Greedy algorithms for computing the Birkhoff-von Neumann decomposition

Damien Lesens
Supervised by Bora Uçar and Jérémy E. Cohen
ROMA team, LIP, ENS de Lyon
June 2024

Plan

1. Background

- Birkhoff theorem
- Applications
- Heuristics
- Sparse coding

2. GompBvN

- Algorithm
- Results

3. Generalisation of the BvN decomposition
4. Conclusion

Background

1. Background

- Birkhoff theorem
- Applications
- Heuristics
- Sparse coding

2. GompBvN

- Algorithm
- Results

3. Generalisation of the BvN decomposition

4. Conclusion

Birkhoff theorem

Definition

An $n \times n$ matrix A is doubly stochastic if $a_{i j} \geq 0$, row sums and column sums are 1

Theorem (Birkhoff, von Neumann)

For a doubly stochastic matrix \mathbf{A}, there exist $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in(0,1]$ with $\sum_{i=1}^{k} \alpha_{i}=1$ and $n \times n$ permutation matrices $\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{k}$ such that

$$
\mathbf{A}=\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}+\cdots+\alpha_{k} \mathbf{P}_{k}
$$

Applications

- Generalises to a large class of matrix \rightarrow numerical applications
- Routing traffic in data centers (circuit switches)
- Assignment problems and economics

Applications

- Generalises to a large class of matrix \rightarrow numerical applications
- Routing traffic in data centers (circuit switches)
- Assignment problems and economics

> All these applications gain in efficiency if the number of components k is small

The BvN decomposition is not unique

The problem

Sparse BvN decomposition problem
Given a doubly stochastic matrix \mathbf{A}
find a Birkhoff-von Neumann decomposition

$$
\mathbf{A}=\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}+\cdots+\alpha_{k} \mathbf{P}_{k}
$$

such that k is minimum

The problem

Sparse BvN decomposition problem
Given a doubly stochastic matrix A
find a Birkhoff-von Neumann decomposition

$$
\mathbf{A}=\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}+\cdots+\alpha_{k} \mathbf{P}_{k}
$$

such that k is minimum

- Dufossé and Uçar proved that the problem is NP-complete
- Design heuristics

Known heuristics

- represent a doubly stochastic matrix as a bipartite graph
- Algorithm: Birkhoff heuristic
- find a perfect matching in this graph
- the coefficient is the minimum entry in the permutation
- update and continue until all entries are zero

$$
R\left(\begin{array}{lll}
& C \\
7 & 4 & 0 \\
1 & 5 & 5 \\
3 & 2 & 6
\end{array}\right)
$$

$$
=2\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+\left(\begin{array}{lll}
5 & 4 & 0 \\
1 & 5 & 3 \\
3 & 0 & 6
\end{array}\right)
$$

(a) Matrix representation

(b) Graph representation

Hard cases

- heuristics differ by the way the matching is chosen at each step \rightarrow Dufossé and Uçar 2016
- inherent limitation : set an entry to zero at each step

Hard cases

- heuristics differ by the way the matching is chosen at each step
\rightarrow Dufossé and Uçar 2016
- inherent limitation : set an entry to zero at each step
- hard instance:

$$
\begin{gathered}
a \\
\mathbf{A} \\
\hline 1
\end{gathered} \left\lvert\, \begin{array}{c|c|c|c|c|c|c|c|c}
a & c & d & e & f & g & h & i & j \\
\hline 1023 & 16 & 32 & 64 & 128 & 256 & 512 \\
& \left(\begin{array}{cccccc}
a+b & d+i & c+h & e+j & f+g \\
e+g & a+c & b+i & d+f & h+j \\
f+j & e+h & d+g & b+c & a+i \\
d+h & b+f & a+j & g+i & c+e \\
c+i & g+j & e+f & a+h & b+d
\end{array}\right)
\end{array}\right.
$$

The optimal is 10 , which will never be reached by any Birkhoff heuristic (Dufossé et al. 2018)

Sparse coding

- New family of heuristics which take inspiration from the field of sparse coding
- Sparse coding problem:

Given an observation $\mathbf{a} \in \mathbb{R}^{d}$, linear combination of atoms coming from a dictionary $M \in \mathbb{R}^{d \times k}$, find coefficients $\mathbf{x} \in \mathbb{R}^{k}$ such that $\mathbf{a} \approx \mathbf{M x}$ and \mathbf{x} is the sparsest, i.e., it has as few non-zero entries as possible

Sparse coding

BvN decomposition with min. terms as a sparse coding problem, introduced by Dufossé et al. 2018

The permutations are ordered arbitrarily as $\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{n!}$

$$
\mathbf{M}=\left(\operatorname{vec}\left(\mathbf{P}_{1}\right)\left|\operatorname{vec}\left(\mathbf{P}_{2}\right)\right| \cdots \mid \operatorname{vec}\left(\mathbf{P}_{n!}\right)\right)
$$

Define $\mathbf{a}=\operatorname{vec}(\mathbf{A})$ and solve the sparse coding problem

$$
\mathbf{a}=\mathrm{Mx}
$$

GompBrN

1. Background

- Birkhoff theorem
- Applications
- Heuristics
- Sparse coding

2. GompBvN

- Algorithm
- Results

3. Generalisation of the BvN decomposition

4. Conclusion

Algorithm: GompBvN

GompBvN: Adaptation of the Orthogonal Matching Pursuit (OMP) algorithm to the BvN decomposition.

After much modifications and optimizations:

1: Let $i \leftarrow 1, S \leftarrow \emptyset, \mathbf{x} \leftarrow 0$
2: while has not converged do
3: $\quad \mathbf{A}^{(i)} \leftarrow \mathbf{A}-\sum_{\mathbf{P}_{j} \in S} x_{j}^{(i-1)} \mathbf{P}_{j}$
4: find a perfect matching $\mathbf{P}_{i} \subseteq \mathbf{A}^{(i)} \quad \triangleright O M P_{1}$
5: $\quad S \leftarrow S \cup\left\{\mathbf{P}_{i}\right\}$
6: recompute coefficients $\mathbf{x} \quad \triangleright O M P_{2}$
7: $\quad i \leftarrow i+1$
8: end while

Algorithm: GompBvN

- By recomputing coefficients, we mean finding the "best" approximation given the permutations matrices already found. One can solve in OMP_{2}
$-\min _{\mathbf{x}}\left\|\mathbf{A}-\sum_{\mathbf{P}_{j} \in S} x_{j} \mathbf{P}_{j}\right\|_{2}^{2}$: this gives a quadratic program
$-\min _{\mathbf{x}}\left\|\mathbf{A}-\sum_{\mathbf{P}_{j} \in S} x_{j} \mathbf{P}_{j}\right\|_{1}$: this gives a linear program
- In $O M P_{1}$, we pick a matching: take the best option from literature on Birkhoff heuristics (e.g. bottleneck matching, Dufossé and Uçar 2016)
- If we compute x_{i} and do not optimize on \mathbf{x} we get a Birkhoff heuristic

Results

- GompBvN performs similarly than the best Birkhoff-heuristic on matrices appearing in real-life applications
- Solves optimally instances that were previously out of reach: We have a class of matrix on which GompBvN will always be nearly 2 times better than Birkhoff

Size	Optimum	Birkhoff	GompBvN
100	10	19	11
200	15	29	16
500	20	39	21

Example of a computation

Both algorithm

Birkhoff

$$
\rightarrow\left(\begin{array}{ccccc}
3 & 7 & 5 & 15 & 2 \\
17 & 5 & 1 & 9 & 0 \\
0 & 17 & 9 & 6 & 0 \\
9 & 3 & 0 & 0 & 20 \\
3 & 0 & 17 & 2 & 10
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
3 & 7 & 5 & 0 & 2 \\
2 & 5 & 1 & 9 & 0 \\
0 & 2 & 9 & 6 & 0 \\
9 & 3 & 0 & 0 & 5 \\
3 & 0 & 2 & 2 & 10
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
3 & 0 & 5 & 0 & 2 \\
2 & 5 & 1 & 2 & 0 \\
0 & 2 & 2 & 6 & 0 \\
2 & 3 & 0 & 0 & 5 \\
3 & 0 & 2 & 2 & 3
\end{array}\right) \rightarrow\left(\begin{array}{lllll}
3 & 0 & 2 & 0 & 2 \\
2 & 2 & 1 & 2 & 0 \\
0 & 2 & 2 & 3 & 0 \\
2 & 3 & 0 & 0 & 2 \\
0 & 0 & 2 & 2 & 3
\end{array}\right) \rightarrow\left(\begin{array}{lllll}
1 & 0 & 2 & 0 & 2 \\
2 & 2 & 1 & 0 & 0 \\
0 & 2 & 0 & 3 & 0 \\
2 & 1 & 0 & 0 & 2 \\
0 & 0 & 2 & 2 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 2 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
2 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

GompBvN

$$
\rightarrow\left(\begin{array}{ccccc}
3 & 7 & 3 & 17 & 0 \\
17 & 5 & 1 & 7 & 0 \\
0 & 15 & 9 & 6 & 0 \\
7 & 1 & 2 & 0 & 20 \\
3 & 2 & 15 & 0 & 10
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
3 & 7 & 4 & 0 & 1 \\
1 & 5 & 1 & 8 & 0 \\
0 & 0 & 9 & 6 & 0 \\
8 & 2 & 1 & 0 & 4 \\
3 & 1 & 0 & 1 & 10
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
3 & 0 & 4 & 0 & 0 \\
0 & 5 & 2 & 0 & 0 \\
0 & 0 & 0 & 6 & 1 \\
0 & 2 & 1 & 0 & 4 \\
4 & 0 & 0 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lllll}
3 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Publication

This work was accepted for publication at EUSIPCO 2024 "Orthogonal Matching Pursuit-based algorithm for the Birkhoff-von Neumann decomposition"

Generalisation of the BvN decomposition

1. Background

- Birkhoff theorem
- Applications
- Heuristics
- Sparse coding

2. GompBvN

- Algorithm
- Results

3. Generalisation of the BvN decomposition

4. Conclusion

Generalisation of the BvN decomposition

Given bipartite graph and a weighting in

 the convex hull of its perfect matchings,\rightarrow find a decomposition

1
4

Generalisation of the BvN decomposition

Given GENERAL graph and a weighting in the convex hull of its perfect matchings, \rightarrow find a decomposition

Generalisation of the BvN decomposition

Given GENERAL graph and a weighting in the convex hull of its perfect matchings, \rightarrow find a decomposition

- cannot choose any perfect matching
- coefficient is not always the minimum edge value

Generalisation of the BvN decomposition

- V. Vazirani showed in 2020 that the problem is in \mathcal{P}
- Issues:
- For $G=(V, E), n=|V|, m=|E|$, it costs $O\left(n^{2} m^{3}\right)$ max-flow min-cut computations
- not implementable easily

Generalisation of the BvN decomposition

- Vazirani showed in 2020 that the problem is in \mathcal{P}
- Issues:
$-O\left(n^{2} m^{3}\right)$ max-flow min-cut computations
$\rightarrow O\left(n^{3} \log (n)+n^{2} m\right)$ max-flow min-cut
- not implementable easily
\rightarrow first implementation for the problem in Python

Conclusion

- New family of heuristics for the sparse BvN decomposition problem based on the sparse coding problem
- New technique: recompute coefficients at each step
- Strictly extends the state of the art for the problem
- First implementation for the generalised BvN decomposition problem
- Future work: extend both algorithms

