HPC in Healthcare

Hatem Ltaief Principal Research Scientist, KAUST CTO, AlgoDoers

Acknowledgments

Academic Collaborators:

KAUST: R. Alomairy (now at MIT), S. Bougoffa, D. E. Keyes, and J. Ren UTK: Q. Cao (now at St Louis University)

Vendor Collaborators:

NVIDIA: R. Abdelkhalek, T. Kurth, G. Paciucci, D. Ruau, and L. Slim

Resource Allocations:

Shaheen-2/3 and Ibex @ KAUST Supercomputing Lab, Saudi Arabia HAWK @ HLRS, Germany (M. Resch) Frontier @ ORNL, USA (US DOE) Summit @ ORNL, USA (US DOE) Fugaku @ Riken, Japan (S. Matsuoka) Leonardo @ CINECA, Italy (G. Scipione) Fromage @ NVIDIA, UK (F. Spiga)

Key Approach Based on a Separation of Concerns

DAG Asynchronous Scheduling

LAPACK: Column-major data layout format.

Chameleon: Tile data layout format.

Cholesky factorization DAG

The ECP PaRSEC Dynamic Runtime System

Tile-Centric Matrix Approximations in ExaGeoStat

Peak Performance of NVIDIA GPUs (Tflops/s)

https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip

Genome-Wide Association Study

Population

Genotyping

Statistical association

Genome-Wide Association Study: GB entry @ SC24

Toward Capturing Genetic Epistasis From Multivariate Genome-Wide Association Studies Using Mixed-Precision Kernel Ridge Regression

Hatem Ltaief^{1,6}, Rabab Alomairy^{2,7}, Jie Ren^{1,6}, Qinglei Cao^{3,8}, Lotfi Slim^{4,9}, Salim Bougouffa^{5,6}, David Ruau^{4,10}, Rached Abdelkhalek^{4,11}, and David E. Keyes^{1,6}

¹Extreme Computing Research Center, Applied Mathematics and Computational Sciences Program, King Abdullah University of Science and Technology, KSA. ²Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA. ³Department of Computer Science, Saint Louis University, USA. ⁴NVIDIA, USA. ⁵Computational Bioscience Research Center, King Abdullah University of Science and Technology, KSA. ⁶{Firstname.Lastname}@kaust.edu.sa ⁷rababalomairy@csail.mit.edu ⁸qinglei.cao@slu.edu ⁹lslim@nvidia.com ¹⁰druau@nvidia.edu ¹¹rabdelkhalek@nvidia.com

Genome-Wide Association Study: GB entry @ SC24

II. PERFORMANCE ATTRIBUTES

Performance Attributes	Value
Problem Size	305K UK BioBank patients [real data]
	8M patients [synthetic data]
Category of achievement	Scalability, performance,
	time to solution
Type of method used	Kernel Ridge Regression
Results reported on basis of	Whole-application GWAS
	Cholesky factorization
Precision reported	FP64, FP32, FP16, FP8, INT8
System scale	2/3 of Summit ¹
	1/3 of Leonardo ¹
	- projected to ~ 2 MP Eflop/s with weak
	scaling on full Leonardo system
Measurement mechanism	Timers, Flops

Overview of the GWAS Problem

- Analyze DNA sequence variations spanning an entire genome
- Identify genetic risk factors for common diseases or other traits within a population
- Use genetic factors to make predictions about individuals at risk and to identify the biological underpinnings of disease
- Expose big data challenges: Genotypes (million of SNPs) >> Phenotypes (hundreds of diseases)

State-Of-The-Art

- Use linear models: overfitting issues, accuracy (illconditioned matrix). Penalized regression approaches come to rescue, e.g., ridge regression and LASSO
- Capture the nonlinear nature of genotype-phenotype relationships, i.e., epistasis (interactions between distant loci), gene-environment interactions, and non-additive genetic effects
- Transform the input data into a higher-dimensional feature space where nonlinear relationships can be more effectively captured and modeled
- Democratize Kernel Ridge Regression (KRR) for GWAS

General Algorithms

Algorithm 1: Three-Phase Kernel Ridge Regression (KRR) for GWAS.

1: Input

- 2: N_{P1} : # of Patients in training set
- 3: N_{P2} : # of Patients in testing set
- 4: N_S : # of SNPs
- 5: N_{Ph} : # of Phenotypes
- 6: $G: N_{P1} \times N_S$ (Training genotype matrix)
- 7: $P_h: N_{P1} \times N_{Ph}$ (Training phenotype matrix)
- 8: $T: N_{P2} \times N_S$ (Testing genotype matrix)
- 9: γ : kernel bandwidth
- 10: α : regularization parameter

11: Output

- 12: $K: N_{P1} \times N_{P1}$ (KRR matrix)
- 13: $W: N_{P1} \times N_{Ph}$ (Weight matrix)
- 14: $P_r: N_{P2} \times N_{Ph}$ (Predictions)
- 15: **Phase 1:** $BUILD(\gamma, G, G, K)$
- 16: **Phase 2:** ASSOCIATE (α, K, P_h, W)
- 17: **Phase 3:** PREDICT (γ, G, T, W, P_r)

- 1: **Procedure** PREDICT (γ, G, T, W, P_r)
- 2: $N_{P1} \leftarrow \text{rowsize}(G)$
- 3: $N_{P2} \leftarrow \text{rowsize}(T)$
- 4: $K: N_{P2} \times N_{P1}$ (test-training kernel matrix)
- 5: $\operatorname{BUILD}(\gamma, T, G, K)$
- 6: $P_r \leftarrow K \times W$

The Build Phase

Algorithm 5: Kernel Matrix Definitions.

- 1: Function KERNELMATRIX(type, γ , p_1 , p_2)
- 2: $N_S \leftarrow \operatorname{size}(p_1)$
- 3: **if** type == 'Gaussian' **then**
- 4: **return** $e^{-\gamma \cdot \|p_1 p_2\|^2}$
- 5: else if type == 'IBS' then
- 6: return $\frac{p_1 \sim p_2}{N_S}$
- 7: end if

- Compute Euclidean distance between each pair of individual (slow)
- Exponent the results
- Generate the covariance matrix

The Associate Phase

The Predict Phase

GWAS surfing the AI wave w/ low precision arithmetics

Fig. 4: Precision heatmaps.

(a) RR vs KRR for Hypertension.

(b) RR vs KRR for Asthma.

(c) RR vs KRR for Allergic Rhinitis.

(d) RR vs KRR for Osteoarthritis.

(e) RR vs KRR for Depression.

Performance Results: multi-node, multi GPU

Fig. 9: Performance scalability of the Associate phase of the KRR-based GWAS ($N_P = N_S$) on Summit.

Performance Results: multi-node, multi GPU

Fig. 8: Performance scalability of the Associate phase for the KRR-based GWAS ($N_P = N_S$) on Leonardo.

Performance Results: strong scaling

Fig. 11: Strong Scaling on Leonardo using various precision configurations, i.e., FP64/FP16 and FP64/FP16.

The Build Phase

B. Gallet and M. Gowanlock. Leveraging GPU Tensor Cores for Double Precision Euclidean Distance Calculations. IEEE HiPC, 2022.

Performance Results: single-node, multiple GPUs

Fig. 6: Impact of # SNPs on distance kernel performance.

Performance Results: weak scaling

Fig. 10: Weak Scaling on Leonardo using various precision configurations, i.e., FP64/FP16 and FP64/FP16.

We expect 2 Eflop/s of sustained performance on fullscale Leonardo

Performance Results: single-node, single GPU

Fig. 7: Performance of FP64/FP8 and FP64/FP32 on H100 PCIe.

We hope to have access to NVIDIA EOS System

We are recruiting! Check it out @ www.algodoers.com

(intel)

NVIDIA

Hewlett Packard

Enterprise

30

PASQAL

Thanks, QUESTIONS?