Greedy algorithms for computing the Birkhoff-von Neumann decomposition

Damien Lesens Supervised by Bora Uçar and Jérémy E. Cohen

ROMA team, LIP, ENS de Lyon

June 2024

Plan

- 1. Background
 - Birkhoff theorem
 - Applications
 - Heuristics
 - Sparse coding
- 2. GompBvN
 - Algorithm
 - Results
- 3. Generalisation of the BvN decomposition
- 4. Conclusion

Background

- 1. Background
 - Birkhoff theorem
 - Applications
 - Heuristics
 - Sparse coding
- 2. GompBvN
 - Algorithm
 - Results
- 3. Generalisation of the BvN decomposition
- Conclusion

Birkhoff theorem

Definition

An $n \times n$ matrix A is **doubly stochastic** if $a_{ij} \ge 0$, row sums and column sums are 1

Theorem (Birkhoff, von Neumann)

For a doubly stochastic matrix \mathbf{A} , there exist $\alpha_1, \alpha_2, \ldots, \alpha_k \in (0,1]$ with $\sum_{i=1}^k \alpha_i = 1$ and $n \times n$ permutation matrices $\mathbf{P}_1, \mathbf{P}_2, \ldots, \mathbf{P}_k$ such that

$$\mathbf{A} = \alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2 + \dots + \alpha_k \mathbf{P}_k$$

Applications

- lacktriangle Generalises to a large class of matrix ightarrow numerical applications
- Routing traffic in data centers (circuit switches)
- Assignment problems and economics

Applications

- lacktriangle Generalises to a large class of matrix ightarrow numerical applications
- Routing traffic in data centers (circuit switches)
- Assignment problems and economics

All these applications gain in efficiency if the number of components k is small

The BvN decomposition is not unique

The problem

Sparse BvN decomposition problem

Given a doubly stochastic matrix A

find a Birkhoff-von Neumann decomposition

$$\mathbf{A} = \alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2 + \dots + \alpha_k \mathbf{P}_k$$

such that k is minimum

The problem

Sparse BvN decomposition problem

Given a doubly stochastic matrix A

find a Birkhoff-von Neumann decomposition

$$\mathbf{A} = \alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2 + \dots + \alpha_k \mathbf{P}_k$$

such that k is minimum

- ▶ Dufossé and Uçar proved that the problem is NP-complete
- Design heuristics

Known heuristics

- represent a doubly stochastic matrix as a bipartite graph
- Algorithm: Birkhoff heuristic
 - find a perfect matching in this graph
 - the coefficient is the minimum entry in the permutation

R

update and continue until all entries are zero

$$\begin{array}{cccc}
 & C & \\
7 & 4 & 0 \\
1 & 5 & 5 \\
3 & 2 & 6
\end{array}$$

$$=2\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)+\left(\begin{array}{ccc} 5 & 4 & 0 \\ 1 & 5 & 3 \\ 3 & 0 & 6 \end{array}\right)$$

(a) Matrix representation

(b) Graph representation

Hard cases

- heuristics differ by the way the matching is chosen at each step
 - \rightarrow Dufossé and Uçar 2016
- ▶ inherent limitation : set an entry to zero at each step

Hard cases

- ▶ heuristics differ by the way the matching is chosen at each step
 → Dufossé and Uçar 2016
- inherent limitation : set an entry to zero at each step
- hard instance:

$$\mathbf{A} = \frac{1}{1023} \begin{pmatrix} a+b & d+i & c+h & e+j & f+g \\ e+g & a+c & b+i & d+f & h+j \\ f+j & e+h & d+g & b+c & a+i \\ d+h & b+f & a+j & g+i & c+e \\ c+i & g+j & e+f & a+h & b+d \end{pmatrix}$$

The optimal is 10, which will never be reached by any Birkhoff heuristic (Dufossé et al. 2018)

Sparse coding

- New family of heuristics which take inspiration from the field of sparse coding
- Sparse coding problem:

Given an observation $\mathbf{a} \in \mathbb{R}^d$, linear combination of atoms coming from a dictionary $\mathbf{M} \in \mathbb{R}^{d \times k}$, find coefficients $\mathbf{x} \in \mathbb{R}^k$ such that $\mathbf{a} \approx \mathbf{M} \mathbf{x}$ and \mathbf{x} is the sparsest, i.e., it has as few non-zero entries as possible

Sparse coding

BvN decomposition with min. terms as a sparse coding problem, introduced by Dufossé et al. 2018

The permutations are ordered arbitrarily as P_1 , P_2 ,..., $P_{n!}$

$$\mathbf{M} = (\operatorname{vec}(\mathbf{P}_1)|\operatorname{vec}(\mathbf{P}_2)|\cdots|\operatorname{vec}(\mathbf{P}_{n!}))$$

Define $\mathbf{a} = \text{vec}(\mathbf{A})$ and solve the sparse coding problem

$$\mathbf{a} = \mathbf{M}\mathbf{x}$$

GOMPBVN

- 1. Background
 - Birkhoff theorem
 - Applications
 - Heuristics
 - Sparse coding

2. GompBvN

- Algorithm
- Results
- 3. Generalisation of the BvN decomposition
- 4. Conclusion

Algorithm: GompBvN

GOMPBVN: Adaptation of the Orthogonal Matching Pursuit (OMP) algorithm to the BvN decomposition.

After much modifications and optimizations:

1: Let
$$i \leftarrow 1$$
, $S \leftarrow \emptyset$, $\mathbf{x} \leftarrow 0$

2: while has not converged do

3:
$$\mathbf{A}^{(i)} \leftarrow \mathbf{A} - \sum_{\mathbf{P}_j \in S} x_j^{(i-1)} \mathbf{P}_j$$

4: find a perfect matching
$$P_i \subseteq A^{(i)}$$

5: $S \leftarrow S \cup \{\mathbf{P}_i\}$

7:
$$i \leftarrow i + 1$$

 $\triangleright OMP_1$

 $\triangleright OMP_2$

Algorithm: GompBvN

- ▶ By recomputing coefficients, we mean finding the "best" approximation given the permutations matrices already found. One can solve in OMP₂
 - $ightharpoonup \min_{\mathbf{x}} \|\mathbf{A} \sum_{\mathbf{P}_i \in S} x_i \mathbf{P}_j\|_2^2$: this gives a quadratic program
 - $ightharpoonup \min_{\mathbf{x}} \|\mathbf{A} \sum_{\mathbf{P}_i \in S} x_j \mathbf{P}_j\|_1$: this gives a linear program
- ▶ In OMP₁, we pick a matching: take the best option from literature on Birkhoff heuristics (e.g. bottleneck matching, Dufossé and Uçar 2016)
- ▶ If we compute x_i and do not optimize on \mathbf{x} we get a Birkhoff heuristic

Results

- ► GOMPBVN performs similarly than the best Birkhoff-heuristic on matrices appearing in real-life applications
- ➤ Solves optimally instances that were previously out of reach:
 We have a class of matrix on which GompBvN will always be nearly
 2 times better than Birkhoff

Size	Optimum	Birkhoff	GompBvN
100	10	19	11
200	15	29	16
500	20	39	21

Example of a computation

Both algorithm

$$\begin{pmatrix} 3 & 264 & 132 & 528 & 96 \\ 80 & 5 & 258 & 40 & 640 \\ 544 & 144 & 72 & 6 & 257 \\ 136 & 34 & 513 & 320 & 20 \\ 260 & 576 & 48 & 129 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 264 & 132 & 15 & 96 \\ 80 & 5 & 258 & 40 & 127 \\ 136 & 34 & 0 & 320 & 20 \\ 260 & 63 & 48 & 129 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 7 & 132 & 15 & 96 \\ 80 & 5 & 1 & 40 & 127 \\ 31 & 144 & 72 & 6 & 0 \\ 136 & 34 & 0 & 63 & 20 \\ 3 & 63 & 48 & 129 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 7 & 5 & 15 & 96 \\ 80 & 5 & 1 & 40 & 0 \\ 9 & 34 & 0 & 63 & 20 \\ 3 & 63 & 48 & 2 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 7 & 5 & 15 & 96 \\ 80 & 5 & 1 & 40 & 0 \\ 9 & 34 & 0 & 63 & 20 \\ 3 & 63 & 48 & 2 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 7 & 5 & 15 & 96 \\ 80 & 5 & 1 & 40 & 0 \\ 9 & 34 & 0 & 63 & 20 \\ 3 & 0 & 48 & 2 & 10 \end{pmatrix}$$

Birkhoff

$$\rightarrow \begin{pmatrix} 3 & 7 & 5 & 15 & 2 \\ 17 & 5 & 1 & 9 & 0 \\ 0 & 17 & 9 & 6 & 0 \\ 9 & 3 & 0 & 0 & 20 \\ 3 & 0 & 17 & 2 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 7 & 5 & 0 & 2 \\ 2 & 5 & 1 & 9 & 0 \\ 0 & 2 & 9 & 6 & 0 \\ 9 & 3 & 0 & 0 & 5 \\ 3 & 0 & 2 & 2 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 0 & 5 & 0 & 2 \\ 2 & 5 & 1 & 2 & 0 \\ 0 & 2 & 2 & 6 & 0 \\ 2 & 3 & 0 & 0 & 2 \\ 3 & 0 & 2 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 0 & 2 & 0 & 2 \\ 2 & 2 & 1 & 2 & 0 \\ 0 & 2 & 2 & 3 & 0 \\ 2 & 3 & 0 & 0 & 2 \\ 0 & 0 & 2 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 0 & 2 \\ 2 & 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 3 & 0 \\ 2 & 1 & 0 & 0 & 2 \\ 0 & 0 & 2 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 2 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

GOMPBVN

$$\rightarrow \begin{pmatrix} 3 & 7 & 3 & 17 & 0 \\ 17 & 5 & 1 & 7 & 0 \\ 0 & 15 & 9 & 6 & 0 \\ 7 & 1 & 2 & 0 & 20 \\ 3 & 2 & 15 & 0 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 7 & 4 & 0 & 1 \\ 1 & 5 & 1 & 8 & 0 \\ 0 & 0 & 9 & 6 & 0 \\ 8 & 2 & 1 & 0 & 4 \\ 3 & 1 & 0 & 1 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 0 & 4 & 0 & 0 \\ 0 & 5 & 2 & 0 & 0 \\ 0 & 0 & 0 & 6 & 1 \\ 0 & 2 & 1 & 0 & 0 \\ 4 & 0 & 0 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Publication

This work was accepted for publication at EUSIPCO 2024 "Orthogonal Matching Pursuit-based algorithm for the Birkhoff-von Neumann decomposition"

1. Background

- Birkhoff theorem
- Applications
- Heuristics
- Sparse coding

2. GompBvN

- Algorithm
- Results

3. Generalisation of the BvN decomposition

4. Conclusion

Given **bipartite graph** and a weighting in the convex hull of its perfect matchings, \rightarrow find a decomposition

Given **GENERAL** graph and a weighting in the convex hull of its perfect matchings,

→ find a decomposition

Given **GENERAL** graph and a weighting in the convex hull of its perfect matchings,

→ find a decomposition

- cannot choose any perfect matching
- coefficient is not always the minimum edge value

- \triangleright V. Vazirani showed in 2020 that the problem is in \mathcal{P}
- ► Issues:
 - For G = (V, E), n = |V|, m = |E|, it costs $O(n^2m^3)$ max-flow min-cut computations
 - not implementable easily

- ightharpoonup Vazirani showed in 2020 that the problem is in ${\cal P}$
- ► Issues:
 - ► $O(n^2m^3)$ max-flow min-cut computations
 - $\rightarrow O(n^3 \log(n) + n^2 m)$ max-flow min-cut
 - not implementable easily
 - \rightarrow first implementation for the problem in Python

Conclusion

- ► New family of heuristics for the sparse BvN decomposition problem based on the sparse coding problem
 - New technique: recompute coefficients at each step
 - Strictly extends the state of the art for the problem
- ► First implementation for the generalised BvN decomposition problem
- Future work: extend both algorithms