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Birkhoff theorem

Definition

An n × n matrix A is doubly stochastic if aij ≥ 0, row sums and column
sums are 1

Theorem (Birkhoff,von Neumann)

For a doubly stochastic matrix A, there exist α1, α2, . . . , αk ∈ (0, 1] with∑k
i=1 αi = 1 and n × n permutation matrices P1,P2, . . . ,Pk such that

A = α1P1 + α2P2 + · · ·+ αkPk
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Applications

▶ Generalises to a large class of matrix → numerical applications

▶ Routing traffic in data centers (circuit switches)

▶ Assignment problems and economics

All these applications gain in efficiency
if the number of components k is small

The BvN decomposition is not unique
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The problem

Sparse BvN decomposition problem

Given a doubly stochastic matrix A

find a Birkhoff-von Neumann decomposition

A = α1P1 + α2P2 + · · ·+ αkPk

such that k is minimum

▶ Dufossé and Uçar proved that the problem is NP-complete

▶ Design heuristics

Damien Lesens Greedy algorithms for computing the Birkhoff-von Neumann decomposition 4/18



The problem

Sparse BvN decomposition problem

Given a doubly stochastic matrix A

find a Birkhoff-von Neumann decomposition

A = α1P1 + α2P2 + · · ·+ αkPk

such that k is minimum
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Known heuristics

▶ represent a doubly stochastic matrix as a bipartite graph

▶ Algorithm: Birkhoff heuristic

▶ find a perfect matching in this graph

▶ the coefficient is the minimum entry in the permutation

▶ update and continue until all entries are zero
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(b) Graph representation

Damien Lesens Greedy algorithms for computing the Birkhoff-von Neumann decomposition 5/18



Hard cases

▶ heuristics differ by the way the matching is chosen at each step
→ Dufossé and Uçar 2016

▶ inherent limitation : set an entry to zero at each step

▶ hard instance:

a b c d e f g h i j

1 2 4 8 16 32 64 128 256 512

A =
1

1023


a+ b d + i c + h e + j f + g
e + g a+ c b + i d + f h + j
f + j e + h d + g b + c a+ i
d + h b + f a+ j g + i c + e
c + i g + j e + f a+ h b + d


The optimal is 10, which will never be reached
by any Birkhoff heuristic (Dufossé et al. 2018)
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Sparse coding

▶ New family of heuristics which take inspiration from the field of
sparse coding

▶ Sparse coding problem:

Given an observation a ∈ Rd , linear combination of atoms coming
from a dictionary M ∈ Rd×k , find coefficients x ∈ Rk

such that a ≈Mx and x is the sparsest, i.e., it has as few non-zero
entries as possible
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Sparse coding

BvN decomposition with min. terms as a sparse coding problem,
introduced by Dufossé et al. 2018

The permutations are ordered arbitrarily as P1, P2,..., Pn!

M = (vec(P1)| vec(P2)| · · · | vec(Pn!))

Define a = vec(A) and solve the sparse coding problem

a = Mx
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Algorithm: GompBvN

GompBvN: Adaptation of the Orthogonal Matching Pursuit (OMP)
algorithm to the BvN decomposition.

After much modifications and optimizations:

1: Let i ← 1, S ← ∅, x← 0
2: while has not converged do

3: A(i) ← A−
∑

Pj∈S x
(i−1)
j Pj

4: find a perfect matching Pi ⊆ A(i) ▷ OMP1

5: S ← S ∪ {Pi}
6: recompute coefficients x ▷ OMP2

7: i ← i + 1
8: end while
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Algorithm: GompBvN

▶ By recomputing coefficients, we mean finding the ”best”
approximation given the permutations matrices already found. One
can solve in OMP2

▶ minx ∥A−
∑

Pj∈S xjPj∥22: this gives a quadratic program

▶ minx ∥A−
∑

Pj∈S xjPj∥1: this gives a linear program

▶ In OMP1, we pick a matching: take the best option from literature on
Birkhoff heuristics (e.g. bottleneck matching, Dufossé and Uçar
2016)

▶ If we compute xi and do not optimize on x we get a Birkhoff heuristic
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Results

▶ GompBvN performs similarly than the best Birkhoff-heuristic on
matrices appearing in real-life applications

▶ Solves optimally instances that were previously out of reach:
We have a class of matrix on which GompBvN will always be nearly
2 times better than Birkhoff

Size Optimum Birkhoff GompBvN

100 10 19 11

200 15 29 16

500 20 39 21
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Example of a computation

Both algorithm
3 264 132 528 96
80 5 258 40 640
544 144 72 6 257
136 34 513 320 20
260 576 48 129 10

→


3 264 132 15 96
80 5 258 40 127
31 144 72 6 257
136 34 0 320 20
260 63 48 129 10

→


3 7 132 15 96
80 5 1 40 127
31 144 72 6 0
136 34 0 63 20
3 63 48 129 10

→


3 7 5 15 96
80 5 1 40 0
31 17 72 6 0
9 34 0 63 20
3 63 48 2 10

→


3 7 5 15 33
17 5 1 40 0
31 17 9 6 0
9 34 0 0 20
3 0 48 2 10



Birkhoff

→


3 7 5 15 2
17 5 1 9 0
0 17 9 6 0
9 3 0 0 20
3 0 17 2 10

→

3 7 5 0 2
2 5 1 9 0
0 2 9 6 0
9 3 0 0 5
3 0 2 2 10

→

3 0 5 0 2
2 5 1 2 0
0 2 2 6 0
2 3 0 0 5
3 0 2 2 3

→

3 0 2 0 2
2 2 1 2 0
0 2 2 3 0
2 3 0 0 2
0 0 2 2 3

→

1 0 2 0 2
2 2 1 0 0
0 2 0 3 0
2 1 0 0 2
0 0 2 2 1

→

1 0 0 0 2
0 2 1 0 0
0 0 0 3 0
2 1 0 0 0
0 0 2 0 1

→

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1



GompBvN

→


3 7 3 17 0
17 5 1 7 0
0 15 9 6 0
7 1 2 0 20
3 2 15 0 10

→

3 7 4 0 1
1 5 1 8 0
0 0 9 6 0
8 2 1 0 4
3 1 0 1 10

→

3 0 4 0 0
0 5 2 0 0
0 0 0 6 1
0 2 1 0 4
4 0 0 1 2

→

3 0 0 0 0
0 1 2 0 0
0 0 0 2 1
0 2 1 0 0
0 0 0 1 2

→

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
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Publication

This work was accepted for publication at EUSIPCO 2024
”Orthogonal Matching Pursuit-based algorithm for the Birkhoff-von
Neumann decomposition”
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Generalisation of the BvN decomposition

Given bipartite graph and a weighting in
the convex hull of its perfect matchings,
→ find a decomposition
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Generalisation of the BvN decomposition

Given GENERAL graph and a weighting in
the convex hull of its perfect matchings,
→ find a decomposition

▶ cannot choose any perfect matching

▶ coefficient is not always the minimum edge value
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Generalisation of the BvN decomposition

▶ V. Vazirani showed in 2020 that the problem is in P
▶ Issues:

▶ For G = (V ,E ), n = |V |, m = |E |, it costs O(n2m3) max-flow min-cut
computations

▶ not implementable easily
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Generalisation of the BvN decomposition

▶ Vazirani showed in 2020 that the problem is in P
▶ Issues:

▶ O(n2m3) max-flow min-cut computations

→ O(n3 log(n) + n2m) max-flow min-cut

▶ not implementable easily

→ first implementation for the problem in Python
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Conclusion

▶ New family of heuristics for the sparse BvN decomposition problem
based on the sparse coding problem

▶ New technique: recompute coefficients at each step

▶ Strictly extends the state of the art for the problem

▶ First implementation for the generalised BvN decomposition problem

▶ Future work: extend both algorithms
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