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Introduction

▶ Problem: Scheduling task graphs to minimize memory consumption
rather than execution speed.

▶ Context: High-performance computing, especially for applications
with large memory footprints (e.g., machine learning).

▶ Objective: Reduce memory writes to external storage by minimizing
memory usage during execution.
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Intuition

▶ Previous approaches target the minimization of the peak memory
▶ It may not be effective in shared memory environments
▶ We focus on reducing average memory consumption to improve

overall performance
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4 / 26



Intuition

▶ Previous approaches target the minimization of the peak memory
▶ It may not be effective in shared memory environments
▶ We focus on reducing average memory consumption to improve

overall performance

Time

Memory Usage Peak memory

Average memory

Potentially better for parallel execution

4 / 26



Intuition

▶ Previous approaches target the minimization of the peak memory
▶ It may not be effective in shared memory environments
▶ We focus on reducing average memory consumption to improve

overall performance

Time

Memory Usage Peak memory

Average memory

Potentially better for parallel execution

4 / 26



Intuition

▶ Previous approaches target the minimization of the peak memory
▶ It may not be effective in shared memory environments
▶ We focus on reducing average memory consumption to improve

overall performance

Time

Memory Usage Peak memory

Average memory

Potentially better for parallel execution

4 / 26



2 Memory models
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Figure: Pumpkin graph in the multiple
data model
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Figure: Pumpkin in the single data
model

▶ Task Graphs: Represented by Directed Acyclic Graphs (DAGs).
▶ Vertices (V): Tasks.
▶ Edges (E): Data dependencies between tasks.
▶ Goal: Execute tasks to minimize memory consumption while

respecting data dependencies and execution times.
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Model - multiple data
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Figure: Pumpkin graph in the multiple
data model

▶ Each edge (u, v) has an
associated data of weight wu,v

▶ The data stays in memory until
all v has started its execution

▶ Equivalent to the Weighted
Linear Arrangement problem

Definition (Weighted Linear Arrangement)
Given a valid schedule ϕ for a DAG G , we define the weighted linear
arrangement cost of ϕ by:

WLAG(ϕ) =
∑

(u,v)∈E
wu,v (ϕ(v) − ϕ(u))
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Model - single data

▶ Each vertex v has an associated
outgoing data of weight wv

▶ The data stays in memory until
all childs of v have started being
executed

▶ Equivalent to the Weighted Sum
Cut problem
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Figure: Pumpkin in the single data
model

Definition (Weighted Sum Cut)
Given a valid schedule ϕ for a DAG G , we define the weighted sumcut of ϕ
by:

WSCG(ϕ) =
∑
u∈V

wu max
v∈V +(u)

(ϕ(v) − ϕ(u))
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Previous works

Graph Type Weighted Unweighted
Directed General : NP-C General : NP-C

Out-tree : O(n log(n)) Out-tree : O(n)
In-tree : O(n log(n)) In-tree : O(n)

Undirected General : NP-C General : NP-C
Tree : O(n1.58)

Table: Summary of Linear Arrangement complexities (multiple data model)

Graph Type Weighted Unweighted
Directed General : NP-C General: NP-C

In-trees : O(n log(n)) In-tree : O(n)
Out-tree : O(n)

Undirected General : NP-C General : NP-C
Tree : O(n)

Table: Summary of SumCut complexities (single data model)
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Linear Arrangement (multiple data) on pumpkins
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Figure: Min-cut (S, T ) of a graph G

▶ We want to split the graph in half, to reuse algorithms on in-trees and
out-trees
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▶ We want to split the graph in half, to reuse algorithms on in-trees and
out-trees

Reducing the cost along chain 1
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Linear Arrangement (multiple data) on pumpkins
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(b) New schedule ϕ′ = ϕ[S] + ϕ[T ]

Figure: Schedule transformation with a cut
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Linear Arrangement (multiple data) on pumpkins

▶ Finding the min cut: O(n)
▶ Solving Linear Arrangement on in-tree and out-tree: O(n log(n))
▶ Gives an O(n log(n)) algorithm
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Sum Cut (single data) on pumpkins
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Figure: Cut (S, T ) of a graph G

▶ We can’t split at the min-cut like before

▶ Transform our graph into another pumpkin in the multiple data model
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Sum Cut (single data) on pumpkins

▶ O
(
nk

)
cuts

▶ Solving Linear Arrangement on in-tree and pumpkin: O(n log(n))
▶ Gives an O

(
nkn log(n)

)
algorithm

We look for heuristics, as we are competing against an O(n log(n))
algorithm.
▶ Greedy algorithms (greedy memory, greedy time)
▶ Random cut
▶ Local search
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Experiments

▶ C++ implementation of all the algorithms using the Boost Graph
Library

▶ TaGaDa tool for graph generation
▶ Some other graphs from real world applications (trees)
▶ Compared with the state of the art algorithm for reducing the Peak

memory usage
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Experiments - Heuristics for WSC on pumpkins

Comparison of heuristics for WSC (single data) on random pumpkins
▶ Local search is on average within 5% of the optimal cost
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Experiments - Comparing average and peak

Average memory cost of
a schedule minimizing
the peak memory
▶ 5% worse cost on

average

Peak memory cost of a
schedule minimizing the
average memory
▶ Almost always the

optimal cost
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Experiments - Parallel Execution

▶ Multiple task graphs in parallel
▶ Minimizing the peak memory for each graph compared to minimizing

the average memory for each graph
▶ The overall peak is up to 5% lower by using average rather than peak!
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Conclusion

▶ Novel approach for scheduling task graphs to reduce average memory
consumption.

▶ New exact algorithms and heuristics.
▶ Improved performance in parallel processing setups compared to

focusing on the peak.
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Questions

Thank you for your attention!
Any questions?

25 / 26


	Introduction
	Model
	Algorithms
	Exact Algorithms
	Heuristics

	Experiments
	Heuristics
	Comparison with Peak
	Parallel Execution

	Conclusion

