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Key Approach Based on a Separation of Concerns



DAG Asynchronous Scheduling

Cholesky factorization DAG



The ECP PaRSEC Dynamic Runtime System



Tile-Centric Matrix Approximations in ExaGeoStat

Exact Computation Tile Low-Rank (TLR)
Computation

Mixed-precision (MP)
Higham and Mary, 2021

MP + TLR

Reduce memory footprint
ACM PASC’20

ACM SC’23 GB Finalist
Increase arithmetic intensity

IEEE TPDS’22
IEEE Cluster’23

ACM SC’24 GB Finalist

Combine best
of the two worlds

ACM SC’22 GB Finalist



Peak Performance of NVIDIA GPUs (Tflops/s)

https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip

Stunning
hardware evolution!

B200

FP4 Tensor Core: 14 Pflops/s
FP8/FP6 Tensor Core: 7 Pflops/s
INT8 Tensor Core: 7 POPs
FP16/BF16 Tensor Core: 3.5 Pflops/s
TF32 Tensor Core: 1.8 Pflops/s
FP64 Tensor Core: 60 Pflops/s

https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet
https://resources.nvidia.com/en-us-grace-cpu/grace-hopper-superchip
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Genome-Wide Association Study



Genome-Wide Association Study: GB entry @ SC24
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Genome-Wide Association Study: GB entry @ SC24
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Overview of the GWAS Problem
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• Analyze DNA sequence variations spanning an 
entire genome

• Identify genetic risk factors for common 
diseases or other traits within a population

• Use genetic factors to make predictions about 
individuals at risk and to identify the biological 
underpinnings of disease

• Expose big data challenges: Genotypes (million 
of SNPs) >> Phenotypes (hundreds of 
diseases)



State-Of-The-Art
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• Use linear models: overfitting issues, accuracy (ill-
conditioned matrix). Penalized regression approaches 
come to rescue, e.g., ridge regression and LASSO 

• Capture the nonlinear nature of genotype-phenotype 
relationships, i.e., epistasis (interactions between distant 
loci), gene-environment interactions, and non-additive 
genetic effects

• Transform the input data into a higher-dimensional feature 
space where nonlinear relationships can be more 
effectively captured and modeled

• Democratize Kernel Ridge Regression (KRR) for GWAS



General Algorithms

13



The Build Phase
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- Compute Euclidean distance between each pair of individual (slow)
- Exponent the results
- Generate the covariance matrix 



The Associate Phase
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The Predict Phase
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GWAS surfing the AI wave w/ low precision arithmetics
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300K Patients from UK BioBank: MSPE assessment
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300K Patients from UK BioBank: MSPE assessment
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300K Patients from UK BioBank: MSPE assessment
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300K Patients from UK BioBank: MSPE assessment
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300K Patients from UK BioBank: MSPE assessment
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Performance Results: multi-node, multi GPU
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Performance Results: multi-node, multi GPU
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Performance Results: strong scaling



The Build Phase
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- Compute Euclidean distance between each pair of individual (slow)
- Exponent the results
- Generate the covariance matrix 

B. Gallet and M. Gowanlock. 
Leveraging GPU Tensor Cores 
for Double Precision Euclidean 
Distance Calculations. IEEE 
HiPC, 2022.



Performance Results: single-node, multiple GPUs
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Performance Results: weak scaling

We expect 2 Eflop/s of sustained performance
on fullscale Leonardo
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Performance Results: single-node, single GPU

We hope to have access to NVIDIA EOS System 
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We are recruiting! Check it out @ www.algodoers.com 




