) ;
                                                                                           for (i = 0; i < n; i++) {
 for(i = k+1; i < M; i++){</pre>
                                                                                              tmp[i] *= tau ;
   ttmp = A[i][k+1];
    for(j = k+2; j < N; j++){</pre>
                                                                                           for (i = 0; i < n; i++) {</pre>
       ttmp += A[i][i] * A[k][i];
                                                                                              A[i][j+1] -= tmp[i];
   ttmp = ttmp * taup[k];
                                                                                           for (i = 0; i < n; i++) {</pre>
   A[i][k+1] = A[i][k+1] - ttmp;
                                                                                              for (k = j+2; k < n; k++) {
    for(j = k+2; j < N; j++){</pre>
                                                                                                 A[i][k] -= tmp[i] * A[k][j];
       A[i][j] = A[i][j] - ttmp * A[k][j];
                                                                                              }
    }
}
```

```
sytd2 – reduction to symmetric tridiagonal form
                                                                                          gghd2 – reduction to triangular Hessenberg form
                                                                                    for (j = 0; j < _PB_N-2; j++) {</pre>
for(i = 0; i < n-2; i++){</pre>
                                                                                      for (i = _PB_N-2; i > j; i--) {
  norma2 = 0.0e+00;
                                                                                        nrm = SQRT_FUN ( A[i][j] * A[i][j] + A[i+1][j] * A[i+1][j] );
  for ( k = i+2; k < n ; k++ ) {</pre>
                                                                                        c = A[i][j] / nrm;
     norma2 += A[k][i] * A[k][i];
                                                                                        s = A[i+1][j] / nrm;
                                                                                        A[i][j] = nrm;
  norma = sqrt(A[i+1][i] * A[i+1][i] + norma2);
                                                                                        A[i+1][j] = SCALAR VAL(0.0);
  A[i+1][i] = (A[i+1][i] > 0) ? (A[i+1][i] + norma) : (A[i+1][i] - norma) ;
                                                                                        for (k = j+1; k < PB N; k++) {
  taui = 2.0e+00 / (1.0e+00 + norma2 / (A[i+1][i] * A[i+1][i]));
                                                                                          tmp = c * A[i][k] + s * A[i+1][k];
                                                                                          A[i+1][k] = -s * A[i][k] + c * A[i+1][k];
  for (k = i+2; k < n ; k++) {</pre>
                                                                                          A[i][k] = tmp;
     A[k][i] /= A[i+1][i];
                                                                                        3
                                                                                        for (k = i; k < _PB_N; k++) {</pre>
  A[i+1][i] = (A[i+1][i] > 0.0e+00) ? (-norma) : (norma);
                                                                                          tmp = c * B[i][k] + s * B[i+1][k];
  for(k = i+1; k < n; k++){</pre>
                                                                                          B[i+1][k] = -s * B[i][k] + c * B[i+1][k];
     tau[k-1] = A[k][i+1];
                                                                                          B[i][k] = tmp;
     for(j = i+2; j <= k; j++){</pre>
                                                                                        }
        tau[k-1] += A[k][j] * A[j][i];
                                                                                        for (k = 0; k < PB N; k++) {
      }
                                                                                          tmp = c * Q[i][k] + s * Q[i+1][k];
     for(j = k+1; j < n; j++){</pre>
                                                                                          Q[i+1][k] = -s * Q[i][k] + c * Q[i+1][k];
        tau[k-1] += A[j][k] * A[j][i];
                                                                                          Q[i][k] = tmp;
      }
     tau[k-1] *= taui;
                                                                                        nrm = SQRT_FUN ( B[i+1][i+1] * B[i+1][i+1] + B[i+1][i] * B[i+1][i] );
                                                                                        c = B[i+1][i+1] / nrm;
  alpha = tau[i];
                                                                                        s = B[i+1][i] / nrm;
  for(k = i+2; k < n; k++){</pre>
                                                                                        B[i+1][i+1] = nrm;
     alpha += tau[k-1] * A[k][i];
                                                                                        B[i+1][i] = SCALAR VAL(0.0);
                                                                                        for (k = 0; k <= i; k++) {</pre>
  alpha = -0.5e+00 * taui * alpha;
                                                                                          tmp = c * B[k][i] - s * B[k][i+1];
  tau[i] += alpha ;
                                                                                          B[k][i+1] = s * B[k][i] + c * B[k][i+1];
  for(k = i+2; k < n; k++){</pre>
                                                                                          B[k][i] = tmp;
     tau[k-1] += alpha * A[k][i];
                                                                                        for (k = 0; k < _PB_N; k++) {</pre>
  A[i+1][i+1] = 2.0e+00 * tau[i];
                                                                                          tmp = c * A[k][i] - s * A[k][i+1];
  for(j = i+2; j < n; j++){
                                                                                          A[k][i+1] = s * A[k][i] + c * A[k][i+1];
     A[i][i+1] = tau[i-1];
                                                                                          A[k][i] = tmp;
     A[j][i+1] = tau[i] * A[j][i];
     for(k = i+2; k <= j; k++){</pre>
                                                                                        for (k = i-j; k < PB_N; k++) 
        A[j][k] = tau[j-1] * A[k][i];
                                                                                          tmp = c * Z[k][i] - s * Z[k][i+1];
        A[j][k] -= tau[k-1] * A[j][i];
                                                                                          Z[k][i+1] = s * Z[k][i] + c * Z[k][i+1];
     }
                                                                                          Z[k][i] = tmp;
   3
                                                                                        }
  tau[i] = taui;
                                                                                      }
}
```

C[0][1] += A[0][0] * B[0][1]; // S010 C[0][1] += A[0][1] * B[1][1]; // S011 C[0][1] += A[0][2] * B[2][1]; // S012 C[0][1] += A[0][3] * B[3][1]; // S013

C[0][0] += A[0][0] * B[0][0]; // S000 C[0][0] += A[0][1] * B[1][0]; // S001 C[0][0] += A[0][2] * B[2][0]; // S002 C[0][0] += A[0][3] * B[3][0]; // S003

for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
for (k = 0; k < p; k++)
C[i][j] += A[i][k] * B[k][j];</pre>

input is an affine code

cholesky code

cholesky code

Output #1 is an IO lower bound

Unit is for N for, S for and IO lower bound is "number".

Output #1 is an IO lower bound

(1.1/2.1/2), so that Equation (12) reads

 $\beta_1 |\phi_1(E)| + \beta_2 |\phi_2(E)| + \beta_3 |\phi_3(E)| \le k$

We now use Lemma D.2 to bound |E| as follows

We can apply Theorem B.1 to E with ϕ_1 , ϕ_2 and ϕ_3 for any

s1,s2 and s3 satisfying Equation (8) to get Equation (4). This

 $|E| \le |\phi_1(E)|^{s_1} \cdot |\phi_2(E)|^{s_2} \cdot |\phi_3(E)|^{s_3}$

gives that

the maximum number of statements in a segment

 $2 \cdot (K/3)^{3/2}$

the maximum number of statements in a segment

> The minimum number of segments in a schedule

the IO of any schedule

 $2 \cdot (K/3)^{3/2}$

the maximum number of statements in a segment

What do we want to compute?

We want to compute the n^3

 $c_{ijk} = a_{ik} b_{kj}$.

The computation of c_{ijk} requires a_{ik} and b_{kj} to be in cache.

Lemma (Loomis-Whitney Inequality)

Let $V \in Z[3]$ be a finite set, and let V_x , V_y , and V_z be orthogonal projections of V onto the coordinate planes. The cardinality of V, |V|, satisfies

 $|V| \leq \sqrt{|V_x| \cdot |V_y| \cdot |V_z|}.$

Lemma (Loomis-Whitney Inequality)

Let $V \in Z[3]$ be a finite set, and let V_x , V_y , and V_z be orthogonal projections of V onto the coordinate planes. The cardinality of V, |V|, satisfies

$$|V| \leq \sqrt{|V_x| \cdot |V_y| \cdot |V_z|}.$$

We consider a segmentation of the execution every T IOs. For each segment, we have at most K = S + T input data to perform the statements in the segment.

We will use a generalization: the Brascamp-Lieb inequality. C[0][1] += A[0][0] * B[0][1]; // S010 C[0][1] += A[0][1] * B[1][1]; // S011 C[0][1] += A[0][2] * B[2][1]; // S012 C[0][1] += A[0][3] * B[3][1]; // S013

C[0][0] += A[0][0] * B[0][0]; // S000 C[0][0] += A[0][1] * B[1][0]; // S001 C[0][0] += A[0][2] * B[2][0]; // S002 C[0][0] += A[0][3] * B[3][0]; // S003

for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
for (k = 0; k < p; k++)
C[i][j] += A[i][k] * B[k][j];</pre>

C[0][1] += A[0][0] * B[0][1]; // S010 C[0][1] += A[0][1] * B[1][1]; // S011 C[0][1] += A[0][2] * B[2][1]; // S012 C[0][1] += A[0][3] * B[3][1]; // S013

C[0][0] += A[0][0] * B[0][0]; // S000 C[0][0] += A[0][1] * B[1][0]; // S001 C[0][0] += A[0][2] * B[2][0]; // S002 C[0][0] += A[0][3] * B[3][0]; // S003

for (i = 0; i < m; i++)
for (j = 0; j < n; j++)
for (k = 0; k < p; k++)
C[i][j] += A[i][k] * B[k][j];</pre>

$$\begin{split} R_{e_1} &= \{S_3[k-1,i,j] \to S_3[k,i,j]: 1 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_2} &= \{S_2[k,j] \to S_3[k,i,j]: 0 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_3} &= \{S_2[k,i] \to S_3[k,i,j]: 0 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_4} &= \{S_3[k-1,i,k] \to S_2[k,i]: 1 \le k < N \land k+1 \le i < N\} \\ R_{e_5} &= \{S_1[k] \to S_2[k,i]: 0 \le k < N \land k+1 \le i < N\} \\ R_{e_6} &= \{S_1[k-1,k,k] \to S_1[k]: 1 \le k < N \land k+1 \le i < N\} \end{split}$$

$$\begin{split} R_{e_1} &= \{S_3[k-1,i,j] \to S_3[k,i,j]: 1 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_2} &= \{S_2[k,j] \to S_3[k,i,j]: 0 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_3} &= \{S_2[k,i] \to S_3[k,i,j]: 0 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_4} &= \{S_3[k-1,i,k] \to S_2[k,i]: 1 \le k < N \land k+1 \le i < N\} \\ R_{e_5} &= \{S_1[k] \to S_2[k,i]: 0 \le k < N \land k+1 \le i < N\} \\ R_{e_6} &= \{S_1[k-1,k,k] \to S_1[k]: 1 \le k < N \land k+1 \le i < N\} \end{split}$$

$P_1 = (e_1)$	is a chain path
$P_2 = (e_2)$	is a broadcast path
$P_3 = (e_3)$	is a broadcast path

Cholesky

}

$$\begin{split} R_{e_1} &= \{S_3[k-1,i,j] \to S_3[k,i,j]: 1 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_2} &= \{S_2[k,j] \to S_3[k,i,j]: 0 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_3} &= \{S_2[k,i] \to S_3[k,i,j]: 0 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_4} &= \{S_3[k-1,i,k] \to S_2[k,i]: 1 \le k < N \land k+1 \le i < N\} \\ R_{e_5} &= \{S_1[k] \to S_2[k,i]: 0 \le k < N \land k+1 \le i < N\} \\ R_{e_6} &= \{S_1[k-1,k,k] \to S_1[k]: 1 \le k < N \land k+1 \le i < N\} \end{split}$$

$P_1 = (e_1)$	is a chain path
$P_2 = (e_2)$	is a broadcast path
$P_3 = (e_3)$	is a broadcast path

 $\begin{aligned} &\text{Dom}\,(P_1) = \{S_3[k,i,j]: \ 1 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ &\text{Dom}\,(P_2) = \{S_3[k,i,j]: \ 0 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ &\text{Dom}\,(P_3) = \{S_3[k,i,j]: \ 0 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ &D_S := \text{Dom}\,(P_1) \cap \text{Dom}\,(P_2) \cap \text{Dom}\,(P_3) \\ &= \{S_3[k,i,j]: \ 1 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \end{aligned}$

$\phi_1(k, i, j) = \operatorname{proj}_{(1,0,0)}(k, i, j) = (0, i, j)$	$\text{kernel } k_1 = \text{Ker}(\phi_1) = \langle (1,0,0) \rangle$
$\phi_2(k,i,j) = (k,j)$	$\text{kernel } k_2 = \text{Ker}(\phi_2) = \langle (0, 1, 0) \rangle$
$\phi_3(k,i,j) = (k,i)$	kernel $k_3 = \operatorname{Ker}(\phi_3) = \langle (0, 0, 1) \rangle$

$$\begin{split} R_{e_1} &= \{S_3[k-1,i,j] \to S_3[k,i,j]: 1 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_2} &= \{S_2[k,j] \to S_3[k,i,j]: 0 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_3} &= \{S_2[k,i] \to S_3[k,i,j]: 0 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_4} &= \{S_3[k-1,i,k] \to S_2[k,i]: 1 \le k < N \land k+1 \le i < N\} \\ R_{e_5} &= \{S_1[k] \to S_2[k,i]: 0 \le k < N \land k+1 \le i < N\} \\ R_{e_6} &= \{S_1[k-1,k,k] \to S_1[k]: 1 \le k < N \land k+1 \le i < N\} \end{split}$$

$P_1 = (e_1)$	is a chain path
$P_2 = (e_2)$	is a broadcast path
$P_3 = (e_3)$	is a broadcast path

 $\begin{array}{l} \operatorname{Dom}(P_1) = \{S_3[k, i, j]: \ 1 \leq k < N \ \land \ k+1 \leq i < N \ \land \ k+1 \leq j \leq i\} \\ \operatorname{Dom}(P_2) = \{S_3[k, i, j]: \ 0 \leq k < N \ \land \ k+1 \leq i < N \ \land \ k+1 \leq j \leq i\} \\ \operatorname{Dom}(P_3) = \{S_3[k, i, j]: \ 0 \leq k < N \ \land \ k+1 \leq i < N \ \land \ k+1 \leq j \leq i\} \\ D_S := \operatorname{Dom}(P_1) \cap \operatorname{Dom}(P_2) \cap \operatorname{Dom}(P_3) \\ = \{S_3[k, i, j]: \ 1 \leq k < N \ \land \ k+1 \leq i < N \ \land \ k+1 \leq j \leq i\} \end{array}$

$\phi_1(k, i, j) = \operatorname{proj}_{(1,0,0)}(k, i, j) = (0, i, j)$	kernel $k_1 = \operatorname{Ker}(\phi_1) = \langle (1, 0, 0) \rangle$
$\phi_2(k, i, j) = (k, j)$	kernel $k_2 = \operatorname{Ker}(\phi_2) = \langle (0, 1, 0) \rangle$
$\phi_3(k,i,j) = (k,i)$	kernel $k_3 = \operatorname{Ker}(\phi_3) = \langle (0,0,1) \rangle$

THEOREM 3.10 (BRASCAMP-LIEB INEQUALITY, DISCRETE CASE [CHRIST ET AL. 2013]). Let d and d_j be nonnegative integers and $\phi_j : \mathbb{Z}^d \mapsto \mathbb{Z}^{d_j}$ be group homomorphisms for $1 \leq j \leq m$. Let $0 \leq s_1, s_2, \ldots, s_m \leq 1$. Suppose that:

$$\operatorname{rank}(H) \le \sum_{j=1}^{m} s_j \cdot \operatorname{rank}(\phi_j(H)) \text{ for all subgroups } H \text{ of } \mathbb{Z}^d$$
(2)

Then:

$$|E| \le \prod_{j=1}^{m} |\phi_j(E)|^{s_j} \text{ for all nonempty finite sets } E \subseteq \mathbb{Z}^d.$$
(3)

$$\begin{split} R_{e_1} &= \{S_3[k-1,i,j] \to S_3[k,i,j]: 1 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_2} &= \{S_2[k,j] \to S_3[k,i,j]: 0 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_3} &= \{S_2[k,i] \to S_3[k,i,j]: 0 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_4} &= \{S_3[k-1,i,k] \to S_2[k,i]: 1 \le k < N \land k+1 \le i < N\} \\ R_{e_5} &= \{S_1[k] \to S_2[k,i]: 0 \le k < N \land k+1 \le i < N\} \\ R_{e_6} &= \{S_1[k-1,k,k] \to S_1[k]: 1 \le k < N \land k+1 \le i < N\} \end{split}$$

$P_1 = (e_1)$	is a chain path
$P_2 = (e_2)$	is a broadcast path
$P_3 = (e_3)$	is a broadcast path

 $\begin{array}{l} \operatorname{Dom}(P_1) = \{S_3[k, i, j]: \ 1 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ \operatorname{Dom}(P_2) = \{S_3[k, i, j]: \ 0 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ \operatorname{Dom}(P_3) = \{S_3[k, i, j]: \ 0 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ D_S := \operatorname{Dom}(P_1) \cap \operatorname{Dom}(P_2) \cap \operatorname{Dom}(P_3) \\ = \{S_3[k, i, j]: \ 1 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \end{array}$

$\phi_1(k, i, j) = \operatorname{proj}_{(1,0,0)}(k, i, j) = (0, i, j)$	kernel $k_1 = \operatorname{Ker}(\phi_1) = \langle (1, 0, 0) \rangle$
$\phi_2(k,i,j) = (k,j)$	kernel $k_2 = \operatorname{Ker}(\phi_2) = \langle (0, 1, 0) \rangle$
$\phi_3(k,i,j) = (k,i)$	kernel $k_3 = \operatorname{Ker}(\phi_3) = \langle (0,0,1) \rangle$

THEOREM 3.10 (BRASCAMP-LIEB INEQUALITY, DISCRETE CASE [CHRIST ET AL. 2013]). Let d and d_j be nonnegative integers and $\phi_j : \mathbb{Z}^d \mapsto \mathbb{Z}^{d_j}$ be group homomorphisms for $1 \leq j \leq m$. Let $0 \leq s_1, s_2, \ldots, s_m \leq 1$. Suppose that:

$$\operatorname{rank}(H) \leq \sum_{j=1}^{m} s_j \cdot \operatorname{rank}(\phi_j(H)) \text{ for all subgroups } H \text{ of } \mathbb{Z}^d$$
(2)

Then:

r

$$|E| \le \prod_{j=1}^{m} |\phi_j(E)|^{s_j} \text{ for all nonempty finite sets } E \subseteq \mathbb{Z}^d.$$
(3)

$$0 \le s_1, s_2, s_3 \le 1$$

$$1 \le s_2 + s_3$$

$$1 \le s_1 + s_3$$

$$1 \le s_1 + s_2$$

$$\begin{split} R_{e_1} &= \{S_3[k-1,i,j] \to S_3[k,i,j]: 1 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_2} &= \{S_2[k,j] \to S_3[k,i,j]: 0 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_3} &= \{S_2[k,i] \to S_3[k,i,j]: 0 \le k < N \land k+1 \le i < N \land k+1 \le j \le i\} \\ R_{e_4} &= \{S_3[k-1,i,k] \to S_2[k,i]: 1 \le k < N \land k+1 \le i < N\} \\ R_{e_5} &= \{S_1[k] \to S_2[k,i]: 0 \le k < N \land k+1 \le i < N\} \\ R_{e_6} &= \{S_1[k-1,k,k] \to S_1[k]: 1 \le k < N \land k+1 \le i < N\} \end{split}$$

$P_1 = (e_1)$	is a chain path
$P_2 = (e_2)$	is a broadcast path
$P_3 = (e_3)$	is a broadcast path

 $\begin{array}{l} \operatorname{Dom}(P_1) = \{S_3[k, i, j]: \ 1 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ \operatorname{Dom}(P_2) = \{S_3[k, i, j]: \ 0 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ \operatorname{Dom}(P_3) = \{S_3[k, i, j]: \ 0 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ D_S := \operatorname{Dom}(P_1) \cap \operatorname{Dom}(P_2) \cap \operatorname{Dom}(P_3) \\ = \{S_3[k, i, j]: \ 1 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \end{array}$

$$\begin{aligned} \phi_1(k, i, j) &= \text{proj}_{(1,0,0)}(k, i, j) = (0, i, j) & \text{kernel } k_1 &= \text{Ker}(\phi_1) = \langle (1, 0, 0) \rangle \\ \phi_2(k, i, j) &= (k, j) & \text{kernel } k_2 &= \text{Ker}(\phi_2) = \langle (0, 1, 0) \rangle \\ \phi_3(k, i, j) &= (k, i) & \text{kernel } k_3 &= \text{Ker}(\phi_3) = \langle (0, 0, 1) \rangle \end{aligned}$$

THEOREM 3.10 (BRASCAMP-LIEB INEQUALITY, DISCRETE CASE [CHRIST ET AL. 2013]). Let d and d_j be nonnegative integers and $\phi_j : \mathbb{Z}^d \mapsto \mathbb{Z}^{d_j}$ be group homomorphisms for $1 \leq j \leq m$. Let $0 \leq s_1, s_2, \ldots, s_m \leq 1$. Suppose that:

$$\operatorname{rank}(H) \leq \sum_{j=1}^{m} s_j \cdot \operatorname{rank}(\phi_j(H)) \text{ for all subgroups } H \text{ of } \mathbb{Z}^d$$
(2)

Then:

 $1 \leq s_1 + s_2$

$$|E| \leq \prod_{j=1}^{m} |\phi_j(E)|^{s_j} \text{ for all nonempty finite sets } E \subseteq \mathbb{Z}^d.$$
(3)

$$0 \le s_1, s_2, s_3 \le 1$$

$$1 \le s_2 + s_3$$

$$1 \le s_1 + s_3$$

$$s_1 = s_2 = s_3 = \frac{1}{2}$$

Cholesky

}

$P_1 = (e_1)$	is a chain path
$P_2 = (e_2)$	is a broadcast path
$P_3 = (e_3)$	is a broadcast path

$$\begin{aligned} \phi_1(k, i, j) &= \text{proj}_{(1,0,0)}(k, i, j) = (0, i, j) & \text{kernel } k_1 &= \text{Ker}(\phi_1) = \langle (1, 0, 0) \rangle \\ \phi_2(k, i, j) &= (k, j) & \text{kernel } k_2 &= \text{Ker}(\phi_2) = \langle (0, 1, 0) \rangle \\ \phi_3(k, i, j) &= (k, i) & \text{kernel } k_3 &= \text{Ker}(\phi_3) = \langle (0, 0, 1) \rangle \end{aligned}$$

THEOREM 3.10 (BRASCAMP-LIEB INEQUALITY, DISCRETE CASE [CHRIST ET AL. 2013]). Let d and d_j be nonnegative integers and $\phi_j : \mathbb{Z}^d \mapsto \mathbb{Z}^{d_j}$ be group homomorphisms for $1 \leq j \leq m$. Let $0 \leq s_1, s_2, \ldots, s_m \leq 1$. Suppose that:

$$\operatorname{rank}(H) \leq \sum_{j=1}^{m} s_j \cdot \operatorname{rank}(\phi_j(H)) \text{ for all subgroups } H \text{ of } \mathbb{Z}^d$$
(2)

Then:

$$| \leq \prod_{j=1}^{m} |\phi_j(E)|^{s_j} \text{ for all nonempty finite sets } E \subseteq \mathbb{Z}^d.$$
(3)

$$0 \le s_1, s_2, s_3 \le 1 \qquad s_1 = s_2 = s_3 = \frac{1}{2}$$

$$1 \le s_2 + s_3$$

$$1 \le s_1 + s_3$$

$$1 \le s_1 + s_2$$

$$|E| \le |\phi_1(E)|^{\frac{1}{2}} \cdot |\phi_2(E)|^{\frac{1}{2}} \cdot |\phi_3(E)|^{\frac{1}{2}}$$

|E|

$P_1 = (e_1)$	is a chain path
$P_2 = (e_2)$	is a broadcast path
$P_3 = (e_3)$	is a broadcast path

 $\begin{array}{l} \operatorname{Dom}(P_1) = \{S_3[k, i, j]: \ 1 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ \operatorname{Dom}(P_2) = \{S_3[k, i, j]: \ 0 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ \operatorname{Dom}(P_3) = \{S_3[k, i, j]: \ 0 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ D_S := \operatorname{Dom}(P_1) \cap \operatorname{Dom}(P_2) \cap \operatorname{Dom}(P_3) \\ = \{S_3[k, i, j]: \ 1 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \end{array}$

$$\begin{aligned} \phi_1(k, i, j) &= \text{proj}_{(1,0,0)}(k, i, j) = (0, i, j) & \text{kernel } k_1 &= \text{Ker}(\phi_1) = \langle (1, 0, 0) \rangle \\ \phi_2(k, i, j) &= (k, j) & \text{kernel } k_2 &= \text{Ker}(\phi_2) = \langle (0, 1, 0) \rangle \\ \phi_3(k, i, j) &= (k, i) & \text{kernel } k_3 &= \text{Ker}(\phi_3) = \langle (0, 0, 1) \rangle \end{aligned}$$

THEOREM 3.10 (BRASCAMP-LIEB INEQUALITY, DISCRETE CASE [CHRIST ET AL. 2013]). Let d and d_j be nonnegative integers and $\phi_j : \mathbb{Z}^d \mapsto \mathbb{Z}^{d_j}$ be group homomorphisms for $1 \leq j \leq m$. Let $0 \leq s_1, s_2, \ldots, s_m \leq 1$. Suppose that:

$$\operatorname{rank}(H) \leq \sum_{j=1}^{m} s_j \cdot \operatorname{rank}(\phi_j(H)) \text{ for all subgroups } H \text{ of } \mathbb{Z}^d$$
(2)

Then:

0

1

$$|E| \leq \prod_{j=1}^{m} |\phi_j(E)|^{s_j} \text{ for all nonempty finite sets } E \subseteq \mathbb{Z}^d.$$
(3)

$$\leq s_{1}, s_{2}, s_{3} \leq 1 \qquad s_{1} = s_{2} = s_{3} = \frac{1}{2}$$

$$\leq s_{2} + s_{3} \qquad |E| \leq |\phi_{1}(E)|^{\frac{1}{2}} \cdot |\phi_{2}(E)|^{\frac{1}{2}} \cdot |\phi_{3}(E)|^{\frac{1}{2}}$$

$$\leq s_{1} + s_{2} \qquad |\phi_{i}(E)| \leq K, \ i = 1, 2, 3$$

$$|E| \leq K^{3/2}$$

$P_1 = (e_1)$	is a chain path
$P_2 = (e_2)$	is a broadcast path
$P_3 = (e_3)$	is a broadcast path

 $Dom (P_1) = \{S_3[k, i, j] : \mathbf{1} \le k < N \land k + 1 \le i < N \land k + 1 \le j \le i\}$ $Dom (P_2) = \{S_3[k, i, j] : 0 \le k < N \land k + 1 \le i < N \land k + 1 \le j \le i\}$ $Dom (P_3) = \{S_3[k, i, j] : 0 \le k < N \land k + 1 \le i < N \land k + 1 \le j \le i\}$ $D_S := Dom (P_1) \cap Dom (P_2) \cap Dom (P_3)$ $= \{S_3[k, i, j] : 1 \le k < N \land k + 1 \le i < N \land k + 1 \le j \le i\}$

$$\begin{aligned} \phi_1(k, i, j) &= \text{proj}_{(1,0,0)}(k, i, j) = (0, i, j) & \text{kernel } k_1 &= \text{Ker}(\phi_1) = \langle (1, 0, 0) \rangle \\ \phi_2(k, i, j) &= (k, j) & \text{kernel } k_2 &= \text{Ker}(\phi_2) = \langle (0, 1, 0) \rangle \\ \phi_3(k, i, j) &= (k, i) & \text{kernel } k_3 &= \text{Ker}(\phi_3) = \langle (0, 0, 1) \rangle \end{aligned}$$

THEOREM 3.10 (BRASCAMP-LIEB INEQUALITY, DISCRETE CASE [CHRIST ET AL. 2013]). Let d and d_j be nonnegative integers and $\phi_j : \mathbb{Z}^d \mapsto \mathbb{Z}^{d_j}$ be group homomorphisms for $1 \leq j \leq m$. Let $0 \leq s_1, s_2, \ldots, s_m \leq 1$. Suppose that:

$$\operatorname{rank}(H) \leq \sum_{j=1}^{m} s_j \cdot \operatorname{rank}(\phi_j(H)) \text{ for all subgroups } H \text{ of } \mathbb{Z}^d$$
(2)

Then:

 $|\phi_1(E)|$

 $|\phi_1(E)|$

$$|E| \le \prod_{j=1}^{m} |\phi_j(E)|^{s_j} \text{ for all nonempty finite sets } E \subseteq \mathbb{Z}^d.$$
(3)

$$0 \le s_1, s_2, s_3 \le 1 \qquad s_1 = s_2 = s_3 = \frac{1}{2}$$

$$1 \le s_2 + s_3 \qquad |E| \le |\phi_1(E)|^{\frac{1}{2}} \cdot |\phi_2(E)|^{\frac{1}{2}} \cdot |\phi_3(E)|^{\frac{1}{2}}$$

$$1 \le s_1 + s_2 \qquad |\phi_i(E)| \le K, \ i = 1, 2, 3$$

$$|E| \le K^{3/2}$$

$$||\phi_3(E)|| \le K \qquad |\phi_1(E)| + \frac{1}{2} |\phi_2(E)| + \frac{1}{2} |\phi_3(E)| \le K$$

Cholesky

}

$P_1 = (e_1)$	is a chain path
$P_2 = (e_2)$	is a broadcast path
$P_3 = (e_3)$	is a broadcast path

 $Dom (P_1) = \{S_3[k, i, j] : \mathbf{1} \le k < N \land k + 1 \le i < N \land k + 1 \le j \le i\}$ $Dom (P_2) = \{S_3[k, i, j] : 0 \le k < N \land k + 1 \le i < N \land k + 1 \le j \le i\}$ $Dom (P_3) = \{S_3[k, i, j] : 0 \le k < N \land k + 1 \le i < N \land k + 1 \le j \le i\}$ $D_S := Dom (P_1) \cap Dom (P_2) \cap Dom (P_3)$ $= \{S_3[k, i, j] : 1 \le k < N \land k + 1 \le i < N \land k + 1 \le j \le i\}$

$$\begin{aligned} \phi_1(k, i, j) &= \text{proj}_{(1,0,0)}(k, i, j) = (0, i, j) & \text{kernel } k_1 &= \text{Ker}(\phi_1) = \langle (1, 0, 0) \rangle \\ \phi_2(k, i, j) &= (k, j) & \text{kernel } k_2 &= \text{Ker}(\phi_2) = \langle (0, 1, 0) \rangle \\ \phi_3(k, i, j) &= (k, i) & \text{kernel } k_3 &= \text{Ker}(\phi_3) = \langle (0, 0, 1) \rangle \end{aligned}$$

THEOREM 3.10 (BRASCAMP-LIEB INEQUALITY, DISCRETE CASE [CHRIST ET AL. 2013]). Let d and d_j be nonnegative integers and $\phi_j : \mathbb{Z}^d \mapsto \mathbb{Z}^{d_j}$ be group homomorphisms for $1 \leq j \leq m$. Let $0 \leq s_1, s_2, \ldots, s_m \leq 1$. Suppose that:

$$\operatorname{rank}(H) \leq \sum_{j=1}^{m} s_j \cdot \operatorname{rank}(\phi_j(H)) \text{ for all subgroups } H \text{ of } \mathbb{Z}^d$$
(2)

Then:

$$|E| \leq \prod_{j=1}^{m} |\phi_j(E)|^{s_j} \text{ for all nonempty finite sets } E \subseteq \mathbb{Z}^d.$$
(3)

$$\begin{array}{ll} 0 \leq s_1, s_2, s_3 \leq 1 & s_1 = s_2 = s_3 = \frac{1}{2} \\ 1 \leq s_2 + s_3 & |E| \leq |\phi_1(E)|^{\frac{1}{2}} \cdot |\phi_2(E)|^{\frac{1}{2}} \cdot |\phi_3(E)|^{\frac{1}{2}} \\ 1 \leq s_1 + s_2 & |\phi_i(E)| \leq K, \ i = 1, 2, 3 \\ |\phi_1(E)| + |\phi_2(E)| \leq K & |E| \leq K^{3/2} \end{array}$$

 $|\phi_1(E)| + |\phi_3(E)| \le K \qquad |\phi_1(E)| + \frac{1}{2} |\phi_2(E)| + \frac{1}{2} |\phi_3(E)| \le K \qquad |E| \le 2 \cdot (K/3)^{3/2}$

$P_1 = (e_1)$	is a chain path
$P_2 = (e_2)$	is a broadcast path
$P_3 = (e_3)$	is a broadcast path

$\phi_1(k, i, j) = \operatorname{proj}_{(1,0,0)}(k, i, j) = (0, i, j)$	kernel $k_1 = \operatorname{Ker}(\phi_1) = \langle (1, 0, 0) \rangle$
$\phi_2(k,i,j) = (k,j)$	kernel $k_2 = \operatorname{Ker}(\phi_2) = \langle (0, 1, 0) \rangle$
$\phi_3(k,i,j) = (k,i)$	kernel $k_3 = \operatorname{Ker}(\phi_3) = \langle (0, 0, 1) \rangle$

THEOREM 3.10 (BRASCAMP-LIEB INEQUALITY, DISCRETE CASE [CHRIST ET AL. 2013]). Let d and d_j be nonnegative integers and $\phi_j : \mathbb{Z}^d \mapsto \mathbb{Z}^{d_j}$ be group homomorphisms for $1 \leq j \leq m$. Let $0 \leq s_1, s_2, \ldots, s_m \leq 1$. Suppose that:

$$\operatorname{rank}(H) \leq \sum_{j=1}^{m} s_j \cdot \operatorname{rank}(\phi_j(H)) \text{ for all subgroups } H \text{ of } \mathbb{Z}^d$$
(2)

Then:

|E|

$$| \leq \prod_{j=1}^{m} |\phi_j(E)|^{s_j} \text{ for all nonempty finite sets } E \subseteq \mathbb{Z}^d.$$
(3)

$$\begin{array}{ll} 0 \leq s_1, s_2, s_3 \leq 1 & s_1 = s_2 = s_3 = \frac{1}{2} \\ 1 \leq s_2 + s_3 & |E| \leq |\phi_1(E)|^{\frac{1}{2}} \cdot |\phi_2(E)|^{\frac{1}{2}} \cdot |\phi_3(E)|^{\frac{1}{2}} \\ 1 \leq s_1 + s_2 & |\phi_i(E)| \leq K, \ i = 1, 2, 3 \\ |\phi_1(E)| + |\phi_2(E)| \leq K & |E| \leq K^{3/2} \end{array}$$

 $|\phi_1(E)| + |\phi_3(E)| \le K$ $|\phi_1(E)| + \frac{1}{2} |\phi_2(E)| + \frac{1}{2} |\phi_3(E)| \le K$ $|E| \le 2 \cdot (K/3)^{3/4}$

We consider a segmentation of the execution every T IOs. For each segment, we have at most K = S + T input data to perform the statements in the segment.

> The minimum number of Kpartition in a schedule

Setting
$$T = 2S$$
 (so $K = S + T = 3S$)

$$Q \ge (2S) \times \frac{N^3/6}{2S^{3/2}} = \frac{N^3}{6\sqrt{S}}$$

$P_1 = (e_1)$	is a chain path
$P_2 = (e_2)$	is a broadcast path
$P_3 = (e_3)$	is a broadcast path

 $\begin{aligned} &\text{Dom}\,(P_1) = \{S_3[k, i, j]: \ 1 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ &\text{Dom}\,(P_2) = \{S_3[k, i, j]: \ 0 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ &\text{Dom}\,(P_3) = \{S_3[k, i, j]: \ 0 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \\ &D_S := \text{Dom}\,(P_1) \cap \text{Dom}\,(P_2) \cap \text{Dom}\,(P_3) \\ &= \{S_3[k, i, j]: \ 1 \le k < N \ \land \ k+1 \le i < N \ \land \ k+1 \le j \le i\} \end{aligned}$

$\phi_1(k, i, j) = \operatorname{proj}_{(1,0,0)}(k, i, j) = (0, i, j)$	kernel $k_1 = \operatorname{Ker}(\phi_1) = \langle (1, 0, 0) \rangle$
$\phi_2(k,i,j) = (k,j)$	kernel $k_2 = \operatorname{Ker}(\phi_2) = \langle (0, 1, 0) \rangle$
$\phi_3(k, i, j) = (k, i)$	kernel $k_3 = \operatorname{Ker}(\phi_3) = \langle (0, 0, 1) \rangle$

THEOREM 3.10 (BRASCAMP-LIEB INEQUALITY, DISCRETE CASE [CHRIST ET AL. 2013]). Let d and d_j be nonnegative integers and $\phi_j : \mathbb{Z}^d \mapsto \mathbb{Z}^{d_j}$ be group homomorphisms for $1 \leq j \leq m$. Let $0 \leq s_1, s_2, \ldots, s_m \leq 1$. Suppose that:

$$\operatorname{rank}(H) \leq \sum_{j=1}^{m} s_j \cdot \operatorname{rank}(\phi_j(H)) \text{ for all subgroups } H \text{ of } \mathbb{Z}^d$$
(2)

Then:

IOLB: I/O Lower Bound https://iocomplexity.corse.inria.fr/iolb

- PET: parse the C code (PET = Polyhedral Extraction Tool)
- DFG (in house) Data Flow Graph
- Piplib: for the ILP (PIP = Parametric Integer Programming)
- GINAC: manipulate symbolic expressions
- Lib ISL: (Integer Set Library) Barvinok: omputes cardinalities of Z polyhedron. Main tool for polyhedral compiling.

$$Q \ge (2S) \frac{N^3/3}{S^{3/2}} = \frac{2N^3}{3\sqrt{S}}$$

Operational intensity of LU is at most sqrt(S)

}

LU

similar algorithm as Béreux's Cholesky (SIMAX 2008)

Operational intensity of LU is at least sqrt(S)

```
for( j = 0; j < n; j+=nb ){</pre>
        jb = ((nb < n-j)?(nb): (n-j));
        for( k= j+jb; k < n; k+=nb ){</pre>
                kb = ((nb < n-k)?(nb): (n-k));
                read A[ k:k+kb, j:j+jb ]
                for( kk= 0; kk < j; kk++ ){</pre>
                        read A[ k:k+kb, kk ]
                        read A[ kk, j:j+jb
                        for( ii= k; ii < k+kb; ii++ )</pre>
                                 for( jj= j; jj < j+jb; jj++ )</pre>
                                         A[ ii ][ jj ] -= A[ ii ][ kk ] * A[ kk ][ jj ];
                         erase Af k:k+kb, kk
                        erase A[ kk, j:j+jb
                write A[ k:k+kb, j:j+jb j
        for( k= j+jb; k < n; k+=nb ){</pre>
                kb = ((nb < n-k)?(nb): (n-k));
                read A[ j:j+jb, k:k+kb ]
                for( kk= 0; kk < j; kk++ ){</pre>
                        read A[ j:j+jb, kk
                        read A[ kk, k:k+kb
                        for( ii= j; ii < j+jb; ii++ )</pre>
                                 for( jj= k; jj < k+kb; jj++ )</pre>
                                         A[ ii ][ jj ] -= A[ ii ][ kk ] * A[ kk ][ jj ];
                        erase A[ j:j+jb, kk
                        erase A[ kk, k:k+kb
                write A[ j:j+jb, k:k+kb ]
        }
        read A[ 1:jb, 1:jb ]
        for( kk= 0; kk < j; kk++ ){</pre>
                read A[ 1:jb, kk ]
                read A[ kk, 1:jb
                for( ii= j; ii < j+jb; ii++ )</pre>
                         for( jj= j; jj < j+jb; jj++ )</pre>
                                A[ ii ][ jj ] -= A[ ii ][ kk ] * A[ kk ][ jj ];
                erase A[ 1:jb, kk
                erase A[ kk, 1:jb
        for( jj = j; jj < j+jb; jj++ ){</pre>
                for(ii = j; ii < jj; ii++)</pre>
                        for(kk = j; kk < ii; kk++)</pre>
                                 A[ ii ][ jj ] -= A[ ii ][ kk ] * A[ kk ][ jj ];
                for(ii = jj; ii < j+jb; ii++)</pre>
                        for( ii = jj+1; ii < j+jb; ii++ )</pre>
                        A[ ii ][ jj ] /= A[ jj ][ jj ];
        for(ii = j+jb; ii < n; ii++){</pre>
                // read A[ ii, 1:jb ]
                for( jj = j; jj < j+jb; jj++ ){</pre>
                         for(kk = j; kk < jj; kk++)</pre>
                                 A[ ii ][ jj ] -= A[ ii ][ kk ] * A[ kk ][ jj ];
                        A[ ii ][ jj ] /= A[ jj ][ jj ];
                // write A[ ii, 1:jb ]
        for(jj = j+jb; jj < n; jj++){</pre>
                // read A[ 1:jb, jj
                for( ii = j; ii < j+jb; ii++ ){</pre>
                        for(kk = j; kk < ii; kk++){</pre>
                                A[ ii ][ jj ] -= A[ ii ][ kk ] * A[ kk ][ jj ];
                // write A[ 1:jb, jj ]
        write A[ 1:jb, 1:jb ]
```

kernel	# input data	#ops	ratio	OI _{up}	OI _{manual}	ratio
2mm	$N_i N_k + N_k N_j$	NiN_jN_k	-	\sqrt{S}	\sqrt{S}	1√
	$+N_jN_l + N_iN_l$	$+N_iN_jN_l$				
3mm	$N_i N_k + N_k N_j$	$NiN_jN_k + N_jN_lN_m$	-	\sqrt{S}	\sqrt{S}	1√
	$+N_jN_m + N_mN_l$	$+N_iN_jN_l$				
cholesky	$\frac{1}{2}N^2$	$\frac{1}{3}N^3$	$\frac{2}{3}N$	$2\sqrt{S}$	\sqrt{S}	2
correlation	MN	M^2N	M	$2\sqrt{S}$	\sqrt{S}	2
covariance	MN	M^2N	M	$2\sqrt{S}$	\sqrt{S}	2
doitgen	$N_p N_q N_r$	$2N_q n_r N_p^2$	2Np	\sqrt{S}	\sqrt{S}	1√
fdtd-2d	$3N_xN_y$	$11N_xN_yT$	$\frac{11}{3}T$	$22\sqrt{2}\sqrt{S}$	$\frac{11}{24}\sqrt{3}\sqrt{S}$	$\frac{48\sqrt{2}}{\sqrt{3}}$
floyd-warshall	N^2	$2N^3$	2N	$2\sqrt{S}$	\sqrt{S}	2
gemm	$N_i N_j + N_j N_k + N_i N_k$	$2N_iN_jN_k$	-	\sqrt{S}	\sqrt{S}	1√
heat-3d	N^3	$30N^{3}T$	30 <i>T</i>	$\frac{160}{3\sqrt[3]{3}}\sqrt[3]{S}$	$\frac{5}{2}\sqrt[3]{S}$	$\frac{64}{3\sqrt[3]{3}}$
jacobi-1d	N	6NT	6T	245	$\frac{3}{2}S$	16
jacobi-2d	N^2	$10N^{2}T$	10 <i>T</i>	$15\sqrt{3}\sqrt{S}$	$\frac{5}{4}\sqrt{S}$	12√3
lu	N^2	$\frac{2}{3}N^{3}$	$\frac{2}{3}N$	\sqrt{S}	\sqrt{S}	1√
ludcmp	N^2	$\frac{2}{3}N^3$	$\frac{2}{3}N$	\sqrt{S}	\sqrt{S}	1√
seidel-2d	N^2	$9N^2T$	9T	$\frac{27\sqrt{3}}{2}\sqrt{S}$	$\frac{9}{4}\sqrt{S}$	6√3
symm	$\frac{1}{2}M^2 + 2MN$	$2M^2N$	-	\sqrt{S}	\sqrt{S}	1√
syr2k	$\frac{1}{2}N^2 + 2MN$	$2MN^2$	-	$2\sqrt{S}$	\sqrt{S}	2
syrk	$\frac{1}{2}N^2 + MN$	MN^2	-	$2\sqrt{S}$	\sqrt{S}	2
trmm	$\frac{1}{2}M^2 + MN$	M^2N	-	\sqrt{S}	\sqrt{S}	1√
atax	MN	4MN	4	4	4	1√
bicg	MN	4MN	4	4	4	1√
deriche	HW	32HW	32	32	$\frac{16}{3}$	6
gemver	N^2	$10N^2$	10	10	5	2
gesummv	$2N^2$	$4N^2$	2	2	2	1√
mvt	N^2	$4N^2$	4	4	4	1√
trisolv	$\frac{1}{2}N^2$	N^2	2	2	2	1√
adi	N^2	$30N^{2}T$	30T	30	5	6
durbin	N	$2N^2$	2N	4	$\frac{2}{3}$	6
gramschmidt	MN	$2MN^2$	2N	$2\sqrt{S}$	1	$2\sqrt{S}$
nussinov	$\frac{1}{2}N^2$	$\frac{1}{3}N^3$	$\frac{2}{3}N$	$2\sqrt{S}$	1	$2\sqrt{S}$

polybench test suite

A. Olivry, J. Langou, L-N Pouchet, P. Sadayappan, and F. Rastello. Automated derivation of parametric data movement lower bounds for affine programs. In the Proceedings of PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, page 808–822, June 2020. (<u>link</u>)

A. Olivry, J. Langou, L-N Pouchet, P. Sadayappan, and F. Rastello. Automated derivation of parametric data movement lower bounds for affine programs. In the Proceedings of PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, page 808–822, June 2020. (<u>link</u>)

Automated I/O Lower Bound Analysis

PLDI'20, June 15 - 20, 2020, London, United Kingdom

kernel	Complete Lower Bound Formulae for POLYBENCH	asymptotic simplifie
	obtained with the current version of IOLB	formula
2mm	$\max(N_iN_j+N_jN_k+N_iN_k+N_jN_l+2,$	
	$\left(\frac{2}{\sqrt{S}}N_iN_j(N_k-1)+2N_i+2N_j+N_k-4\sqrt{2S}\right)$	$\frac{2}{\sqrt{S}}N_iN_jN_k$
	$+\left(\frac{2}{\sqrt{S}}N_iN_l(N_j-1)+2N_i+2N_l+N_j-4\sqrt{2S}\right)$	$+\frac{2}{\sqrt{s}}N_iN_lN_j$
	$-2N_iN_j-2$	15
3mm	$\max(N_iN_k+N_jN_k+N_jN_m+N_lN_m,$	
	$\left(\frac{2}{\sqrt{S}}N_iN_j(N_k-1)+2N_i+2N_j+N_k-4\sqrt{2S}\right)$	$\frac{2}{\sqrt{S}}N_iN_jN_k$
	$+\left(\frac{2}{2m}N_{i}N_{l}(N_{i}-1)+2N_{i}+2N_{l}+N_{i}-4\sqrt{2S}\right)$	$+\frac{2}{\sqrt{2}}N_iN_lN_i$
	$+\left(\frac{2}{2}N_{i}N_{l}(N_{m}-1)+2N_{i}+2N_{l}+N_{m}-4\sqrt{2}S\right)$	$+\frac{2}{C}N_iN_lN_m$
	$-2N_iN_i - 2N_iN_l - N_iN_l - 6$	vs -
adi	$4N^2 + \max(0, (N^2 - 4N - S + 5)(T - 2))$	N^2T
atax	$MN+N+\max\left(0,\frac{1}{8}\frac{1}{5}((2M-1-8S)(2N-1-8S)-1)-10S+2\right)$	MN
bicg	$MN+M+N+\max(0,\frac{1}{8}\frac{1}{S}((2M-1-8S)(2N-1-8S)-1)-10S+2)$	MN
cholesky	$\max\left(\frac{1}{2}N(N+1), \frac{1}{6}\frac{1}{\sqrt{5}}(N-1)(N-2)(N-3) + \frac{1}{2\sqrt{5}}\frac{1}{5}(N-1)(N-2)\right)$	$\frac{1}{6}\frac{1}{\sqrt{S}}N^{3}$
	$-(N-2)(N-7)-4\sqrt{2}S$	- 15
correlation	$\max\left(MN+2, \frac{1}{2}, \frac{1}{\sqrt{c}}M(M-1)(N-1+\frac{\sqrt{2}}{2}, \frac{1}{\sqrt{c}}) - \frac{1}{2}(M-3)(M+2N-2) + 2 - 4S\sqrt{2}\right)$	$\frac{1}{2}\frac{1}{\sqrt{s}}M^2N$
covariance	$\max\left(MN+2,\frac{1}{2},\frac{1}{\sqrt{c}}M(M-1)(N-1+\frac{\sqrt{2}}{2},\frac{1}{\sqrt{c}})-\frac{1}{2}(M-3)(M+2N-2)+1-4S\sqrt{2}\right)$	$\frac{1}{2} \frac{1}{\sqrt{6}} M^2 N$
deriche	HW+1	HW
doitgen	$\max\left(N_{p}^{2}+N_{p}N_{q}N_{r},\frac{2}{\sqrt{2}}N_{q}N_{r}N_{p}(N_{p}-1+\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}})-N_{q}N_{r}(N_{p}-1)+2N_{p}-8\sqrt{2}S-1\right)$	$2\frac{1}{\sqrt{2}}N_qN_rN_p^2$
durbin	$\frac{(P - P - q - v_{S})}{2N + \max(0, \frac{1}{2}(N-3)(N-2-2S))}$	$\frac{\sqrt{S}}{\frac{1}{2}N^2}$
fdtd-2d	$\max(3N_{x}N_{y}-N_{y}+T-1,\frac{1}{2}-\frac{1}{2}(N_{x}-2)(N_{y}-2)(T-1)+2(N_{x}+2)(N_{y}+2)$	$\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $N_{\rm Y} N_{\rm H} T$
	$-T(N_r + N_u - 6) - N_u - S - 23)$	212 15 5
floyd-warshall	$\max\left(N^{2}, \frac{1}{\sqrt{C}}(N-1)^{3} - (6N-19)(N-2) - 8\sqrt{2}S\right)$	$\frac{1}{\sqrt{c}}N^3$
domm	max N N + N N + N N + 2 2 N N (N - 1) + 2N + 2N + N - 4 $\sqrt{2}$	0 1 N N N
gemm	$\max \left[N_{i} N_{j} + N_{j} N_{k} + N_{i} N_{k} + 2, \frac{1}{\sqrt{2}} N_{i} N_{j} (N_{k} - 1) + 2N_{i} + 2N_{j} + N_{k} - 4\sqrt{23} \right]$	$2 - N_i N_j N_k$
gemver	$\frac{\ln (N_{1}N_{j}+N_{j}N_{k}+N_{j}N_{k}+2)}{N^{2}+8N+2+\max\{0,\frac{1}{4}\int_{S}(3N-2)(N-8S)-3S+1\}}$	N^2
gemver gesummv	$\begin{aligned} &\max[n_1N_1 + n_1N_2 + n_1N_2 + z_{-,2}]n_1N_1(N_2 - 1) + z_N + z_N + n_N - 4\sqrt{2.3} \\ &N^2 + 8N + 2 + \max[0, \frac{1}{4} \frac{1}{5}(3N - 2)(N - 8S) - 3S + 1] \\ &2N^2 + N + 2 + \max[0, \frac{1}{4} \frac{1}{5}(N - 1)(N - 8S) - 2S) \end{aligned}$	$\frac{2 \sqrt{c} N_i N_j N_k}{N^2}$ $\frac{N^2}{2N^2}$
gemver gesummv gramschmidt	$\begin{split} &\max \{M_{1}N_{1}^{1}V_{1}^{1}V_{1}N_{1}^{1}V_{1}^{1}N_{1}^{1}K_{2}^{1}+a\frac{n}{\sqrt{2}}N_{1}^{1}N_{1}^{1}(N_{2}^{1}-1)^{1}X_{1}^{1}V_{1}^{1}N_{1}^{1}+2N_{1}^{1}+N_{2}^{1}-4V_{2}^{2}S_{1}^{1}\\ &N^{2}+8N+2+\max\{0,\frac{1}{2}\frac{1}{3}(N-2)(N-8S)-2S\}\\ &Z^{2}N+N+2+\max\{0,\frac{1}{2}\frac{1}{3}(N-1)(N-8S)-2S\}\\ &\max \{MN,\frac{1}{\sqrt{5}}MN(N-3)-M(N-5-\frac{2}{\sqrt{5}})-\frac{1}{2}(N-1)(N-6)-4\sqrt{2}S-3\} \end{split}$	$\frac{2 \frac{1}{\sqrt{c}} N_i N_j N_k}{2N^2}$ $\frac{1}{\sqrt{s}} MN^2$
gemver gesummv gramschmidt heat-3d	$\begin{split} &\max \{ N_{1} N_{1} + N_{1} N_{1} + N_{1} N_{1} + \frac{1}{\sqrt{2}} N_{1} N_{1} + $	$\frac{2 \frac{1}{\sqrt{5}} N_i N_j N_k}{N^2}$ $\frac{1}{\sqrt{5}} MN^2$ $\frac{3 \sqrt{5}}{16} \frac{1}{\sqrt{5}} N^3 T$
gemver gesummv gramschmidt heat-3d	$\begin{aligned} &\max \{ \frac{N_1 N_2 + N_1 N_2 + N_1 N_2 + a_{-\frac{N}{2} \leq N} (N_1 N_2 + 1) + 2N_1 + 2N_1 + 2N_1 + 2N_1 + 2N_2 + 2N_2 \leq N_2 \\ & 2N^2 + N + 2 + \max \{ 0, \frac{1}{2} \frac{1}{2} \frac{N}{2} (N - 1) (N - 8S) - 2S \} \\ & max \left(\frac{MN_1 + \frac{1}{\sqrt{5}} MN(N - 3) - M(N - 5 - \frac{2}{\sqrt{5}}) - \frac{1}{2} (N - 1) (N - 6) - 4\sqrt{2}S - 3 \right) \\ & max \left(\frac{(N - 10)(N + 2)^2 + \frac{9N_2}{2}}{N - \frac{1}{\sqrt{5}} (T - 1) (N - 3)^3 - 3(T - 7) (N - 3) (N - 4) \\ & + 42N - T - \frac{9N_2}{2} \sum - 111 \right) \end{aligned}$	$\frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{N_i N_j N_k}{N^2}$ $\frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^3 T$
gemver gesummv gramschmidt heat-3d jacobi-1d	$\begin{aligned} &\max_{i} \{m_{i} \{m_{i} \{n_{i} \neq n_{i} \neq n_{i$	$\frac{2}{\sqrt{5}} \frac{N_i N_j N_k}{N_i N_j N_k}$ $\frac{N^2}{2N^2}$ $\frac{1}{\sqrt{5}} \frac{M N^2}{\sqrt{5}}$ $\frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}} N^3 T$ $\frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} NT$
gemver gesummv gramschmidt heat-3d jacobi-1d jacobi-2d	$\begin{aligned} &\max_{i} \{n_{i} n_{i} + n_{i$	$\frac{2}{\sqrt{5}} \frac{N_1 N_1 N_1 N_k}{N_1 N_k}$ $\frac{N^2}{2N^2}$ $\frac{1}{\sqrt{5}} \frac{MN^2}{MN^2}$ $\frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}} N^3 T$ $\frac{1}{4} \frac{1}{\sqrt{5}} NT$ $\frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^2 T$
genum gesummv gramschmidt heat-3d jacobi-1d jacobi-2d lu	$\begin{aligned} & \max \{ N_{1}^{-1} (Y_{1}^{-1} Y_{1}^{-1} X_{1}^{-1} X_{1}^{-1} X_{1}^{-1} X_{1}^{-1} X_{1}^{-1} (X_{1}^{-1} Y_{1}^{-1} X_{1}^{-1} + X_{1}^{-1} Y_{1}^{-1} Y_{1}^{-$	$\begin{array}{c} \frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{1}{N_1 N_1 N_k} \\ N^2 \\ 2N^2 \\ \frac{1}{\sqrt{5}} MN^2 \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^3 T \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^2 T \\ \frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^2 T \\ \frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}} N^3 \end{array}$
genwer gesummv gramschmidt heat-3d jacobi-1d jacobi-2d lu ludcmp	$\begin{split} & \max\{N^2, N, V+N_1 \wedge k_2 + N_1 \wedge k_2 + \pi_{-\frac{N}{2}} - N_1 \wedge N_2 + \frac{1}{2} + N_2 + \frac{1}{2} + N_1 + \frac{1}{2} + N_1 + \frac{1}{2} + N_2 + \frac{1}{2} + N_2 + \frac{1}{2} + \frac{1}{2}$	$\begin{array}{c} \frac{2}{\sqrt{5}} \frac{N_1 N_1 N_k}{N_1 N_k} \\ N^2 \\ 2N^2 \\ \frac{1}{\sqrt{5}} MN^2 \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{N^3 T}{16} \\ \frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}} N^3 T \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{N^2 T}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^2 T \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^3 \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^3 \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}}$
gemver gesummv gramschmidt heat-3d jacobi-1d jacobi-2d lu ludcmp mvt	$\begin{split} & \max_{q} \{n_{1}(y_{1}+y_{1})(y_{2}+y_{1})(y_{2}+x_{1})(y_{1}+x_{2}+x_{2})(y_{1})(y_{2}+y_{1})(y_{2}+x_{1})(y_{2}+x_{2})(y_{2}+y_{2}+y_{2}+y_{2}+y_{2}+y_{2})(y_{2}+y$	$\begin{array}{c} \frac{2}{\sqrt{5}} K_{1} N_{1} N_{k} \\ \frac{N^{2}}{2N^{2}} \\ \frac{1}{\sqrt{5}} MN^{2} \\ \frac{2}{\sqrt{5}} MN^{2} \\ \frac{3}{16} \frac{1}{\sqrt{5}} N^{3} T \\ \frac{1}{4} \frac{1}{\sqrt{5}} N^{3} T \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{N^{2} T}{\sqrt{5}} \\ \frac{3}{\sqrt{5}} \frac{1}{\sqrt{5}} N^{3} \\ \frac{3}{\sqrt{5}} \frac{1}{\sqrt{5}} N^{3} \\ \frac{3}{\sqrt{5}} \frac{1}{\sqrt{5}} N^{3} \\ \frac{3}{\sqrt{5}} \frac{1}{\sqrt{5}} N^{3} \\ N^{2} \end{array}$
gemver gesummv gramschmidt heat-3d jacobi-1d jacobi-2d lu ludcmp mvt nussinov	$\begin{split} & \max\{N^2, N^2 + N^2 N_1 + N_1 + N_2 + A_1 - \frac{N}{2} + N_1 / (N_2 + 1) + 2N_1 + 2N_1 + 2N_1 + 2N_1 + 2N_2 + 2N_2 + 2N_2 - 2N_2 - 2N_2 - 2N_2 + 2N_2 + 2N_2 + 2N_2 - 2N_2 - 2N_2 + 2N_2 - 2N_2$	$\begin{array}{c} 2\frac{1}{\sqrt{5}}N^{1}N^{1}N^{1}K} \\ N^{2} \\ 2N^{2} \\ \frac{1}{\sqrt{5}}MN^{2} \\ \frac{9\frac{\sqrt{5}}{\sqrt{5}}}{\sqrt{5}}N^{3}T \\ \frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}N^{2}T \\ \frac{2}{\sqrt{5}}\frac{1}{\sqrt{5}}N^{2}T \\ \frac{2}{\sqrt{5}}\frac{1}{\sqrt{5}}N^{2} \\ \frac{2}{\sqrt{5}}\frac{1}{\sqrt{5}}N^{3} \\ \frac{2}{\sqrt{5}}\frac{1}{\sqrt{5}}N^{3} \\ \frac{1}{\sqrt{5}}N^{2} \\ \frac{1}{\sqrt{5}}N^{3} $
gemver gesummv gramschmidt heat-3d jacobi-1d jacobi-2d lu ludcmp mvt nussinov	$\begin{split} & \max\{N^2, (N-Y)N_kY, N_kY, $	$\begin{array}{c} \frac{1}{2}\frac{1}{\sqrt{5}}\frac{N^{3}}{N^{3}}\frac{N^{2}}{N^{5}}\\ \frac{N^{2}}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}T}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}T}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}T}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}}{N^{3}}\\ \frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{1}{\sqrt{5}}\frac{N^{3}}{\sqrt{5}}\\ \frac{1}{\sqrt{5}}$
gemver gesummv gramschmidt heat-3d jacobi-1d jacobi-2d lu ludcmp mvt nussinov seidel-2d	$\begin{split} & \max \{N_{1}^{2}, (N_{1}^{2}, V_{1}^{2})_{1}^{2} K_{1}^{2}, (N_{1}^{2}, V_{2}^{2}, (N_{1}^{2}, K_{2}^{2}, V_{2}^{2})_{1}^{2}, (N_{2}^{2}, K_{2}^{2})_{2}^{2}, (N_{2}^{2}, K_{2}^{2}, K_{2}^{2}, K_{2}^{2})_{2}^{2}, (N_{2}^{2}, K_{2}^{2}, K_{2}^{2}, K_{2}^{2}, K_{2}^{2}, K_{2}^{2})_{2}^{2}, (N_{2}^{2}, K_{2}^{2}, K_{2}^{2},$	$\begin{array}{c} \frac{2}{2\sqrt{5}} N^{1}N_{1}/N_{k} \\ N^{2} \\ \frac{2N^{2}}{1\sqrt{5}} \\ \frac{1}{\sqrt{5}} M^{N}^{2} \\ \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^{3}T \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^{3}T \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^{3} \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^{3} \\ \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^{3} \\ \end{array}$
gemver gesummv gramschmidt heat-3d jacobi-1d jacobi-2d lu ludcmp mvt nussinov seidel-2d symm	$\begin{split} & \max \{N_1^*(y) + N_1^*(y) + k_1^*(y) + k_2^* - \frac{1}{2^{N_1}}N_1^*(y) + k_2^*(y) + k_2$	$\begin{array}{c} \frac{2}{\sqrt{5}} \frac{N}{N} \frac{N}$
gemer gesummv gramschmidt heat-3d jacobi-1d jacobi-2d lu ludcmp mvt nussinov seidel-2d symm	$\begin{split} & \max \{n_{1}^{1}(y_{1}^{1}+y_{1}^{1}(y_{1}^{1}+y_{1}^{1}(y_{1}^{1}+z_{1}^{1})(y_{1}^{1}(y_{1}^{1}+z_{1}^{1})+z_{1}^{1}+z_{1}$	$\begin{array}{c} \frac{2}{2\sqrt{5}} N_1 N_1 N_k \\ N^2 \\ \frac{N^2}{2N^2} \\ \frac{2N^2}{16} \frac{1}{\sqrt{5}} N^3 T \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^3 T \\ \frac{1}{4} \frac{1}{5} NT \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^3 T \\ \frac{1}{3} \frac{1}{\sqrt{5}} N^3 \\ \frac{1}{3} \frac{1}{\sqrt{5}} N^3 \\ \frac{1}{3} \frac{1}{\sqrt{5}} N^3 \\ \frac{1}{5} \frac{1}{\sqrt{5}} N^3 \\ \frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}} N^2 T \\ \frac{1}{5} \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} N^2 \\ \frac{2}{\sqrt{5}} M^2 N \end{array}$
gemver gesummv gramschmidt heat-3d jacobi-1d jacobi-2d lu ludcmp mvt nussinov seidel-2d symm	$\begin{split} & \max_{q} \{n_{1}(y+n_{1}(y+n_{1}(y+1)y+1_{1}(y+1)y+1_{1}(y+1_{1}(y+1)y+1_{1}(y+1_{1}(y+1)y+1_{1}$	$\begin{array}{c} \frac{2}{\sqrt{5}} \frac{N}{\sqrt{5}} \frac{N}$
gemver gesummv gramschmidt heat-3d jacobi-1d jacobi-2d lu ludcmp mvt nussinov seidel-2d symm syr2k	$\begin{split} & \max_{1} \{n_{1}(y,Y_{1}(y),Y_{1}(y_{1}+x_{1}),Y_$	$\begin{array}{c} \frac{2}{2\sqrt{5}} \frac{N_1N_1N_k}{N_1N_1N_k} \\ N^2 \\ \frac{2N^2}{1\sqrt{5}} \frac{1}{\sqrt{5}} \frac{N^3}{N^3} T \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{N^3}{\sqrt{5}} T \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{N^3}{N^3} \\ \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{N^2}{N^3} \\ \frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{N^3}{N^3} \\ \frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{N^3}{N^3} \\ \frac{2}{\sqrt{5}} \frac{1}{\sqrt{5}} \frac{N^2}{N^3} \\ \frac{1}{\sqrt{5}} \frac{M^2}{N^3} \\ \frac{M^2}{N^3} \\ \frac{1}{\sqrt{5}} \frac{M^2}{N^3} \\ \frac{M^2}{N^3} \\$
gemver gesummv gramschmidt heat-3d jacobi-1d jacobi-2d lu ludcmp mvt nussinov seidel-2d symm syr2k syr2k	$\begin{split} & \max_{q} \{n_{1}^{-1}(y-r_{1}^{-1}(y_{1}^{$	$\begin{array}{c} \frac{2}{\sqrt{5}} \frac{N}{N} \frac{N}$
gemver gesummv gramschmidt heat-3d jacobi-1d jacobi-2d lu ludcmp mvt nussinov seidel-2d symm syr2k syrk trisolv	$\begin{split} & \max_{q} \{n_{1}^{-1}(y+r_{1}^{-1}(y+r_{1}^{-1}(x+r_{1}^{-1}(x+r_{2}^{-1}(y+r_{1}^{-1}(x+r_{2}^{-1}(y+r_{2}^{-1}(x+r_{2}$	$\begin{array}{c} \frac{2}{2\sqrt{5}} \frac{M}{N} \frac{N}{N} N$

Table 2. Complete Lower Bound Formulae for POLYBENCH obtained with the current version of IOL

gemm	$\max\left(N_{i}N_{j}+N_{j}N_{k}+N_{i}N_{k}+2,\frac{2}{\sqrt{S}}N_{i}N_{j}(N_{k}-1)+2N_{i}+2N_{j}+N_{k}-4\sqrt{2}S\right)$	$2\frac{1}{\sqrt{S}}N_iN_jN_k$
ge	mm	
for f	<pre>(i = 0; i < _PB_NI; i++) { or (j = 0; j < _PB_NJ; j++) C[i][j] *= beta; or (k = 0; k < _PB_NK; k++) { for (j = 0; j < _PB_NJ; j++)</pre>	
}		

Operational intensity of GEMM is at sqrt(S)

A. Olivry, J. Langou, L-N Pouchet, P. Sadayappan, and F. Rastello. Automated derivation of parametric data movement lower bounds for affine programs. In the Proceedings of PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, page 808–822, June 2020. (<u>link</u>)

Automated I/O Lower Bound Analysis

PLDI'20, June 15 - 20, 2020, London, United Kingdom

kernel	Complete Lower Bound Formulae for POLYBENCH	asymptotic simplified	cholesky	$= \max \left(\frac{1}{N} \frac{N(N+1)}{N-1} + \frac{1}{N-1} \frac{1}{N-1} \frac{N(N-2)}{N-2} + \frac{1}{N-1} \frac{1}{N-1} \frac{N(N-2)}{N-2} \right)$	<u>1</u> _1_N73
2mm	$\max(N_i N_i + N_i N_k + N_i N_k + N_i N_l + 2.$	Iorindia	Cholesky	$\lim_{N \to \infty} \left(\frac{1}{2} \frac{1}{N} (1N + 1), \frac{1}{6} \frac{1}{\sqrt{5}} (1N - 1) (1N - 2) (1N - 3) + \frac{1}{2\sqrt{2}} \frac{1}{5} (1N - 1) (1N - 2) \right)$	$\overline{6} \overline{\sqrt{5}} I N^{-1}$
	$\left(\frac{2}{2}N_{i}N_{i}(N_{i}-1)+2N_{i}+2N_{i}+N_{i}-4\sqrt{2}S\right)$	$\frac{2}{2}N_iN_iN_k$			- 43
	$+\left(\frac{2}{\sqrt{S}}N_{i}N_{i}(N_{i}-1)+2N_{i}+2N_{i}+N_{i}-4\sqrt{2S}\right)$	$\sqrt{S} N_i N_j N_k$ + $\frac{2}{N_i} N_i N_i$		$-(N-2)(N-7)-4\sqrt{2S}$	
	$-2N_iN_i-2)$	Vstatility			
3mm	$\max(N_i N_k + N_j N_k + N_j N_m + N_l N_m,$				
	$\left(\frac{2}{\sqrt{S}}N_iN_j(N_k-1)+2N_i+2N_j+N_k-4\sqrt{2S}\right)$	$\frac{2}{\sqrt{S}}N_iN_jN_k$			
	$+\left(\frac{2}{\sqrt{s}}N_{i}N_{l}(N_{j}-1)+2N_{i}+2N_{l}+N_{j}-4\sqrt{2}S\right)$	$+\frac{2}{\sqrt{s}}N_iN_IN_j$			
	$+\left(\frac{2}{\sqrt{2}}N_{i}N_{l}(N_{m}-1)+2N_{i}+2N_{l}+N_{m}-4\sqrt{2}S\right)$	$+\frac{2}{C}N_iN_IN_m$			
	$-2N_iN_i-2N_iN_I-N_iN_I-6$	VS 5 1 m			
adi	$4N^2 + \max(0, (N^2 - 4N - S + 5)(T - 2))$	N^2T			
atax	$MN + N + \max\left(0, \frac{1}{8} \frac{1}{S} \left((2M - 1 - 8S)(2N - 1 - 8S) - 1\right) - 10S + 2\right)$	MN			
bicg	$MN+M+N+\max\left(0,\frac{1}{8}\frac{1}{S}((2M-1-8S)(2N-1-8S)-1)-10S+2\right)$	MN			
cholesky	$\max\left(\frac{1}{2}N(N+1), \frac{1}{6}\frac{1}{\sqrt{S}}(N-1)(N-2)(N-3) + \frac{1}{2\sqrt{2}}\frac{1}{5}(N-1)(N-2)\right)$	$\frac{1}{6}\frac{1}{\sqrt{S}}N^3$			
	$-(N-2)(N-7)-4\sqrt{2}S$				
correlation	$\max\left(MN+2, \frac{1}{2}, \frac{1}{\sqrt{S}}M(M-1)(N-1+\frac{\sqrt{2}}{2}, \frac{1}{\sqrt{S}})-\frac{1}{2}(M-3)(M+2N-2)+2-4S\sqrt{2}\right)$	$\frac{1}{2} \frac{1}{\sqrt{S}} M^2 N$			
covariance	$\max\left(MN+2, \frac{1}{2}, \frac{1}{2\sqrt{6}}M(M-1)(N-1+\frac{\sqrt{2}}{2}, \frac{1}{2\sqrt{6}})-\frac{1}{2}(M-3)(M+2N-2)+1-4S\sqrt{2}\right)$	$\frac{1}{2} \frac{1}{\sqrt{6}} M^2 N$			
deriche	HW+1	HW			
doitgen	$\max\left(N_{p}^{2}+N_{p}N_{q}N_{r},\frac{2}{\sqrt{c}}N_{q}N_{r}N_{p}(N_{p}-1+\frac{1}{\sqrt{2}}\frac{1}{\sqrt{c}})-N_{q}N_{r}(N_{p}-1)+2N_{p}-8\sqrt{2}S-1\right)$	$2\frac{1}{\sqrt{c}}N_qN_rN_p^2$			
durbin	$2N + \max\left(0, \frac{1}{2}(N-3)(N-2-2S)\right)$	$\frac{1}{2}N^2$			
fdtd-2d	$\max\left(3N_xN_y - N_y + T - 1, \frac{1}{2\sqrt{2}}, \frac{1}{\sqrt{2}}(N_x - 2)(N_y - 2)(T - 1) + 2(N_x + 2)(N_y + 2)(N_y - 2)(T - 1)\right)$	$\frac{1}{2\sqrt{2}}\frac{1}{\sqrt{6}}N_xN_yT$			
	$-T(N_x + N_y - 6) - N_y - S - 23)$	242 43	ا م ما م	a a lu i	
floyd-warshall	$\max\left(N^2, \frac{1}{\sqrt{S}}(N-1)^3 - (6N-19)(N-2) - 8\sqrt{2}S\right)$	$\frac{1}{\sqrt{s}}N^3$	cnoi	esky	
gemm	$\max\left(N_{i}N_{j}+N_{j}N_{k}+N_{i}N_{k}+2,\frac{2}{\sqrt{c}}N_{i}N_{j}(N_{k}-1)+2N_{i}+2N_{j}+N_{k}-4\sqrt{2}S\right)$	$2\frac{1}{\sqrt{c}}N_iN_jN_k$			
gemver	$N^{2}+8N+2+\max(0,\frac{1}{4}\frac{1}{S}(3N-2)(N-8S)-3S+1)$	N ²			
gesummv	$2N^2 + N + 2 + \max\left(0, \frac{1}{2}\frac{1}{S}(N-1)(N-8S) - 2S\right)$	$2N^{2}$	tor ($1 = 0; 1 < PB_N; 1++) \{$	
gramschmidt	$\max\left(MN, \frac{1}{\sqrt{S}}MN(N-3) - M(N-5-\frac{2}{\sqrt{S}}) - \frac{1}{2}(N-1)(N-6) - 4\sqrt{2}S - 3\right)$	$\frac{1}{\sqrt{S}}MN^2$	fo	r(i - 0, i < i, i+1)	
heat-3d	$\max\left((N-10)(N+2)^2, \frac{9\frac{\sqrt{3}}{16}}{\frac{3}{16}}\frac{1}{3}(T-1)(N-3)^3 - 3(T-7)(N-3)(N-4)\right)$	$\frac{9\sqrt[3]{3}}{16}\frac{1}{3\pi}N^{3}T$	10	(j - 0, j < 1, j + 1)	
	(15 VS	10 45		for $(k = 0: k < 1: k++)$ {	
	$+42N-T-\frac{1}{4\sqrt[3]{4}}S-111$				
jacobi-1d	$\max(2+n, \frac{1}{4}, \frac{1}{S}(T-1)(N-3) - T - S + 7)$	$\frac{1}{4}\frac{1}{S}NT$		A[1][]] = A[1][K] * A[]][K];	
jacobi-2d	$\max\left[(N-2)(N+6), \frac{2}{3\sqrt{3}} \frac{1}{\sqrt{S}} (N-3)^2 (T-1) - \frac{4\sqrt{2}}{3\sqrt{3}} S - (T-7)(2N-7) + 14 \right]$	$\frac{\frac{2}{3\sqrt{3}}\frac{1}{\sqrt{S}}N^2T}{1}$			
lu	$\max\left(N^2, \frac{2}{3}\frac{1}{\sqrt{S}}(N-2)(N^2-4N+6)-2(N^2-10N+18)-8\sqrt{2}S\right)$	$\frac{2}{3} \frac{1}{\sqrt{S}} N^3$, , , , , , , , , , , , , , , , , , ,	
ludcmp	$\max\left(N^{2}+N, \frac{1}{3}\frac{1}{\sqrt{S}}(2N-3)(N-1)(N-2)\sqrt{2}\frac{1}{S}(N-1)(N-2)-(2N^{2}-15N+19)-16\sqrt{2}S\right)$	$\frac{2}{3}\frac{1}{\sqrt{S}}N^{3}$		Alilii /= Alilii;	
mvt	$N^{2}+4N+\max\left(0,\frac{1}{6}\frac{1}{S}N(N-1)-2S-4N+4\right)$	N ²	1		
nussinov	$\frac{1}{2}N^{2} + \frac{5}{2}N - 1 + \max\left(0, \frac{1}{6}\frac{1}{\sqrt{S}}(N-3)(N-4)(N-5) + \frac{1}{4}\frac{1}{5}\sqrt{2}(3N^{2} - 19N + 6)\right)$	$\frac{1}{6} \frac{1}{\sqrt{S}} N^3$	}		
	$-(N^2-13N+22)-8\sqrt{2}S$		fo	r(k = 0: k < i: k++)	
seidel-2d	$\max\left(N^2, \frac{2}{\alpha \cdot 6}, \frac{1}{\alpha \cdot 6}, (N-3)^2(T-1) - (2N-7)(T-5) - \frac{4\sqrt{2}}{\alpha \cdot 6}S + 12\right)$	$\frac{2}{2\sqrt{6}} \frac{1}{\sqrt{6}} N^2 T$	10	$(\mathbf{x} - \mathbf{y}) \mathbf{x} - \mathbf{y} $	
symm	$\max\left(\frac{1}{2}M(M+1)+2MN+2,2-\frac{1}{2}(M-1)(M-2)N-\frac{1}{2}((4N+M)(M-5))\right)$	$2\frac{1}{m}M^2N$		A[i][i] -= A[i][k] * A[i][k];	
	$+5(M-2)-8\sqrt{2}S$	-√s	1		
	$\frac{1}{1} \frac{1}{1} \frac{1}$	1 MM2	}		
syr2k	$\max \left(2 + 2MN + \frac{2}{2}N(N+1), \frac{1}{\sqrt{S}}(M-1)(N+1)N + M + 4N - 4\sqrt{2S} \right)$	$\sqrt{s} MN^2$	ΔΓ	i][i] = SORT FUN(A[i][i]):	
syrk	$\max \left[MN + \frac{1}{2}(N+1)N + 2, \frac{1}{2} \frac{1}{\sqrt{S}}(M-1)(N+1)N - (M-4)(N-1) - 2\sqrt{2S+4} \right]$	$\frac{1}{2} \frac{1}{\sqrt{s}} MN^2$, ^1	=	
trisolv	$\frac{\frac{1}{2}N(N+1)+N+\max\left(0,\frac{1}{8}\frac{1}{5}(N-1)(N-2)-2N-5+5\right)}{\sqrt{2}}$	$\frac{1}{2}N^2$	}		
trmm	$\max \left[\frac{1}{2}M(M-1)+MN+1, \frac{1}{2}(M-2+\frac{\sqrt{2}}{2})(M-1)N-(M-4)(N-2)-8\sqrt{2S+5}\right]$	$= M^2 N$	-		

A. Olivry, J. Langou, L-N Pouchet, P. Sadayappan, and F. Rastello. Automated derivation of parametric data movement lower bounds for affine programs. In the Proceedings of PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, page 808–822, June 2020. (link)

 $\frac{1}{6}\frac{1}{\sqrt{S}}N$

Off by a factor of 2

upper bound

from the lowest known

Automated I/O Lower Bound Analysis

PLDI'20, June 15 - 20, 2020, London, United Kingdom

kernel	Complete Lower Bound Formulae for POLYBENCH obtained with the current version of IOLB	asymptotic simplified formula	cholesky	$\max \left(\frac{1}{2} N(N+1) + \frac{1}{2} \frac{1}{2} (N-1)(N-2)(N-3) + \frac{1}{2} \frac{1}{2} (N-1)(N-1)(N-1)(N-1)(N-1)(N-1)(N-1)(N-1)$
2mm	$\max(N_i N_i + N_i N_k + N_i N_k + N_i N_l + 2.$		CHOICSKY	= 1000 + 10000 + 10000 + 10000 + 10000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1
	$\left(\frac{2}{2\pi}N_{i}N_{i}(N_{i}-1)+2N_{i}+2N_{i}+N_{i}-4\sqrt{2}S\right)$	$\frac{2}{N_i N_i N_i}$		
	\sqrt{S} N N $(N = 1)$ 2N $(2N + 2N + 2N + 4\sqrt{2S})$	VS NI NI NI		$-(N-2)(N-7)-4\sqrt{2}S$
	$ + \left(\frac{1}{\sqrt{S}} N_{1} N_{1} N_{1} (N_{j} - 1) + 2 N_{1} + 2 N_{1} + N_{j} - 4 \sqrt{2S}\right) $ -2N ₁ N _j -2)	$+ \frac{1}{\sqrt{S}} N_i N_l N_j$		
3mm	$\max(N_iN_k+N_jN_k+N_jN_m+N_lN_m,$			
	$\left(\frac{2}{\sqrt{S}}N_{i}N_{j}(N_{k}-1)+2N_{i}+2N_{j}+N_{k}-4\sqrt{2S}\right)$	$\frac{2}{\sqrt{S}}N_iN_jN_k$		
	$+\left(\frac{2}{\sqrt{3}}N_{i}N_{l}(N_{i}-1)+2N_{i}+2N_{l}+N_{j}-4\sqrt{2}S\right)$	$+\frac{2}{\sqrt{6}}N_iN_lN_j$		
	$+\left(\frac{2}{\pi}N_{i}N_{i}(N_{m}-1)+2N_{i}+2N_{i}+N_{m}-4\sqrt{2}S\right)$	$+\frac{2}{2}N_iN_IN_m$		
	$-2N_iN_i-2N_iN_i-N_iN_i-6$	√S J III m		
adi	$4N^2 + \max(0, (N^2 - 4N - S + 5)(T - 2))$	N^2T		
atax	$MN+N+\max(0,\frac{1}{8}\frac{1}{5}((2M-1-8S)(2N-1-8S)-1)-10S+2)$	MN		
bicg	$MN+M+N+\max\left(0,\frac{1}{8},\frac{1}{5}((2M-1-8S)(2N-1-8S)-1)-10S+2\right)$	MN		
cholesky	$\max\left(\frac{1}{2}N(N+1), \frac{1}{6}\frac{1}{\sqrt{S}}(N-1)(N-2)(N-3) + \frac{1}{2\sqrt{2}}\frac{1}{S}(N-1)(N-2)\right)$	$\frac{1}{6}\frac{1}{\sqrt{8}}N^{3}$		
	$-(N-2)(N-7)-4\sqrt{2}S$			
correlation	$\max\left(MN+2, \frac{1}{2}\frac{1}{\sqrt{S}}M(M-1)(N-1+\frac{N^{2}}{2}\frac{1}{\sqrt{S}})-\frac{1}{2}(M-3)(M+2N-2)+2-4S\sqrt{2}\right)$	$\frac{1}{2}\frac{1}{\sqrt{S}}M^2N$		
covariance	$\max\left(MN+2, \frac{1}{2}\frac{1}{\sqrt{S}}M(M-1)(N-1+\frac{\sqrt{2}}{2}\frac{1}{\sqrt{S}})-\frac{1}{2}(M-3)(M+2N-2)+1-4S\sqrt{2}\right)$	$\frac{1}{2} \frac{1}{\sqrt{S}} M^2 N$		
deriche	HW+1	HW		
doitgen	$\max\left(N_{p}^{2}+N_{p}N_{q}N_{r},\frac{2}{\sqrt{s}}N_{q}N_{r}N_{p}(N_{p}-1+\frac{1}{\sqrt{s}}\frac{1}{\sqrt{s}})-N_{q}N_{r}(N_{p}-1)+2N_{p}-8\sqrt{2}S-1\right)$	$2\frac{1}{\sqrt{s}}N_qN_rN_p^2$		
durbin	$2N + \max\left(0, \frac{1}{2}(N-3)(N-2-2S)\right)$	$\frac{1}{2}N^2$		
fdtd-2d	$\max \left(3N_x N_y - N_y + T - 1, \frac{1}{2\sqrt{2}} \frac{1}{\sqrt{5}} (N_x - 2)(N_y - 2)(T - 1) + 2(N_x + 2)(N_y + 2) \right. \\ \left T(N_x + N_y - 6) - N_y - S - 23) \right.$	$\frac{1}{2\sqrt{2}}\frac{1}{\sqrt{S}}N_xN_yT$		1
floyd-warshall	$\max\left(N^2, \frac{1}{\sqrt{c}}(N-1)^3 - (6N-19)(N-2) - 8\sqrt{2}S\right)$	$\frac{1}{\sqrt{c}}N^3$	choi	eskv
gemm	$\max\left(N_{i}N_{j}+N_{j}N_{k}+N_{i}N_{k}+2,\frac{2}{\sqrt{c}}N_{i}N_{j}(N_{k}-1)+2N_{i}+2N_{j}+N_{k}-4\sqrt{2}S\right)$	$2\frac{1}{\sqrt{c}}N_iN_jN_k$		1
gemver	$N^{2}+8N+2+\max(0,\frac{1}{4}\frac{1}{S}(3N-2)(N-8S)-3S+1)$	N ²		
gesummv	$2N^2+N+2+\max(0,\frac{1}{2}\frac{1}{S}(N-1)(N-8S)-2S)$	$2N^{2}$	tor (1 = 0; 1 < _PB_N; 1++) {
gramschmidt	$\max\left(MN, \frac{1}{\sqrt{S}}MN(N-3) - M(N-5-\frac{2}{\sqrt{S}}) - \frac{1}{2}(N-1)(N-6) - 4\sqrt{2}S - 3\right)$	$\frac{1}{\sqrt{S}}MN^2$	fo	
heat-3d	$\max\left((N-10)(N+2)^2, \frac{9\sqrt[3]{5}}{16}\frac{1}{3/c}(T-1)(N-3)^3 - 3(T-7)(N-3)(N-4)\right)$	$\frac{9\sqrt[3]{3}}{16}\frac{1}{3/5}N^{3}T$	10	$\Gamma(j = 0; j < 1; j++)$
	$(42N-T-\frac{9\sqrt{3}}{2\pi}S-111)$	V3		for (k = 0; k < j; k++) {
iacobi-1d	$\frac{4\sqrt[3]{4}}{\max(2+n,\frac{1}{2}\frac{1}{n}(T-1)(N-3)-T-S+7)}$	$\frac{1}{1}\frac{1}{2}NT$		A[i][i] = A[i][k] * A[i][k]
jacobi-2d	$\max\left[(N-2)(N+6), \frac{2}{-\frac{1}{C}} \frac{1}{(N-3)^2} (N-3)^2 (T-1) - \frac{4\sqrt{2}}{-\frac{1}{C}} S - (T-7)(2N-7) + 14 \right]$	$\frac{2}{\sqrt{6}} \frac{1}{\sqrt{6}} N^2 T$		
lu	$\max\left(N^2, \frac{2}{3} + \frac{1}{16}(N-2)(N^2 - 4N + 6) - 2(N^2 - 10N + 18) - 8\sqrt{2}S\right)$	$\frac{3\sqrt{3}}{2}\frac{1}{\sqrt{2}}N^3$		}
ludcmp	$\max \left(N^2 + N, \frac{1}{2}, \frac{1}{C} (2N-3)(N-1)(N-2)\sqrt{2}, \frac{1}{5}(N-1)(N-2) - (2N^2 - 15N + 19) - 16\sqrt{2}S \right)$	$\frac{2}{3}\frac{1}{\sqrt{2}}N^3$		A[i][i] /= A[i][i]:
mvt	$N^2 + 4N + \max(0, \frac{1}{4} \frac{1}{5}N(N-1) - 2S - 4N + 4)$	N ²		
nussinov	$\frac{1}{2}N^2 + \frac{5}{2}N - 1 + \max\left(0, \frac{1}{4}, \frac{1}{\sqrt{6}}(N-3)(N-4)(N-5) + \frac{1}{4}, \frac{1}{5}\sqrt{2}(3N^2 - 19N + 6)\right)$	$\frac{1}{6} \frac{1}{\sqrt{6}} N^3$	}	
	$-(N^2-13N+22)-8\sqrt{2S}$	* *3	fo	$\mathbf{r} (\mathbf{k} = 0 \cdot \mathbf{k} < \mathbf{i} \cdot \mathbf{k} + \mathbf{i} $
seidel-2d	$\max\left(N^{2}, \frac{2}{2\sqrt{5}}, \frac{1}{\sqrt{5}}(N-3)^{2}(T-1) - (2N-7)(T-5) - \frac{4\sqrt{2}}{2\sqrt{5}}S + 12\right)$	$\frac{2}{2\sqrt{2}}\frac{1}{\sqrt{c}}N^2T$	10	$[\{ K = V \} K > I \} K^{\top\top} I \rangle$
	$\max\left(\frac{1}{2}M(M+1)+2MN+2,2\frac{1}{2}(M-1)(M-2)N-\frac{1}{2}((4N+M)(M-5))\right)$	$2\frac{1}{\sqrt{2}}M^2N$		A[1][1] -= A[1][K] * A[1][K];
symm	2	- vs	ι	
symm	$+5(M-2)-8\sqrt{2}S$			
symm syr2k	$+5(M-2)-8\sqrt{2S}$ $\max\left(2+2MN+\frac{1}{2}N(N+1),\frac{1}{\sqrt{2}}(M-1)(N+1)N+M+4N-4\sqrt{2S}\right)$	$\frac{1}{\sqrt{6}}MN^2$		
symm syr2k svrk	$+5(M-2)-8\sqrt{2}S\right)$ $\max\left(2+2MN+\frac{1}{2}N(N+1),\frac{1}{\sqrt{5}}(M-1)(N+1)N+M+4N-4\sqrt{2}S\right)$ $\max\left(MN+\frac{1}{2}(N+1)N+2,\frac{1}{2}-\frac{1}{2}(M-1)(N+1)N-(M-4)(N-1)-2\sqrt{2}S+4\right)$	$\frac{\frac{1}{\sqrt{S}}MN^2}{\frac{1}{n}\frac{1}{2}MN^2}$	Ă[:	i][i] = SQRT_FUN(A[i][i]);
syr2k syrk trisoly	$+5(M-2)-8\sqrt{2S})$ $\max\left\{2+2MN+\frac{1}{2}N(N+1),\frac{1}{\sqrt{2S}}(M-1)(N+1)N+M+4N-4\sqrt{2S}\right\}$ $\max\left\{MN+\frac{1}{2}(N+1)N+2,\frac{1}{\sqrt{2S}}(M-1)(N+1)N-(M-4)(N-1)-2\sqrt{2S}+4\right\}$ $\frac{1}{2}N(N+1)+N+mrv\left(1\frac{3}{2}\sqrt{2S}(M-1)(N+1)N-(M-4)(N-1)-2\sqrt{2S}+4\right)$	$\frac{\frac{1}{\sqrt{S}}MN^2}{\frac{1}{2}\frac{1}{\sqrt{S}}MN^2}$ $\frac{1}{2}\frac{1}{\sqrt{S}}MN^2$ $\frac{1}{2}N^2$	Â[:	i][i] = SQRT_FUN(A[i][i]);

kernel	# input data	#ops	ratio	OI _{up}	OI _{manual}	ratio	
2mm	$N_i N_k + N_k N_j$	NiN_jN_k	-	\sqrt{S}	\sqrt{S}	1√	
	$+N_jN_l+N_iN_l$	$+N_iN_jN_l$					
3mm	$N_i N_k + N_k N_j$	$NiN_jN_k + N_jN_lN_m$	-	\sqrt{S}	\sqrt{S}	1√	
	$+N_jN_m+N_mN_l$	$+N_iN_jN_l$					
cholesky	$rac{1}{2}N^2$	$\frac{1}{3}N^3$	$\frac{2}{3}N$	$2\sqrt{S}$	\sqrt{S}	2	
correlation	MN	M^2N	М	$2\sqrt{S}$	\sqrt{S}	2	Γ
covariance	MN	M^2N	M	$2\sqrt{S}$	\sqrt{S}	2	
doitgen	$N_p N_q N_r$	$2N_q n_r N_p^2$	2Np	\sqrt{S}	\sqrt{S}	1√	
fdtd-2d	$3N_xN_y$	$11N_xN_yT$	$\frac{11}{3}T$	$22\sqrt{2}\sqrt{S}$	$\frac{11}{24}\sqrt{3}\sqrt{S}$	$\frac{48\sqrt{2}}{\sqrt{3}}$	
floyd-warshall	N^2	$2N^3$	2N	$2\sqrt{S}$	\sqrt{S}	2	
gemm	$N_i N_j + N_j N_k + N_i N_k$	$2N_iN_jN_k$	-	\sqrt{S}	\sqrt{S}	1√	
heat-3d	N^3	$30N^{3}T$	30 <i>T</i>	$\frac{160}{3\sqrt[3]{3}}\sqrt[3]{S}$	$\frac{5}{2}\sqrt[3]{S}$	$\frac{64}{3\sqrt[3]{3}}$	
jacobi-1d	N	6NT	6T	24S	$\frac{3}{2}S$	16	
jacobi-2d	N^2	$10N^{2}T$	10 <i>T</i>	$15\sqrt{3}\sqrt{S}$	$\frac{5}{4}\sqrt{S}$	12√3	
lu	N^2	$\frac{2}{3}N^{3}$	$\frac{2}{3}N$	\sqrt{S}	\sqrt{S}	1√	
ludcmp	N^2	$\frac{2}{3}N^{3}$	$\frac{2}{3}N$	\sqrt{S}	\sqrt{S}	1√	
seidel-2d	N^2	$9N^2T$	9T	$\frac{27\sqrt{3}}{2}\sqrt{S}$	$\frac{9}{4}\sqrt{S}$	6√3	
symm	$\frac{1}{2}M^2 + 2MN$	$2M^2N$	-	\sqrt{S}	\sqrt{S}	1√	
syr2k	$\frac{1}{2}N^2 + 2MN$	$2MN^2$	-	$2\sqrt{S}$	\sqrt{S}	2	
syrk	$\frac{1}{2}N^2 + MN$	MN^2	-	$2\sqrt{S}$	\sqrt{S}	2	
trmm	$\frac{1}{2}M^2 + MN$	M^2N	-	\sqrt{S}	\sqrt{S}	1√	
atax	MN	4MN	4	4	4	1√	
bicg	MN	4MN	4	4	4	1√	
deriche	HW	32HW	32	32	$\frac{16}{3}$	6	
gemver	N^2	$10N^2$	10	10	5	2	
gesummv	$2N^2$	$4N^2$	2	2	2	1√	
mvt	N^2	$4N^2$	4	4	4	1√	
trisolv	$\frac{1}{2}N^2$	N^2	2	2	2	1√	
adi	N^2	$30N^{2}T$	30 <i>T</i>	30	5	6	
durbin	N	$2N^2$	2N	4	$\frac{2}{3}$	6	
gramschmidt	MN	$2MN^2$	2N	$2\sqrt{S}$	1	$2\sqrt{S}$	
nussinov	$\frac{1}{2}N^2$	$\frac{1}{3}N^3$	$\frac{2}{3}N$	$2\sqrt{S}$	1	$2\sqrt{S}$	

A. Olivry, J. Langou, L-N Pouchet, P. Sadayappan, and F. Rastello. Automated derivation of parametric data movement lower bounds for affine programs. In the Proceedings of PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, page 808–822, June 2020. (<u>link</u>)

kernel	# input data	#ops	ratio	OLun	OI manual	ratio
2mm	$N_i N_L + N_L N_i$	NiN:N	_	\sqrt{s}	\sqrt{S}	1.
2	$+N \cdot N_1 + N \cdot N_1$	$+N\cdot N\cdot N$		10	V D	1.
3mm	$N_i N_L + N_L N_i$	$N_i N_i N_i + N_i N_i N_m$	_	\sqrt{S}	\sqrt{S}	1.
	+N:N+NN	+N:N:N		15	15	1.
cholesky	$\frac{1}{2}N^2$	$\frac{1}{2}N^3$	$\frac{2}{2}N$	$2\sqrt{S}$	\sqrt{S}	2
correlation	2 ⁻¹ MN	$M^2 N$	3-1- M	$2\sqrt{S}$	\sqrt{s}	2
covariance	MN	M^2N	M	$2\sqrt{S}$	\sqrt{S}	2
doitgen	$N_p N_q N_r$	$2N_a n_r N_a^2$	$2N_{P}$	\sqrt{S}	\sqrt{S}	11
fdtd-2d	$3N_{r}N_{r}$	$\frac{q}{11} N_r N_u T$	$\frac{11}{2}T$	$22\sqrt{2}\sqrt{5}$	$\frac{11}{2}\sqrt{3}\sqrt{S}$	$48\sqrt{2}$
floyd-warshall	N^2	$2N^3$	3 - 2N	22	\sqrt{S}	$\sqrt{3}$
gemm	$N_i N_i + N_i N_i + N_i N_i$	$2N_i N_i N_k$	_	\sqrt{S}	\sqrt{S}	
heat-3d	N^3	$30N^3T$	30T	$\frac{160}{\sqrt{3}}$	<u>5</u> ∛S	<u>_64</u>
iacobi-1d	N	6NT	6T	3∛3 0	2 VS	3∛3 16
jacobi-10	1N N7 ²	$10 N^2 T$	10T	151/21/5	$\frac{1}{2}S$	121/2
Jacobi-20	N N ²	$\frac{2}{3}$ N ³	$\frac{101}{2N}$	15 45 45	$\frac{1}{4}\sqrt{S}$	12 \(\mathbf{y}\) 1 \((
ludemp	N N ²	$\frac{3}{2}$ N ³	$\frac{\overline{3}}{2}N$	√S √S	√S √S	1.
iddenip	IN	$\overline{3}^{1}$	$\overline{3}^{IV}$	27 13 .	۷ <i>3</i>	1.
seidel-2d	$1 M^2 + 2M M$	$9N^2 I$	91	$\frac{1}{2}\sqrt{5}$	$\frac{1}{4}\sqrt{S}$	6γ3
symm	$\frac{1}{2}M^2 + 2MN$	$2MN^2$	-	24/5	γ3 √S	
syr2k	$\frac{1}{2}N^2 + 2MN$	$2MN^2$	-	275	$\sqrt{5}$	2
syrк	$\frac{1}{2}N^2 + MN$	MN^2	-	275	$\sqrt{5}$	Z
trmm	$\frac{1}{2}M^2 + MN$	M ² N	-	V S	νs	1 🗸
atax	MN	4MN	4	4	4	1√
bicg	MN	4MN	4	4	4	1√
deriche	HW	32HW	32	32	$\frac{16}{3}$	6
gemver	N^2	$10N^{2}$	10	10	5	2
gesummv	$2N^2$	$4N^2$	2	2	2	1√
mvt	N^2	$4N^2$	4	4	4	1√
trisolv	$\frac{1}{2}N^2$	N^2	2	2	2	1√
adi	N^2	$30N^{2}T$	30 <i>T</i>	30	5	6
durbin	N	$2N^2$	2N	4	$\frac{2}{3}$	6
gramschmidt	MN	$2MN^2$	2N	$2\sqrt{S}$	1	$2\sqrt{S}$
nussinov	$\frac{1}{2}N^2$	$\frac{1}{3}N^3$	$\frac{2}{3}N$	$2\sqrt{S}$	1	$2\sqrt{S}$

(1) Olivier Beaumont, Lionel Eyraud-Dubois, Julien Langou, and Mathieu Vérité. <u>I/O-optimal algorithms for symmetric linear algebra kernels</u>. In the 34th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA '22), Philadelphia, PA, USA, July 11–14, 2022. DOI information: <u>10.1145/3490148.3538587</u>.

(2) Olivier Beaumont, Philippe Duchon, Lionel Eyraud-Dubois, Julien Langou, and Mathieu Vérité.

Symmetric Block-Cyclic Distribution: Fewer Communications leads to Faster Dense Cholesky Factorization.

In ACM/IEEE SC 2022 Conference (SC'22), Dallas, TX, USA, November 13-18, 2022. DOI information: <u>10.1109/SC41404.2022.00034</u>. Nominee for Best Paper Award.

(3) Emmanuel Agullo, Alfredo Buttari, Olivier Coulaud, Lionel Eyraud-Dubois, Mathieu Faverge, Alain Franc, Abdou Guermouche, Antoine Jego, Romain Peressoni, and Florent Pruvost. <u>On the Arithmetic Intensity of</u> <u>Distributed-Memory Dense Matrix Multiplication Involving a Symmetric</u> <u>Input Matrix (SYMM)</u>. In 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS'23), St. Petersburg, FL, USA, 15-19 May 2023. DOI information: <u>10.1109/IPDPS54959.2023.00044</u>

A. Olivry, J. Langou, L-N Pouchet, P. Sadayappan, and F. Rastello. Automated derivation of parametric data movement lower bounds for affine programs. In the Proceedings of PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, page 808–822, June 2020. (link)

Operational intensity of LU is at sqrt(2) * sqrt(S)

GEMM

Assume $n_b^2 = S \dots n_b = sqrt(S)$ ops = 2*M* n_b^2 Data movement 2*M* n_b OI = Ops / comm = $n_b = sqrt(S)$

Μ

n_b

B

SYRK

Assume (N^2)/2 = S . . . N = sqrt(S) * sqrt(2) ops = M*N^2 Data movement M*N OI = Ops / comm = N = sqrt(S)*sqrt(2)

Observation: SYRK has an OI sqrt(2) better than MM when a "triangle fit in cache"

SYRK

Assume (N^2)/2 = S . . . N = sqrt(S) * sqrt(2) ops = M*N^2 Data movement M*N OI = Ops / comm = N = sqrt(S)*sqrt(2)

> SYRK has an OI sqrt(2) better than MM when a "triangle fit in cache"

- Building an optimal GEMM is easy.
- But how to build an optimal SYRK?

- IOLB says OI is less than 2 sqrt(S)
- Béreux's algorithm has an OI of sqrt(S)
- This begs the question what is <u>the</u> OI of SYRK?

- IOLB says OI is less than 2 sqrt(S)
- Béreux's algorithm has an OI of sqrt(S)
- The OI upper bound from IOLB of 2 sqrt(S) is too optimistic, we can find a lower OI upper bound: sqrt(2) * sqrt(S).
- And we can improve Béreux's algorithm. Instead of an OI of sqrt(S), we can improve to sqrt(2) * sqrt(S).

kernel	# input data	#ops	ratio	OI _{up}	OI _{manual}	ratio
2mm	$N_i N_k + N_k N_j$	NiN_jN_k	-	\sqrt{S}	\sqrt{S}	1√
	$+N_jN_l + N_iN_l$	$+N_iN_jN_l$				
3mm	$N_i N_k + N_k N_j$	$NiN_jN_k + N_jN_lN_m$	-	\sqrt{S}	\sqrt{S}	1√
	$+N_jN_m + N_mN_l$	$+N_iN_jN_l$				
cholesky	$rac{1}{2}N^2$	$\frac{1}{3}N^3$	$\frac{2}{3}N$	$2\sqrt{S}$	\sqrt{S}	2
correlation	MN	M^2N	М	$2\sqrt{S}$	\sqrt{S}	2
covariance	MN	M^2N	M	$2\sqrt{S}$	\sqrt{S}	2
doitgen	$N_p N_q N_r$	$2N_q n_r N_p^2$	2Np	\sqrt{S}	\sqrt{S}	1√
fdtd-2d	$3N_xN_y$	$11N_xN_yT$	$\frac{11}{3}T$	$22\sqrt{2}\sqrt{S}$	$\frac{11}{24}\sqrt{3}\sqrt{S}$	$\frac{48\sqrt{2}}{\sqrt{3}}$
floyd-warshall	N^2	$2N^3$	2N	$2\sqrt{S}$	\sqrt{S}	2
gemm	$N_i N_j + N_j N_k + N_i N_k$	$2N_iN_jN_k$	-	\sqrt{S}	\sqrt{S}	1√
heat-3d	N^3	$30N^{3}T$	30 <i>T</i>	$\frac{160}{3\sqrt[3]{3}}\sqrt[3]{S}$	$\frac{5}{2}\sqrt[3]{S}$	$\frac{64}{3\sqrt[3]{3}}$
jacobi-1d	N	6NT	6T	245	$\frac{3}{2}S$	16
jacobi-2d	N^2	$10N^{2}T$	10 <i>T</i>	$15\sqrt{3}\sqrt{S}$	$\frac{5}{4}\sqrt{S}$	12√3
lu	N^2	$\frac{2}{3}N^{3}$	$\frac{2}{3}N$	\sqrt{S}	\sqrt{S}	1√
ludcmp	N^2	$\frac{2}{3}N^{3}$	$\frac{2}{3}N$	\sqrt{S}	\sqrt{S}	1√
seidel-2d	N^2	$9N^2T$	9T	$\frac{27\sqrt{3}}{2}\sqrt{S}$	$\frac{9}{4}\sqrt{S}$	6√3
symm	$\frac{1}{2}M^2 + 2MN$	$2M^2N$	-	\sqrt{S}	\sqrt{S}	1√
syr2k	$\frac{1}{2}N^2 + 2MN$	$2MN^2$	-	$2\sqrt{S}$	\sqrt{S}	2
syrk	$\frac{1}{2}N^2 + MN$	MN^2	-	$2\sqrt{S}$	\sqrt{S}	2
trmm	$\frac{1}{2}M^2 + MN$	M^2N	-	\sqrt{S}	\sqrt{S}	1√
atax	MN	4MN	4	4	4	1√
bicg	MN	4MN	4	4	4	1√
deriche	HW	32HW	32	32	$\frac{16}{3}$	6
gemver	N^2	$10N^2$	10	10	5	2
gesummv	$2N^{2}$	$4N^2$	2	2	2	1√
mvt	N^2	$4N^2$	4	4	4	1√
trisolv	$\frac{1}{2}N^2$	N^2	2	2	2	1√
adi	N^2	$30N^{2}T$	30 <i>T</i>	30	5	6
durbin	N	$2N^2$	2 <i>N</i>	4	$\frac{2}{3}$	6
gramschmidt	MN	$2MN^2$	2N	$2\sqrt{S}$	1	$2\sqrt{S}$
nussinov	$rac{1}{2}N^2$	$\frac{1}{3}N^3$	$\frac{2}{3}N$	$2\sqrt{S}$	1	$2\sqrt{S}$

(1) Olivier Beaumont, Lionel Eyraud-Dubois, Julien Langou, and Mathieu Vérité. <u>I/O-optimal algorithms for symmetric linear algebra kernels</u>. In the 34th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA '22), Philadelphia, PA, USA, July 11–14, 2022. DOI information: 10.1145/3490148.3538587.

(2) Olivier Beaumont, Philippe Duchon, Lionel Eyraud-Dubois, Julien Langou, and Mathieu Vérité.

Symmetric Block-Cyclic Distribution: Fewer Communications leads to Faster Dense Cholesky Factorization.

In ACM/IEEE SC 2022 Conference (SC'22), Dallas, TX, USA, November 13-18, 2022. DOI information: <u>10.1109/SC41404.2022.00034</u>. Nominee for Best Paper Award.

(3) Emmanuel Agullo, Alfredo Buttari, Olivier Coulaud, Lionel Eyraud-Dubois, Mathieu Faverge, Alain Franc, Abdou Guermouche, Antoine Jego, Romain Peressoni, and Florent Pruvost. <u>On the Arithmetic Intensity of</u> <u>Distributed-Memory Dense Matrix Multiplication Involving a Symmetric</u> <u>Input Matrix (SYMM)</u>. In 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS'23), St. Petersburg, FL, USA, 15-19 May 2023. DOI information: <u>10.1109/IPDPS54959.2023.00044</u>

A. Olivry, J. Langou, L-N Pouchet, P. Sadayappan, and F. Rastello. Automated derivation of parametric data movement lower bounds for affine programs. In the Proceedings of PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, page 808–822, June 2020. (<u>link</u>)

SIGHPC Reproducibility Award SCC @ SC'23

Thanks to Mathieu Faverge and Florent Pruvost Thanks to Thomas Herault, George Bosilca, and Weslley Pereira

Olivier Beaumont, Philippe Duchon, Lionel Eyraud-Dubois, Julien Langou, and Mathieu Vérité. <u>Symmetric Block-Cyclic Distribution: Fewer Communications leads to Faster Dense Cholesky Factorization</u>. In ACM/IEEE SC 2022 Conference (SC'22), Dallas, TX, USA, November 13-18, 2022. DOI information: <u>10.1109/SC41404.2022.00034</u>. Nominee for Best Paper Award.

kernel	# input data	#ops	ratio	OIup	OI _{manual}	ratio
2mm	$N_i N_k + N_k N_j$	NiN_jN_k	-	\sqrt{S}	\sqrt{S}	1√
	$+N_jN_l + N_iN_l$	$+N_iN_jN_l$				
3mm	$N_i N_k + N_k N_j$	$NiN_jN_k + N_jN_lN_m$	-	\sqrt{S}	\sqrt{S}	1√
	$+N_jN_m + N_mN_l$	$+N_iN_jN_l$				
cholesky	$\frac{1}{2}N^2$	$\frac{1}{3}N^3$	$\frac{2}{3}N$	$2\sqrt{S}$	\sqrt{S}	2
correlation	MN	M^2N	М	$2\sqrt{S}$	\sqrt{S}	2
covariance	MN	M^2N	M	$2\sqrt{S}$	\sqrt{S}	2
doitgen	$N_p N_q N_r$	$2N_q n_r N_p^2$	$2N_p$	\sqrt{S}	\sqrt{S}	1√
fdtd-2d	$3N_xN_y$	$11N_xN_yT$	$\frac{11}{3}T$	$22\sqrt{2}\sqrt{S}$	$\frac{11}{24}\sqrt{3}\sqrt{S}$	$\frac{48\sqrt{2}}{\sqrt{3}}$
floyd-warshall	N^2	$2N^3$	2 <i>N</i>	$2\sqrt{S}$	\sqrt{S}	2
gemm	$N_i N_j + N_j N_k + N_i N_k$	$2N_iN_jN_k$	-	\sqrt{S}	\sqrt{S}	1√
heat-3d	N^3	$30N^{3}T$	30 <i>T</i>	$\frac{160}{3\sqrt[3]{3}}\sqrt[3]{S}$	$\frac{5}{2}\sqrt[3]{S}$	$\frac{64}{3\sqrt[3]{3}}$
jacobi-1d	N	6NT	6T	24S	$\frac{3}{2}S$	16
jacobi-2d	N^2	$10N^{2}T$	10 <i>T</i>	$15\sqrt{3}\sqrt{S}$	$\frac{5}{4}\sqrt{S}$	12√3
lu	N^2	$\frac{2}{3}N^{3}$	$\frac{2}{3}N$	\sqrt{S}	\sqrt{S}	1√
ludcmp	N^2	$\frac{2}{3}N^3$	$\frac{2}{3}N$	\sqrt{S}	\sqrt{S}	1√
seidel-2d	N^2	$9N^2T$	9T	$\frac{27\sqrt{3}}{2}\sqrt{S}$	$\frac{9}{4}\sqrt{S}$	6√3
symm	$\frac{1}{2}M^2 + 2MN$	$2M^2N$	-	\sqrt{S}	\sqrt{S}	1√
syr2k	$\frac{1}{2}N^2 + 2MN$	$2MN^2$	-	$2\sqrt{S}$	\sqrt{S}	2
syrk	$\frac{1}{2}N^2 + MN$	MN^2	-	$2\sqrt{S}$	\sqrt{S}	2
trmm	$\frac{1}{2}M^2 + MN$	M^2N	-	\sqrt{S}	\sqrt{S}	1√
atax	MN	4MN	4	4	4	1√
bicg	MN	4MN	4	4	4	1√
deriche	HW	32HW	32	32	$\frac{16}{3}$	6
gemver	N^2	$10N^{2}$	10	10	5	2
gesummv	$2N^2$	$4N^2$	2	2	2	1√
mvt	N^2	$4N^2$	4	4	4	1√
trisolv	$\frac{1}{2}N^2$	N^2	2	2	2	1√
adi	N^2	$30N^{2}T$	30 <i>T</i>	30	5	6
durbin	N	$2N^2$	2N	4	23	6
gramschmidt	MN	$2MN^2$	2 <i>N</i>	$2\sqrt{S}$	1	$2\sqrt{S}$
nussinov	$\frac{1}{2}N^2$	$\frac{1}{3}N^3$	$\frac{2}{3}N$	$2\sqrt{S}$	1	$2\sqrt{S}$

A. Olivry, J. Langou, L-N Pouchet, P. Sadayappan, and F. Rastello. Automated derivation of parametric data movement lower bounds for affine programs. In the Proceedings of PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, page 808–822, June 2020. (<u>link</u>)

 Classical Gram-Schmidt (CGS)
 Modified Gram-Schmidt (MGS)

 Input: $a_1, a_2, ..., a_{n-1}, a_n$ Input: $a_1, a_2, ..., a_{n-1}, a_n$

 Output: $q_1, q_2, ..., q_{n-1}, q_n$ Input: $a_1, a_2, ..., a_{n-1}, a_n$

 for j=1:n,
 $w = (I - Q_{1:j-1} Q_{1:j-1}^T) a_j$
 $q_j = w / || w ||_2$ for j=1:n,

 end
 $w = (I - q_{j-1} q_{j-1}^T) ... (I - q_1 q_1^T) a_j$

 end
 end

function [Q, R] = cgs(A)n = size(A, 2);Q = zeros(size(A)); R = zeros(n);for j=1:n, Q(:,j) = A(:,j); **for** i=1:j-1, $R(i,j) = Q(:,i)^{*} * A(:,j) ;$ Q(:,j) = Q(:,j) - Q(:,i) * R(i,j);end R(j,j) = norm(Q(:,j)); Q(:,j) = Q(:,j) / R(j,j);end

```
function [ Q, R ] = mgs( A )
  n = size(A, 2);
  Q = zeros(size(A));
  R = zeros(n);
  for j=1:n,
     Q(:,j) = A(:,j);
     for i=1:j-1,
          R(i,j) = Q(:,i)^{*} * Q(:,j);
         Q(:,j) = Q(:,j) - Q(:,i) * R(i,j);
      end
     R(j,j) = norm(Q(:,j));
     Q(:,j) = Q(:,j) / R(j,j);
  end
```

end

end

```
#include <math.h>
                                                                   #include <math.h>
void qr_cgs_ll (int M, int N, double A[M][N], double R[N][N] ) void qr_mgs_ll (int M, int N, double A[M][N], double R[N][N] )
{
int i, j, k;
                                                                   int i, j, k;
#pragma scop
                                                                   #pragma scop
if (M>=N) {
                                                                    if (M>=N) {
for (j = 0; j < N; j++) {</pre>
                                                                    for (j = 0; j < N; j++) {
    for (i = 0; i < j; i++) {
                                                                       for (i = 0; i < j; i++) {
       R[i][j] = 0.0e+00;
                                                                          R[i][j] = 0.0e+00;
       for (k = 0; k < M; k++)
                                                                          for (k = 0; k < M; k++)
          R[i][j] += A[k][i] * A[k][j];
                                                                             R[i][j] += A[k][i] * A[k][j];
                                                                          for (k = 0; k < M; k++)
    for (i = 0; i < j; i++)</pre>
                                                                             A[k][j] = A[k][i] * R[i][j];
       for (k = 0; k < M; k++)
          A[k][j] -= A[k][i] * R[i][j];
                                                                       R[i][i] = 0.0e+00;
    R[i][i] = 0.0e+00;
                                                                       for (k = 0; k < M; k++)
    for (k = 0; k < M; k++)
                                                                          R[j][j] += A[k][j] * A[k][j];
       R[j][j] += A[k][j] * A[k][j];
                                                                       R[j][j] = sqrt(R[j][j]);
    R[j][j] = sqrt(R[j][j]);
                                                                       for (k = 0; k < M; k++)
    for (k = 0; k < M; k++)
                                                                          A[k][i] /= R[i][i];
       A[k][j] /= R[j][j];
                                                                    #pragma endscop
#pragma endscop
   CGS
                                                                        MGS
                                                                        MN data (+ N<sup>2</sup> / 2 for R in output)
   MN input data (+ N^2 / 2 \text{ for R in output})
   2 MN<sup>2</sup> operations
                                                                        2 MN<sup>2</sup> operations
```

IOLB: operational intensity is at most $2\sqrt{S}$

IOLB: operational intensity is at most $2\sqrt{S}$

Hourglass pattern

Standard "MM-way" of doing business
$$|E| \leq |\phi_{i,j}(E)|^{rac{1}{2}} . |\phi_{i,k}(E)|^{rac{1}{2}} . |\phi_{k,j}(E)|^{rac{1}{2}} \leq K^{3/2}$$

If Hourglass pattern is detected then

$$|I'| \le |\phi_i(I')| \times |\phi_j(I')| \times |\phi_k(I')|.$$
$$|I'| \le M \times \frac{K}{M} \times \frac{K}{M} = \frac{K^2}{M}$$

Lionel Eyraud-Dubois, Guillaume Ioos, Julien Langou, and Fabrice Rastello. **Tightening I/O Lower Bounds through the Hourglass Dependency Pattern**. Accepted to the 36th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA '24), Nantes, France, June 17—21, 2024.

Theorem 5 (Lower bounds for MGS). The communication volume Q for the MGS algorithm on a $M \times N$ matrix can be bounded as follows:

$$\frac{M^2 N(N-1)}{8(S+M)} \le Q$$

Furthermore, if $S \leq M$, we also have:

$$\frac{(M-S)N(N-1)}{4} \le Q$$

Interpretation: (with approximations)

If M < N then IO is at least $(1/8) * M^2 N^2 / S$ or in another words $(1/8) * (M / S) * M N^2$

If M > N then IO is at least $(1/4) * M N^2$

Interpretation:

Since M < sqrt(S), $M^2 N^2 / S$ is a much better lower bound on IO than M N² / sqrt(S) – (larger is better)

Kernel	Old bound	New bound (hourglass)	
MGS	$\Omega\left(\frac{MN^2}{\sqrt{S}}\right)$	$\Omega\left(rac{M^2N(N-1)}{S+M} ight)$	
QR HH A2V	$\Omega\left(\frac{MN^2}{\sqrt{S}}\right)$	$\Omega\left(\left(rac{MN^2(N-M)}{N-M-S} ight) ight)$ Ge	QR2
QR HH V2Q	$\Omega\left(\frac{MN^2}{\sqrt{S}}\right)$	$\Omega\left(rac{MN^2(N-M)}{N-M-S} ight)$ OR	G2R

Kernel	Old bound [17]	New bound (hourglass)
MGS	$\frac{2M+3MN+MN^2}{\sqrt{S}} + 5M - MN + \frac{7N-N^2}{2} - S - 6$	$\frac{N^2M^2 + 2M^2 - 3NM^2}{8(M+S)} + 5M - MN + \frac{7N - N^2}{2} - S - 6$
QR HH A2V	$\frac{3MN^2 + 6M + 7N - N^3 - 9MN - 6}{3\sqrt{S}} + 5M - MN + 5N - S - 13$	$\frac{3MN^2 - 9MN + 7N + 6M - 6 - N^3}{24(1 - \frac{S}{N - M})} + 5M - MN + 5N - S - 13$
QR HH V2Q	$\frac{3MN^2 - N^3 + 6M + 7N - 9MN - 6}{3\sqrt{S}} + 2M + 2N + \frac{N - N^2}{2} - S - 4$	$\frac{3MN^2 - N^3 + 6M + 7N - 9MN - 6}{24(1 + \frac{S}{M - N})} + 2M + 2N + \frac{N - N^2}{2} - S - 4$

Kernel	Old bound [17]	New bound (hourglass)
MGS	$\Omega\left(\frac{MN^2}{\sqrt{S}}\right)$	$\Omega\left(\frac{M^2N(N-1)}{S+M}\right)$
QR HH A2V	$\Omega\left(\frac{MN^2}{\sqrt{S}}\right)$	$\Omega\left(\frac{MN^2(N-M)}{N-M-S}\right)$
QR HH V2Q	$\Omega\left(\frac{MN^2}{\sqrt{S}}\right)$	$\Omega\left(\frac{MN^2(N-M)}{N-M-S}\right)$
GEBD2	$\Omega\left(\frac{MN^2}{\sqrt{S}}\right)$	$\Omega\left(rac{\dot{M}N^2(M-N+1)}{8(S+M-N+1)} ight)$
GEHD2	$\Omega\left(\frac{N^3}{\sqrt{S}}\right)$	$\Omega\left(rac{N^4}{N+2S} ight)$

KernelOld bound [17]New bound (hourglass)MGS
$$\frac{2M+3MN+MN^2}{\sqrt{S}} + 5M - MN + \frac{7N-N^2}{2} - S - 6$$
 $\frac{N^2M^2+2M^2-3NM^2}{8(M+S)} + 5M - MN + \frac{7N-N^2}{2} - S - 6$ QR HH A2V $\frac{3MN^2+6M+7N-N^3-9MN-6}{3\sqrt{S}} + 5M - MN + 5N - S - 13$ $\frac{3MN^2-9MN+7N+6M-6-N^3}{24(1-\frac{S}{N-M})} + 5M - MN + 5N - S - 13$ QR HH V2Q $\frac{3MN^2-N^3+6M+7N-9MN-6}{3\sqrt{S}} + 2M + 2N + \frac{N-N^2}{2} - S - 4$ $\frac{3MN^2-N^3+6M+7N-9MN-6}{24(1+\frac{M-N}{N-N})} + 2M + 2N + \frac{N-N^2}{2} - S - 4$ GEBD2 $\frac{3MN^2-N^3-9MN+6M+7N-6}{3\sqrt{S}} + 5N + 5M - MN - S - 13$ $\frac{3MN^2-N^3+6M+7N-9MN-6}{24(1+\frac{M-N}{N-N})} + 2M + 2N + \frac{N-N^2}{2} - S - 4$ GEHD2 $\frac{5N^3-30N^2+55N-30}{3\sqrt{S}} + \frac{69N-9N^2}{2} - 3 * S - 56$ $\frac{N^3-6N^2+11N-6}{12(1+\frac{N-M-1}{N-M-1})} - N^2 + 12N - S - 19$

./iolb-affine-indocker.sh examples/lin-alg/gehd2_splitted.c

 $-1+n^{2}+max(0,-107+5/24*(S-(2+m-n)^{(-1)*S^{2})^{(-1)*S*n^{3}-11/12*((1+m-n)^{(-1)*S^{2}-S)^{(-1)*S*n-8*m*S^{(-1/2)*n^{2}-5/4*(S-(2+m-n)^{(-1)*S^{2})^{(-1)*S*n^{2}-23*S^{(-1/2)-27*m*S^{(-1/2)-1/12*((1+m-n)^{(-1)*S^{2}-S)^{(-1)}}}(-1)*S^{2}-S)^{(-1)*S*n^{3}+55/24*(S-(2+m-n)^{(-1)*S^{2})^{(-1)*S*n-2*m^{2}-5/4*(S-(2+m-n)^{(-1)*S^{2}-S)^{(-1)*S*n^{2}-5/4*(S-(2+m-n)^{(-1)*S^{2}-S)^{(-1)*S*n^{2}+31*m*S^{(-1/2)*n-9*m+235/6*S^{(-1/2)*n+7*m^{2}*S^{(-1/2)*n-13*m^{2}*S^{(-1/2)*n^{2}-10*S+145/2*n+1/2*((1+m-n)^{(-1)*S^{2}-S)^{(-1)*S+10/3*S^{(-1/2)*n^{3}-2*m^{3}*S^{(-1/2)}})}$
Lionel Eyraud-Dubois, Guillaume Ioos, Julien Langou, and Fabrice Rastello. **Tightening I/O Lower Bounds through the Hourglass Dependency Pattern**. Accepted to the 36th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA '24), Nantes, France, June 17—21, 2024.

Theorem 5 (Lower bounds for MGS). The communication volume Q for the MGS algorithm on a $M \times N$ matrix can be bounded as follows:

$$\frac{M^2 N(N-1)}{8(S+M)} \le Q$$

Furthermore, if $S \leq M$, we also have:

$$\frac{(M-S)N(N-1)}{4} \le Q$$

Interpretation:

If M < N then IO is at least $(1/8) * M^2 N^2 / S \text{ or } (1/8) * (M / S) M N^2$

Interpretation:

If M > N then IO is at least $(1/4) * M N^2$

Much better lower bound on IO than $M N^2 / sqrt(S)$

Communication-optimal parallel and sequential QR and LU factorizations Demmel, Grigori, Hoemmen and Langou, 2008 https://arxiv.org/abs/0808.2664 We need at

We need at least a few columns to fit in cache!

Take K such that

M * K + M < S

panel fits in cache and stays in cache

At start of step, panel+trailing are updated and ready to go Load panel Do MGS on panel (panel factorization) Update trailing matrix by loading one column at a time

Analysis:

K is about M / S Load about (less than) N columns of size M every N / K steps So IO is about $M^2 N^2 / S$

Which is a factor of S/M better than M N^2 So a factor of K better than M N^2

This is right looking, you can do a left looking variant too.

Modified Gram-Schmidt, GEQR2, ORGQR2

A2V (geqr2) bora@plafrim Intel CascadeLake

A2V (geqr2) bora@plafrim Intel CascadeLake

A2V (geqr2) bora@plafrim Intel CascadeLake

Current work: chains of Givens rotations with Thijs Steel

```
for (p = 0; p < k; p++) {
    for (j = 0; j < n - 1; j++) {
        for (i = 0; i < m; i++) {
            temp = C[j][p] * A[i][j] + S[j][p] * A[i][j + 1];
            A[i][j + 1] = -S[j][p] * A[i][j] + C[j][p] * A[i][j + 1];
            A[i][j] = temp;
        }
    }
}</pre>
```

A Francis step

work on columns 1 and 2

work on columns 2 and 3

work on columns 3 and 4

work on columns 4 and 5

work on columns 5 and 6

work on columns 6 and 7

work on columns 7 and 8

work on columns 8 and 9

n

A waves of five Francis steps

work on columns 1 and 2

work on columns 2 and 3

work on columns 3 and 4

work on columns 4 and 5

work on columns 5 and 6

work on columns 6 and 7

work on columns 7 and 8

work on columns 8 and 9

k

m

n

work on columns 1 and 2

work on columns 2 and 3

work on columns 3 and 4

work on columns 4 and 5

work on columns 5 and 6

work on columns 6 and 7

work on columns 7 and 8

work on columns 8 and 9

k

m

n

Field G. Van Zee, Robert A. van de Geijn, and Gregorio Quintana-Ortí. 2014. Restructuring the Tridiagonal and Bidiagonal QR Algorithms for Performance. ACM Trans. Math. Softw. 40, 3, Article 18 (April 2014), 34 pages. https://doi.org/10.1145/2535371

work on columns 1 and 2

 G_{15}

G₂₅

G₃₅

- G₄₅

G₅₅

G₆₅

G₇₅

G₈₅

work on columns 2 and 3

work on columns 3 and 4

work on columns 4 and 5

work on columns 5 and 6

work on columns 6 and 7

work on columns 7 and 8

work on columns 8 and 9

m

Analysis

- Going fast.
- We need to apply mnk Givens rotations.
- We assume that $k_b * m_b \le M$
- We move on piece of column of size $m_{\rm b},$ write back one piece of size $m_{\rm b},$ and load $2k_{\rm b}$ rotations
- And we will do $k_{\rm b}$ * $m_{\rm b}$ rotations in a segment
- Forgetting start and end clean up code, we need to do mnk / m_b / k_b segments
- And so the volume of communication of the algorithm is (mnk / m_b / k_b) * (2m_b + 2k_b)
- For k_b = sqrt(M) and m_b = sqrt(M) we get 4 mnk / sqrt(M)
- Since the total number of operations of our code is 6mnk, this means that the operational intensity for the wavefront algorithm is (3/2) sqrt{S}
- IOLB returns 6 sqrt{S} as an upper bound for the operational intensity
- So we are a factor of 4 off.

The I/O Requirements of Various Numerical Linear Algebra Kernels

Julien Langou

Tuesday June 26th 2024