
Scheduling Task Graphs for
Average Memory Consumption Reduction

Adrien Obrecht

ENS de Lyon

June 25, 2024

1 / 26



Overview

1. Introduction

2. Model

3. Algorithms
Exact Algorithms
Heuristics

4. Experiments
Heuristics
Comparison with Peak
Parallel Execution

5. Conclusion

2 / 26



Introduction

▶ Problem: Scheduling task graphs to minimize memory consumption
rather than execution speed.

▶ Context: High-performance computing, especially for applications
with large memory footprints (e.g., machine learning).

▶ Objective: Reduce memory writes to external storage by minimizing
memory usage during execution.

3 / 26



Intuition

▶ Previous approaches target the minimization of the peak memory
▶ It may not be effective in shared memory environments
▶ We focus on reducing average memory consumption to improve

overall performance

Time

Memory Usage

Peak memory

Average memory

Potentially better for parallel execution

4 / 26



Intuition

▶ Previous approaches target the minimization of the peak memory
▶ It may not be effective in shared memory environments
▶ We focus on reducing average memory consumption to improve

overall performance

Time

Memory Usage Peak memory

Average memory

Potentially better for parallel execution

4 / 26



Intuition

▶ Previous approaches target the minimization of the peak memory
▶ It may not be effective in shared memory environments
▶ We focus on reducing average memory consumption to improve

overall performance

Time

Memory Usage Peak memory

Average memory

Potentially better for parallel execution

4 / 26



Intuition

▶ Previous approaches target the minimization of the peak memory
▶ It may not be effective in shared memory environments
▶ We focus on reducing average memory consumption to improve

overall performance

Time

Memory Usage Peak memory

Average memory

Potentially better for parallel execution

4 / 26



2 Memory models

1

2 3 4

5

6 7

8

w1,2

w1,5

w1,6

w2,3 w3,4

w6,7

w4,8

w5,8

w7,8

Figure: Pumpkin graph in the multiple
data model

1

2 3 4

5

6 7

8
w1

w2 w3

w6

w4

w5

w7

Figure: Pumpkin in the single data
model

▶ Task Graphs: Represented by Directed Acyclic Graphs (DAGs).
▶ Vertices (V): Tasks.
▶ Edges (E): Data dependencies between tasks.
▶ Goal: Execute tasks to minimize memory consumption while

respecting data dependencies and execution times.

5 / 26



Model - multiple data

1

2 3 4

5

6 7

8

w1,2

w1,5

w1,6

w2,3 w3,4

w6,7

w4,8

w5,8

w7,8

Figure: Pumpkin graph in the multiple
data model

▶ Each edge (u, v) has an
associated data of weight wu,v

▶ The data stays in memory until
all v has started its execution

▶ Equivalent to the Weighted
Linear Arrangement problem

Definition (Weighted Linear Arrangement)
Given a valid schedule ϕ for a DAG G , we define the weighted linear
arrangement cost of ϕ by:

WLAG(ϕ) =
∑

(u,v)∈E
wu,v (ϕ(v) − ϕ(u))

6 / 26



Model - single data

▶ Each vertex v has an associated
outgoing data of weight wv

▶ The data stays in memory until
all childs of v have started being
executed

▶ Equivalent to the Weighted Sum
Cut problem

1

2 3 4

5

6 7

8
w1

w2 w3

w6

w4

w5

w7

Figure: Pumpkin in the single data
model

Definition (Weighted Sum Cut)
Given a valid schedule ϕ for a DAG G , we define the weighted sumcut of ϕ
by:

WSCG(ϕ) =
∑
u∈V

wu max
v∈V +(u)

(ϕ(v) − ϕ(u))

7 / 26



Previous works

Graph Type Weighted Unweighted
Directed General : NP-C General : NP-C

Out-tree : O(n log(n)) Out-tree : O(n)
In-tree : O(n log(n)) In-tree : O(n)

Undirected General : NP-C General : NP-C
Tree : O(n1.58)

Table: Summary of Linear Arrangement complexities (multiple data model)

Graph Type Weighted Unweighted
Directed General : NP-C General: NP-C

In-trees : O(n log(n)) In-tree : O(n)
Out-tree : O(n)

Undirected General : NP-C General : NP-C
Tree : O(n)

Table: Summary of SumCut complexities (single data model)

8 / 26



Linear Arrangement (multiple data) on pumpkins

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

0 16
5

6 7 2 9

3

5 2 1 8 5 4

6

4 6 2 4

2

S T

Figure: Min-cut (S, T ) of a graph G

▶ We want to split the graph in half, to reuse algorithms on in-trees and
out-trees

9 / 26



Linear Arrangement (multiple data) on pumpkins

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

0 16
3

4 5 0 7

1

5 2 1 8 5 4

6

4 6 2 4

3

S T

Figure: Min-cut (S, T ) of a graph G

▶ We want to split the graph in half, to reuse algorithms on in-trees and
out-trees

Reducing the cost along chain 1

10 / 26



Linear Arrangement (multiple data) on pumpkins

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

0 16
3

4 5 0 7

1

4 1 0 7 4 3

6

4 6 2 4

3

S T

Figure: Min-cut (S, T ) of a graph G

▶ We want to split the graph in half, to reuse algorithms on in-trees and
out-trees

Reducing the cost along chain 2

11 / 26



Linear Arrangement (multiple data) on pumpkins

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

0 16
3

4 5 0 7

1

4 1 0 7 4 3

4

2 4 0 2

1

S T

Figure: Min-cut (S, T ) of a graph G

▶ We want to split the graph in half, to reuse algorithms on in-trees and
out-trees

Reducing the cost along chain 3

12 / 26



Linear Arrangement (multiple data) on pumpkins

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

0 16
3

4 5 0 7

1

4 1 0 7 4 3

4

2 4 0 2

1

S T

Figure: Min-cut (S, T ) of a graph G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) Lexicographic schedule ϕ

0 1 2 3 6 7 11 12 13 4 5 8 9 10 14 15 16

(b) New schedule ϕ′ = ϕ[S] + ϕ[T ]

Figure: Schedule transformation with a cut

13 / 26



Linear Arrangement (multiple data) on pumpkins

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

0 16
3

4 5 0 7

1

4 1 0 7 4 3

4

2 4 0 2

1

S T

Figure: Min-cut (S, T ) of a graph G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) Lexicographic schedule ϕ

0 1 2 3 6 7 11 12 13 4 5 8 9 10 14 15 16

(b) New schedule ϕ′ = ϕ[S] + ϕ[T ]

Figure: Schedule transformation with a cut
13 / 26



Linear Arrangement (multiple data) on pumpkins

▶ Finding the min cut: O(n)
▶ Solving Linear Arrangement on in-tree and out-tree: O(n log(n))
▶ Gives an O(n log(n)) algorithm

14 / 26



Sum Cut (single data) on pumpkins

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

0 161

4 1 3 3

7

1 7 5 5 6 81

5 8 1 4

7

S T

Figure: Cut (S, T ) of a graph G

▶ We can’t split at the min-cut like before

▶ Transform our graph into another pumpkin in the multiple data model

S

3
1

43 53

95 106

14

1

154

16

7

8

7

Figure: G ′

15 / 26



Sum Cut (single data) on pumpkins

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

0 161

4 1 3 3

7

1 7 5 5 6 81

5 8 1 4

7

S T

Figure: Cut (S, T ) of a graph G

▶ We can’t split at the min-cut like before
▶ Transform our graph into another pumpkin in the multiple data model

S

3
1

43 53

95 106

14

1

154

16

7

8

7

Figure: G ′ 15 / 26



Sum Cut (single data) on pumpkins

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

0 161

4 1 3 3

7

1 7 5 5 6 81

5 8 1 4

7

S T

Figure: Cut (S, T ) of a graph G

0 1 6 11 2 3 4 5 7 8 9 10 12 13 14 15 16

Figure: Schedule transformation with a cut

16 / 26



Sum Cut (single data) on pumpkins

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

0 161

4 1 3 3

7

1 7 5 5 6 81

5 8 1 4

7

S T

Figure: Cut (S, T ) of a graph G

0 1 6 11 12 2 3 4 5 7 8 9 10 13 14 15 16

Figure: Schedule transformation with a cut

17 / 26



Sum Cut (single data) on pumpkins

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

0 161

4 1 3 3

7

1 7 5 5 6 81

5 8 1 4

7

S T

Figure: Cut (S, T ) of a graph G

0 1 6 11 12 13 2 3 4 5 7 8 9 10 14 15 16

Figure: Schedule transformation with a cut

18 / 26



Sum Cut (single data) on pumpkins

▶ O
(
nk

)
cuts

▶ Solving Linear Arrangement on in-tree and pumpkin: O(n log(n))
▶ Gives an O

(
nkn log(n)

)
algorithm

We look for heuristics, as we are competing against an O(n log(n))
algorithm.
▶ Greedy algorithms (greedy memory, greedy time)
▶ Random cut
▶ Local search

19 / 26



Experiments

▶ C++ implementation of all the algorithms using the Boost Graph
Library

▶ TaGaDa tool for graph generation
▶ Some other graphs from real world applications (trees)
▶ Compared with the state of the art algorithm for reducing the Peak

memory usage

20 / 26



Experiments - Heuristics for WSC on pumpkins

Comparison of heuristics for WSC (single data) on random pumpkins
▶ Local search is on average within 5% of the optimal cost

21 / 26



Experiments - Comparing average and peak

Average memory cost of
a schedule minimizing
the peak memory
▶ 5% worse cost on

average

Peak memory cost of a
schedule minimizing the
average memory
▶ Almost always the

optimal cost

22 / 26



Experiments - Parallel Execution

▶ Multiple task graphs in parallel
▶ Minimizing the peak memory for each graph compared to minimizing

the average memory for each graph
▶ The overall peak is up to 5% lower by using average rather than peak!

23 / 26



Conclusion

▶ Novel approach for scheduling task graphs to reduce average memory
consumption.

▶ New exact algorithms and heuristics.
▶ Improved performance in parallel processing setups compared to

focusing on the peak.

24 / 26



Questions

Thank you for your attention!
Any questions?

25 / 26


	Introduction
	Model
	Algorithms
	Exact Algorithms
	Heuristics

	Experiments
	Heuristics
	Comparison with Peak
	Parallel Execution

	Conclusion

