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Méthodes itératives de résolution des réseaux

d'automates stochastiques exploitant le creux du modèle

Résumé : Nous présentons de nouveaux algorithmes pour calculer la solution de grands
modèles de Markov structurés dont le générateur peut être exprimé à l'aide d'algèbre tenso-
rielle généralisée. Nous nous plaçons dans le cadre des réseaux d'automates stochastiques.
La structure tensorielle implique de travailler sur un espace produit. A l'intérieur de cet
espace produit, l'espace des états atteignables peut être très réduit. Pour ces cas, nous
proposons deux améliorations de l'algorithme numérique (basé sur les produits tensoriels)
standard, appelé "algorithme du shu�e", qui ne prennent en entrée-sortie que des structures
de données de la taille de l'espace des états atteignables. L'une des améliorations gagne sur
le temps de calcul et l'autre sur la mémoire utilisée. Avec ces apports, l'algorithmique numé-
rique basée sur les produits tensoriels peut traiter numériquement des modèles encore plus
grands.

Mots-clés : creux, chaînes de Markov, réseaux d'automates stochastiques, algèbre tenso-
rielle généralisée, multiplication vecteur-descripteur, algorithme du shu�e.
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1 Introduction

Continuous time Markov chains (CTMC) facilitate the performance analysis of dynamic
systems in many areas of application [16]. They are often used in a high level formalism
in which a software package is employed to generate the state space and the in�nitesimal
generator of the CTMC, as well as to compute stationary and transient solutions. In this
paper, our concern is with the computation of the stationary probability vector � 2 RjT j,
a row vector whose ith element �i is the probability of being in state i of the CTMC at a
time that is su�ciently long for all in�uence of the initial starting state to have been erased,
and where T is the set of states of the CTMC, called the reachable state space (RSS). The
vector � is the solution of the system of linear equations �Q = 0, subject to �e = 1, where
Q is the generator matrix of the CTMC and e is a vector whose elements are all equal to 1.

The primary di�culty in developing a software tool to handle large-scale Markov chains
comes from the explosion in the number of states that usually occurs when certain model
parameters are augmented. Indeed, CTMCs which model real systems are usually huge and
sophisticated algorithms are needed to handle them. Both the amount of available memory
and the time taken to generate them and to compute their solutions need to be carefully
analyzed. For example, direct solution methods, such as Gaussian elimination, are generally
not used because the amount of �ll-in that occurs necessitates a prohibitive amount of storage
space. Iterative methods, which can take advantage of sparse storage techniques to hold the
in�nitesimal generator, are more appropriate, even though here also, memory requirements
can become too large for real life models. Furthermore, matrix iterative techniques often
need to compute the product of a probability vector and the generator Q many many times.
Di�erent possibilities can be found to store the generator and the probability vector in
order to form these products e�ciently. We shall consider some solutions proposed in the
literature, and the advantages and drawbacks of each.

A �rst approach consists of using decision diagrams in order to represent the Markov
chain [3, 4, 10]. This tree representation of the generator Q and of the probability vectors
permits quick access to all of their elements, and the solution time is often satisfactory, even
for large models. However, this representation of the generator requires a large amount of
memory. All the nonzero elements of the matrix must be stored, as well as the tree structure
that describes the path needed to �nd the elements.

Another approach is used in the software package Marca [17]. The idea here is to store
the matrix in a row-wise compact sparse format: only the nonzero elements of the matrix and
their position in the matrix are kept. The probability vectors are the size of the reachable
state space. E�cient algorithms are available with which to compute a vector-matrix product
when the matrix is stored in this fashion. However, for very large models, it is frequently
the case that the matrix is too large to be held in memory.

In order to keep memory requirements manageable, Stochastic Automata Networks
(SANs) were introduced, [13, 7]. These allow Markov chains models to be described in
a memory e�cient manner because their storage is based on a tensor formalism. However,
the use of independant components connected via synchronizations and functions may pro-
duce a representation with many unreachable states. The set of all the states that can be
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4 Benoit & Plateau & Stewart

enumerated by the tensor formalism is called the product state space (PSS), but some of
these states may not be valid in the sense that they never occur. For this reason, they are
called �unreachable states�. Another formalism based on Stochastic Petri Nets allows us to
obtain a similar tensor formalism, as shown by Donatelli in [5, 6].

When the reachable state space (RSS) is almost equal to the product state space (PSS),
the gain in memory obtained with the use of the tensor formalism can be enormous compared
to the two alternative approaches described above. For example, if a model consists of K
componants of size ni, for i = 1; : : : ;K, which are full, then the space needed to store the
generator with the previous methods is of the order of (

QK
i=1 ni)

2. The use of a tensor

formalism reduces this cost to
PK

i=1 n
2
i . However, when there are many unreachable states,

the di�erence with the other approaches is reduced. Also, if the in�nitesimal generator is
very sparse, the gain may be less substantial. Unfortunately, the gains in memory are often
accompanied by an increase in the costs of computing numerical solutions. The greatest
obstacle to obtaining solutions for Markov chains stored in a tensor format is the ine�ciency
of the basic operations, and notably the multiplication of the generator by a vector [7, 8].
Once an e�cient version of this operation is available, the application of iterative methods,
whether simple or sophisticated, is immediate. When the generator Q is available in tensor
form, it is usually called the SAN descriptor. Several approaches are possible for computing
a vector-descriptor product. The �rst and perhaps best-known, is the shu�e algorithm
[7, 8, 13], which computes the multiplication but never needs the matrix explicitly. However,
as has been shown previously, this algorithm needs to use vectors the size of the product
state space. Moreover, computations are carried out for all the elements of the vector, even
those elements corresponding to unreachable states. In some models, the reachable state
space is small compared to the product state space and the probability vector can therefore
have many zero elements, since only states corresponding to reachable states have nonzero
probability. Therefore, the gain obtained by exploiting the tensor formalism can be lost since
many useless computations are performed, and memory is used for states whose probability
is always zero. On the other hand, good performance is obtained with this algorithm when
the number of unreachable states is small.

In contrast, if there are many unreachable states, the approaches �rst described, based
on storing all nonzero elements of the generator, perform better because they do not carry
out meaningless computations. However, due to the large memory requirements of these
approaches, it is worthwhile seeking a solution which takes unreachable states into account
and at the same time, uses the bene�ts of the tensor formalism. Thus, we would like to
be able to exploit the tensor formalism, even in the presence of an important number of
unreachable states. Some methods have already been developed:

1. A �rst possibility for SANs consists of aggregating the components [9]. In this way,
some unreachable states disappear. However, to be sure that all unreachable states
are eliminated, it is necessary to aggregate all components and this becomes similar to
the use of traditional methods which do not use the tensor formalism of the Markov
system. This resurrects the memory limitation problem which we seek to remove. We
note in passing that this approach of aggregation can also be adapted for Petri Nets.

INRIA
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2. Another approach consists of introducing a hierarchical structure containing only
reachable states and the development of e�cient algorithms to exploit this structure.
Buchholz presents such results for Petri Nets in [1]. In this case however, the tensor
formalism is modi�ed and made more complex. As for the previous approach, these
results can be extended to SANs.

3. A new approach has been proposed in [11, 12, 2]. It consists of �rst computing the
reachable state space, and then solving the model by using iteration vectors which
contains entries only for these states. Some additional computations are then needed
at each iteration in order to obtain the indices of reachable states. Moreover, at
each iteration the rows of the generator Q are formed (albeit in sparse format) so
that the multiplication is performed for reachable states only. In this approach, the
tensor formalism is not exploited as in the shu�e algorithm, because it is necessary
to compute the elements of the generator explicitly. Nevertheless, the use of vectors
of size RSS permits a reduction in memory used, and some needless computations are
avoided.

Our goal is to conceive a new algorithm based on the shu�e algorithm, which exploits
the tensor formalism without modifying it, and which never explicitly computes the ele-
ments of the generator. We wish however to take reachable states into account in such a
way that performance is satisfactory even when the percentage of these reachable states is
small. Obviously, in the new algorithms we seek to develop, we would like to use iteration
vectors with entries corresponding to reachable states only. This implies that only necessary
computations will then be performed.

In the next section we present the shu�e algorithm [13, 7] for the multiplication of a
vector and a SAN descriptor. This algorithm exploits the structure of the SAN but it also
uses probability vectors that we shall call extended. In other words, these vectors are the same
size as the product state space. We denote this algorithm E, for extended. This algorithm
can be improved both in the amount of execution time needed to compute solutions as well
as in memory requirements, by taking advantage of the fact that the probability vectors of
size PSS are very sparse: only reachable states have non-zero probability.

Two new algorithms are presented. The �rst exploits a knowledge of which states are
reachable to improve the performance of the vector�descriptor multiplication. All the prob-
ability vectors are stored in an array of size RSS. We shall call vectors of this size reduced

vectors. However, to obtain good performance at the computation-time level, some work
vectors of size PSS (extended vectors) are also used. We refer to this as partially reduced and
denote the corresponding algorithm PR. Unfortunately, the saving in memory turns out to
be somewhat insigni�cant (Section 3). A second algorithm concentrates on the amount of
memory used, and allows us to handle even more complex models. In this algorithm, all the
intermediate data structures are stored in reduced format. We refer to this as fully reduced

and denote the corresponding algorithm FR. Unfortunately, the result of this decreased
need of memory translates into diminished performance for computation time (Section 4).

RR n° 4259



6 Benoit & Plateau & Stewart

In the SANs formalism, the use of functions allows a diminution in the size of the state
space. The use of a generalized tensor algebra ([7, 8, 15]) permits tensor operations on
matrices to have functional characteristics. However, the cost of matrix evaluation is high
and so we try to limit the number of evaluations. Some techniques have been developed
in order to decrease the number of matrix evaluations in the shu�e algorithm E [7, 8].
One possibility that we consider is a reordering of the automata. In Section 5, we shall
provide details on the manner in which the newly presented algorithms need to be modi�ed
in order to handle the reordering of automata. Automata grouping ([7]) is another technique
that may be used to decrease the number of function evaluations, but this technique is not
presented here because the reduced storage of vectors in the algorithms presented does not
cause any change to these procedures.

A series of tests comparing the algorithms is presented in Section 6. These algorithms
were incorporated into the software package PEPS [14] and tested by means of this package.

2 The Shu�e Algorithm

Equation (1) below exploits the tensor structure of a SAN descriptor to form the product
of a vector v by a descriptor Q [7, 8].

vQ = v

(N+2E)X
j=1

2
4 NO

g
i=1

Q
(i)
j

3
5 =

(N+2E)X
j=1

2
4v NO

g
i=1

Q
(i)
j

3
5 (1)

Here N is the number of automata in the network and E is the number of synchronizing
events. Notice that the tensor products are generalized tensor products. The basic operation
of interest to us is therefore

v
NO

g
i=1

Q(i)

where the indices j have been omitted from the matrices Q
(i)
j in order to simplify the nota-

tion. This term is composed of a sequence of N matrices denoted Q(i) with i 2 [1 : : :N ], each
associated with an automaton A(i). We begin by introducing some de�nitions concerning
�nite sequences of matrices1.

✍ Let

ni be the order of the ith matrix in a sequence;

1 In the following, �nite sequences of matrices will be referred to simply as matrix sequences since only
�nite sequences are considered in this paper.

INRIA
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nlefti be the product of the order of all the matrices that are to the left of the
ith matrix of a sequence, i.e.,

Qi�1
k=1 nk with the special case: nleft1 = 1;

nrighti be the product of the order of all the matrices that are to the right
of the ith matrix of a sequence, i.e.,

QN

k=i+1 nk with the special case:
nrightN = 1;

�ni be the product of the order of all matrices except the ith in a sequence,
i.e.,

QN

k=1;k 6=i nk (�ni = nlefti nrighti);

First we present the basic algorithm for the multiplication of a vector by a tensor product.
This algorithm is used when the tensor products do not have functional elements (classic
tensor products). Then we shall consider the constraints imposed when the tensor product
does contain functional elements (generalized tensor products).

2.1 The Non-functional case

The simplest case is the multiplication of a vector by a tensor product when this tensor
product does not contain functional elements. In this case we must compute

v
NO
i=1

Q(i):

According to the decomposition property of tensor products [7], every tensor product of N
matrices is equivalent to the product of N normal factors. In using this property for the
term

NN
i=1Q

(i), we have

Q(1) 
Q(2) 
 � � � 
Q(N�1) 
Q(N) =

Q(1) 
 Inright1
�Inleft2 
Q(2) 
 Inright2
�� � �

�InleftN�1 
Q(N�1) 
 InrightN�1
�InleftN 
Q(N)

To compute the multiplication of a vector v by the term
NN

i=1Q
(i) it is necessary and

su�cient to know how to multiply a vector by a normal factor. The vector v must be
multiplied by the �rst normal factor, the result is multiplied by the second normal factor
and so on until the last of the normal factors has been multiplied. This is possible thanks
to the associativity property of the (usual) multiplication of matrices. Furthermore, the
property of commutativity between normal factors allows the multiplication of the normal
factors in any desired order.

RR n° 4259



8 Benoit & Plateau & Stewart

Multiplication by a Normal Factor

We are interested in performing the multiplication of a row-vector v and a normal factor, i:

v � Inlefti 
Q(i) 
 Inrighti

Because of the associativity of the tensor product, this may be rewritten as

v � Inlefti 
R

with

R = Q(i) 
 Inrighti

The matrix Inlefti 
R is a block diagonal matrix in which the blocks are simply the matrix
R. We can treat the di�erent blocks in an independent manner. There are nlefti blocks
of the matrix each of which is to be multiplied by a di�erent piece of the vector, which we
shall call a vector slice. The vector is divided according to Inlefti and so we shall call these
vector slices, l-slices (for left) and denote them by p1; : : : ; pnlefti , as shown in Figure 1.

X

=

v

p1 p2 pnlefti

Inlefti 
 R

R

R

R

p1 �R p2 �R pnlefti � R

Figure 1: Multiplication v � Inlefti 
R

Thus, we loop over the l-slices, and at each iteration we consider only a part of the
vector to multiply. Figure 2 illustrates how the vector is divided into nlefti l-slices, each

INRIA
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of size nrighti � ni. We now consider the details involved in multiplying an l-slice. The
computation is carried out by looping over the nlefti l-slices. (There is only one in the case
of the �rst normal factor.)

v

nrighti � ni nrighti � ni nrighti � ni

pnlefti

p1

p2

Figure 2: Vector separation into l-slices

Detail of an l-slice

We now need to describe the multiplication of an l-slice pl with a block of the matrix, (the
matrix R de�ned previously):

pl �R = pl �Q(i) 
 Inrighti

Notice the structure of the matrix Q(i) 
 Inrighti :

Q(i) 
 Inrighti =

0
BBBB@

q
(i)
1;1Inrighti q

(i)
1;2Inrighti � � � q

(i)
1;ni

Inrighti
q
(i)
2;1Inrighti q

(i)
2;2Inrighti � � � q

(i)
2;ni

Inrighti
...

...
. . .

...

q
(i)
ni;1

Inrighti q
(i)
ni;2

Inrighti � � � q
(i)
ni;niInrighti

1
CCCCA

Each matrix q
(i)
j;kInrighti is a diagonal matrix of size nrighti in which all the diagonal

elements are equal to q
(i)
j;k. We wish to compute the resulting l-slice, rl = pl �Q(i)
Inrighti .

The computation of an element of the resulting vector corresponds to the multiplication of
pl by a column of the matrix Q(i) 
 Inrighti . However, each column of this matrix is
composed of elements of a single column of the matrix Q(i); the other elements are zero.
The multiplication therefore boils down to the repeated extraction of components of pl
(at distance nrighti apart), forming a vector called zin from these components and then

RR n° 4259



10 Benoit & Plateau & Stewart

multiplying zin by a column of the matrix Q(i). Notice carefully that zin is composed of
elements of pl which may not be consecutive. In a certain sense, it is a slice of pl. The slice
zin corresponds to elements of pl which must be multiplied by the elements of the column
of Q(i). The column k of the matrix Q(i) is denoted by q�;k.

The structure of the matrix Q(i) 
 Inrighti informs us that we must consider nrighti
slices zin. Thus, we number the zin from 0 to nrighti � 1. Extracting a zin is the same
as accessing the vector pl and choosing the elements at intervals of nrighti positions in the
vector. We therefore proceed by jumps within the vector. Figure 3 represents the process
of extracting the zin. The k

th zin is represented by zin nÆ k; for k = 0; : : : ; nrighti � 1.

nrighti nrighti

pl

zin nÆ 0

zin nÆ 1

zin nÆ nrighti � 1

Figure 3: Dividing pl into zin

Once a zin has been obtained, we can compute an element of the result by multiplying
the zin by a column q�;k. The multiplication of a zin by the entire matrix Q(i) therefore
provides several elements of the result, a slice of the result, called zout. The positions of the
elements of zout in rl correspond to the positions of the elements of zin in pl. We number
the zout in the same way as we did for zin. Therefore, the multiplication of the zin nÆ k by
Q(i) gives zout n

Æ k.
Figure 4 illustrates the multiplication for some elements of the resulting vector. The

elements computed constitute zout n
Æ 0. Indeed, we carry out the multiplication of zin nÆ 0

by all the columns of the matrix Q(i) to obtain, successively, the di�erent elements.
To summarize then, how an l-slice is handled (in other words, how we compute pl �

Q(i) 
 Inrighti), we proceed by carrying out a loop to successively extract nrighti zin. For
each of these zin, we carry out the multiplication zout = zin �Q(i), which gives us pieces of
the resulting vector; we then store these pieces (slices) zout into the resulting vector. Since

INRIA
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=

X

zin[1] zin[2] zin[ni]

nrighti nrighti

pl

nrighti

Q(i) 
 Inrighti

q1;1 q1;2

q1;1 q1;2

q2;1 q2;2

q2;1 q2;2

qni;1
qni;ni

q1;ni

qni;1

q1;ni

qni;ni

q2;ni

q2;ni

qni;2

qni;2

zin � q�;1 zin � q�;nizin � q�;2
zout[1] zout[2] zout[ni]

Figure 4: Multiplication pl �Q(i) 
 Inrighti : Derivation of zout n
Æ 0.

RR n° 4259



12 Benoit & Plateau & Stewart

the positions in zout are the same as those in the corresponding zin, this storage is performed
analogously to the extraction of the zin (Figures 3 and 4).

Multiplication Algorithm

Algorithm 2.1 performs the multiplication of a vector v and a tensor product 
N
i=1Q

(i).
We shall call this algorithm E without functions (E for extended) , because the probability
vectors are stored in extended format (size equal to PSS) and the algorithm does not handle
functional dependencies. In this algorithm, the normal factors are handled in order from the
�rst to the last. Nevertheless, according to the commutativity property of normal factors,
any other order could have been used.

Algorithm 2.1

1 for i = 1; 2; : : : ; N // loop over all matrices
2 do base = 0; // base: beginning index of the l-slice in the vector
3 for l = 0; 1; : : : ; nlefti � 1 // loop over all l-slices
4 do for r = 0; 1; : : : ; nrighti � 1 // l-slice detail: loop over all the zin
5 do index = base+ r;

// index: index of the current element of zin in the vector
6 for k = 0; 1; : : : ; ni � 1 // extraction of zin nÆ r (jumps of size nrighti)
7 do zin[k] = v[index];
8 index = index+ nrighti;
9 end do

10 multiply zout = zin �Q(i); // multiplication
11 index = base+ r; // index: the index of the current element of zout
12 for k = 0; 1; : : : ; ni � 1 // store result zout (jumps of size nrighti)
13 do v[index] = zout[k];
14 index = index+ nrighti;
15 end do
16 end do
17 base = base+ (nrighti � ni); // now onto the next l-slice (jumps in v)
18 end do
19 end do

Algorithm 2.1: E without functions

Complexity

The complexity of this algorithm for multiplying a vector and a classic tensor product may
be obtained by observing the number of vector�matrix multiplications that are executed
(line 10 of Algorithm 2.1). In each i loop of the algorithm, nlefti � nrighti vector�matrix
products are executed, with matrices of size ni. If we assume that the matrices Q(i) are

INRIA
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full, the number of multiplications for each vector�matrix product is equal to (ni)
2. From

the de�nition of the sequences of matrices, �ni � ni = nlefti� nrighti � ni =
QN

i=1 ni. The
complexity of Algorithm 2.1 is therefore

NX
i=1

�
�ni � (ni)

2
�
=

NY
i=1

ni �

NX
i=1

ni: (2)

This should be compared to the multiplication v
NN

i=1Q
(i) which consists in �rst computing

Q =
NN

i=1Q
(i), and then multiplying the result with the vector v. This has complexity of

the order of (
QN

i=1 ni)
2.

If the matrices Q(i) are stored in a sparse compacted format, the number of multiplica-
tions for each vector�matrix product is generally much less than (ni)

2. In this case, if nzi
is the number of nonzero elements in the matrix Q(i), the complexity of Algorithm 2.1 is:

NX
i=1

(�ni � nzi) =

NY
i=1

ni �

NX
i=1

nzi
ni

: (3)

To get a more precise idea of the cost of this algorithm, let us establish a comparison of this
complexity with the multiplication of a vector by a single matrix stored in sparse format.
The matrix equivalent to a tensor product term possesses

QN

i=1 nzi nonzero elements and
therefore the complexity will be of this order. A comparison between formulas as di�erent
as these is di�cult. Let us establish a limit for the sparsity of the matrices Q(i):

nzi = ni(N)
1

N�1

For this number of nonzero elements, the complexities of Algorithm 2.1 and the multipli-
cation by a sparse matrix are equal. For values of nzi that are less than this limit, the
multiplication by a sparse matrix will be more e�cient while for values greater than this
limit, the advantage will lie with the proposed algorithm2. It should be remembered that
these considerations are applicable to the comparison of a single (classic) tensor product
term (without functional elements). Practical cases, with descriptors composed of a sum of
generalized tensor products, are much more complex and only numerical experimentation
can provide some concrete information concerning execution costs.

2.2 Handling Functional Dependencies

According to properties of generalized tensor products concerning their decomposition into
normal factors, it is always possible to obtain an order � for multiplying the normal factors
of a term 
N

i=1Q
(i)(: : : ) if and only if there are no cycles in the functional dependency

graph. The existence of such cycles prevents the direct application of these decomposition
properties. The way in which this situation must be handled is described in [7]. In this

2 For these comparisons, the cost of generating a matrix from a tensor product is not taken into account.
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14 Benoit & Plateau & Stewart

section, we only describe the multiplication of generalized tensor products without functional
dependency cycles.

The multiplication of a vector v by a tensor product
O

g

N

i=1
Q(i)(A(i+1); : : : ;A(N))

without cycles is carried out in a manner that is similar to the case without functional
elements. Two modi�cations must be made to Algorithm 2.1 to accommodate functional
elements. We must

� compute an order � in which the normal factors must be multiplied;

� evaluate the functional elements of matrices before each is used in a multiplication.

2.2.1 Establishing the order of normal factors

A correct ordering may be obtained from the graph of functional dependencies [7, 8], by
applying the properties of generalized tensor algebra concerning normal factor decomposi-
tion. This order is denoted by a permutation � on the interval [1 : : :N ], and is called its
decomposition order. It represents the order in which the tensor product will be decomposed
into normal factors.

✍ Let

� be a permutation called � on the interval [1 : : :N ], which establishes a
new order for a sequence of N matrices;

�(i) be the position of the matrix Q(i) in the order represented by the per-
mutation �;

�k be the index of the matrix in position k of the order represented by the
permutation � (if �k = i, �(i) = k);

The product v �
O

g

N

i=1
Q(i)(: : : ) must be handled as

v �

NY
i=1

�
Inleft�i 
g

Q(�i)(: : : )

g
Inright�i

�

The modi�cations that must be made to Algorithm 2.1 to take this change of order of the
normal factors into account is indicated in Algorithm 2.2. Notice that this modi�cation
requires the computation of a handling order (permutation �) which is not included in the
algorithm for the multiplication of normal factors.

For some tensor products, the decomposition order may not be unique. For example,
two matrices in the sequence may be constant. In this case, either matrix may be treated
before the other. This is due to the fact that the product of normal factors of two constant
matrices is commutative. The general rule is that if two (or more) matrices do not have

INRIA



Memory E�cient Iterative Methods for Stochastic Automata Networks 15

Algorithm 2.2

1 for i = �1; �2; : : : ; �N
2 do � � �

As for Algorithm 2.1
...

Algorithm 2.2: Changing the order of the normal factors

direct or indirect functional dependencies between them, they may freely change position.
This rule explains the absence of a de�ned order for the multiplication of the normal factors
of a classical tensor product (the case without functions).

2.2.2 Evaluation of functional elements

Once the decomposition order has been computed, the second preoccupation for the multi-
plication of generalized tensor products is the evaluation of the functional elements of each
matrix Q(i)(: : : ) before its multiplication by a slice zin of the vector v (corresponding to line
10 of Algorithm 2.1). In order to simplify the notation, we shall assume that the order of
decompositon � is the order 1 : : : n.

With each execution of the multiplication of a slice zin of vector v by the matrixQ(i)(: : : ),
this matrix must be evaluated for the state of the automata that are arguments of Q(i). The
indices l and r shall represent, respectively, subvectors of states of automata to the left and
right of3 automaton A(i) (Algorithm 2.1). For the evaluation of functional elements, it is
necessary to incorporate the computation of local states of automata that are arguments of
A(i). Since these arguments are, a priori, an arbitrary subset of the SAN, this leads us to
compute the local state of each automata other than A(i). Then it is necessary to perform
the evaluation of Q(i)(: : : ) with these local states.

Let us �rst examine the computation of local states of automata that are to the left
of automata A(i). The loop index l of Algorithm 2.1 provides the current position in the
state space

Qi�1
j=1 S

(j), i.e., the subvectors of local states of type (x(1); x(2); : : : ; x(i�1)). It is
possible to think of a subvector of local states as a number in a variable base system, i.e.,
a number for which each of its digits has its own base. The local state of the automaton
A(j) (x(j)) is a number which may vary in the interval [0 : : : nj � 1]. The sequence of these

numbers allows us to obtain the position l in the state space
Qi�1

j=1 S
(j) of a subvector

3We shall call left of a matrix of index i, each matrix of the same term which has indices j less than i

(j 2 [1 : : : i� 1]). Analogously, we call right of a matrix of index i, all matrices of the same term which have
indices j greater than i (j 2 [i+ 1 : : : N ]).
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(x(1); x(2); : : : ; x(i�1)) by means of the formula:

l =

i�1X
j=1

 
x(j) �

j�1Y
k=1

(nk)

!

In the same way, we can obtain the subvector (x(1); x(2); : : : ; x(i�1)) from a given index l,
by means of a sequence of integer divisions.

An algorithm which implements these divisions is very costly (there are as many integer
divisions as the number of automata to the left of A(i)). A cheaper solution may be found.
The �rst useful thing to note is that all combinations of local states are needed. Furthermore,
the combinations will be taken exactly in lexicographical order, (The value of the index l
varies from 0 to nlefti � 1). The second interesting remark is that it is cheap to go from
one subvector of local states to the next in lexicographical order. This may be performed
by a simple incrementation of +1 of a number in a variable base.

As an example, let us consider the local states of three automata (A(1), A(2) and A(3))
with sizes n1 = 2, n2 = 4 and n3 = 3. The subvectors of the local states in lexicographical
order are:

position x(1) x(2) x(3) position x(1) x(2) x(3) position x(1) x(2) x(3)

(l) (l1) (l2) (l3) (l) (l1) (l2) (l3) (l) (l1) (l2) (l3)
0 0 0 0 8 0 2 2 16 1 1 1
1 0 0 1 9 0 3 0 17 1 1 2
2 0 0 2 10 0 3 1 18 1 2 0
3 0 1 0 11 0 3 2 19 1 2 1
4 0 1 1 12 1 0 0 20 1 2 2
5 0 1 2 13 1 0 1 21 1 3 0
6 0 2 0 14 1 0 2 22 1 3 1
7 0 2 1 15 1 1 0 23 1 3 2

The change from f0; 1; 1g (in position 4), to the next subvector in lexicographical order
(in position 5) necessites incrementing the state of the last local state (from 1 to 2). The
change of this new combination (f0; 1; 2g - position 5) to the next (position 6) does not
correspond to incrementing the last local state (which is already at its maximum value
n3� 1 = 2), but rather to incrementing the second-to-last local state and setting the last to
zero which then gives f0; 2; 0g. As a general rule, to proceed through the subvectors with
local states of automata to the left of Q(i) we initialize

l1 = 0 l2 = 0 � � � li�2 = 0 li�1 = 0

With each increment of l, corresponds an addition of +1 to the number in variable base,
i.e., an increment of local state li�1, with carry over if necessary. The sequence of values
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obtained is

l1 = 0 l2 = 0 � � � li�2 = 0 li�1 = 0
l1 = 0 l2 = 0 � � � li�2 = 0 li�1 = 1
...

...
...

...
l1 = 0 l2 = 0 � � � li�2 = 0 li�1 = ni�1 � 1
l1 = 0 l2 = 0 � � � li�2 = 1 li�1 = 0
...

...
...

...
l1 = n1 � 1 l2 = n2 � 1 � � � li�2 = ni�2 � 1 li�1 = ni�1 � 1

This same reasoning may be applied to the computation of states corresponding to automata
to the right of A(i) (for index r of Algorithm 2.1).

The Multiplication Algorithm

Algorithm 2.3 implements the modi�cations necessary for handling terms with functional
elements. This new algorithm is called E with functions. The six operations which have
been added are

� line 1: the handling of normal factors in the decomposition order �;

� line 3: the initialization of the subvector with the local states of automata to the left
of the matrix Q(i)(: : : );

� line 5: the initialization of the subvector with the local states of automata to the right
of the matrix Q(i)(: : : );

� line 12: the evaluation of the matrix Q(i)(: : : ) with arguments computed (local states
of automata);

� line 19: the incrementation of a subvector with the local states of automata to the
right of the matrix Q(i)(: : : );

� line 22: the incrementation of a subvector with the local states of automata to the left
of the matrix Q(i)(: : : );

It should be noted that the subvector of local states of automata to the left and to the
right of the matrix Q(i)(: : : ) are redundant with respect to the indices l and r, respectively.
This redundancy has the goal of avoiding the computation of the subvectors at each incre-
mentation of l and r, which is too expensive. From this point of view, the initializations
(lines 3 and 5 of Algorithm 2.3) and the increments (lines 22 and 19) are equivalent to the
initializations and increments on l and r executed by the loop in lines 4 and 6, respectively.
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Algorithm 2.3

1 for i = �(1); �(2); : : : ; �(N)
2 do base = 0;
3 initialize l1 = 0; l2 = 0; : : : ; li�1 = 0;
4 for l = 0; 1; : : : ; nlefti � 1 // loop over the l-slices
5 do initialize ri+1 = 0; ri+2 = 0; : : : ; rN = 0;
6 for r = 0; 1; : : : ; nrighti � 1 // detail of an l-slice: loop over the zin
7 do index = base+ r;
8 for k = 0; 1; : : : ; ni � 1 // extract the zin (jumps of size nrighti)
9 do zin[k] = v[index];
10 index = index+ nrighti;
11 end do

12 evaluate Q(i)(a
(1)
l1
; : : : ; a

(N)
rN ); // matrix evaluation

13 multiply zout = zin �Q(i); // multiplication
14 index = base+ r;
15 for k = 0; 1; : : : ; ni � 1 // store the result zout (jumps of size nrighti)
16 do v[index] = zout[k];
17 index = index+ nrighti;
18 end do
19 next ri+1; ri+2; : : : ; rN ;
20 end do
21 base = base+ (nrighti � ni); // now on to the next l-slice (jumps within v)
22 next l1; l2; : : : ; li�1;
23 end do
24 end do

Algorithm 2.3: E with functions
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Complexity

Algorithm 2.3 does not change the size of the loops that are in Algorithm 2.1. The multipli-
cation of a slice of the vector v by the matrices Q(i)(: : : ) also remains identical. This allows
us to assert that the complexity of Algorithm 2.3 remains of the same order as Algorithm
2.1. The only additional costs correspond to the six operations already alluded to. Working
with the normal factors in the order designated by � has little impact on the complexity,
because it only adds an indirection to the access on i. The increment of the subvector with
the local states of automata to the right of matrix Q(i)(: : : ) and the evaluation of the matrix
Q(i) represent a substantial cost, especially since these operations must be performed in the
innermost loop (loop from 0 to nrighti � 1). Reordering techniques allow us to reduce the
number of matrix evaluations by removing these evaluations from the innermost loop. These
techniques are presented in Section 5. At this point we shall present new versions of the
shu�e algorithm which exploit the sparse structure of extended probability vectors.

3 Improvements in Computation Time

The shu�e algorithm presented in the previous section used extended vectors, i.e., vectors
the size of the product state space. However, all nonreachable states have probability zero
in the initial vector and remain zero after each product with the in�nitesimal generator.
Buchholz et al. [2] present algorithms in which the vectors are of this size (#PSS) but
the shu�e algorithm can not be treated in this fashion. This is because it is possible
that nonreachable states can have a nonzero probability in temporary, intermediate vectors.
First we shall examine the vector�descriptor multiplication procedure in detail to detect
those instants at which the vector being computed is in the RSS. We say that a vector is in
the RSS when the probability of each nonreachable state in that vector is zero. We describe
new algorithms which take advantage of a reduced data structure (a vector of length #RSS)
for storing probability vectors.

3.1 Multiplication details

The Markovian generator,Q, corresponding to the Markov chain associated with a stochastic
automata network is de�ned by the following tensor formula (equivalent to Equation (1)):

Q =
NM

g
i=1

Q
(i)
l +

X
e2"

0
@ NO

g
i=1

Q
(i)
e+

+
NO

g
i=1

Q
(i)
e�

1
A (4)

where N is the number of automata in the network and " is the set of identi�ers of syn-
chronizing events. The tensor sum corresponds to the local events of the descriptor, and
the tensor product corresponds to the synchronizing events. We shall study the two parts
separately (Q = Qlocal +Qsynchro).
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We wish to perform the product v�Q = v�Qlocal+v�Qsynchro, v being a vector of the
RSS. The multiplication of v by Q boils down to performing all the events (both local and
synchronised) on all the automata beginning from states with nonzero probability (states
in RSS). The resulting vector v �Q must therefore be in RSS, because by de�nition of the
reachable states, it is not possible to reach a nonreachable state from a reachable state. On
the other hand, it is possible that nonreachable states have nonzero probability during the
course of the computation. We �rst describe the computation of the local part, then the
computation of the synchronized part.

Study of the Local Part

From the de�nition of tensor sum,

v �Qlocal = v �

NM
g

i=1

Q
(i)
l =

NX
i=1

�
v � (Inlefti 


g
Q

(i)
l 


g
Inrighti )

�

For each automaton, we must compute v � (Inlefti 

g
Q

(i)
l 


g
Inrighti), which means that we

must carry out the local events on automaton i. On leaving the reachable states (vector v),
we remain in the set of reachable states. Indeed, either the local event has a constant rate,
and all its transitions lead to a reachable state, or the event has a functional rate in which

certain values are zero if they lead to a nonreachable state. Each v�(Inlefti

g
Q

(i)
l 


g
Inrighti )

therefore has zero values for all nonreachable elements. The sum of these terms (v�Qlocal)
must also be in RSS, since it is the sum of vectors in RSS.

Study of the Synchronizing Part

For the synchronizing part

v �Qsynchro =
X
e2"

0
@v � NO

g
i=1

Q
(i)
e+

+ v �

NO
g

i=1

Q
(i)
e�

1
A

For each event e 2 ", we need to compute

w = v �
NO

g
i=1

Q
(i)
e+

+ v �
NO

g
i=1

Q
(i)
e�

which means that we must carry out the synchronizing transitions of event e. By a similar
reasoning as that expressed for the local part, when we have completely treated an event,
the vector obtained w must be in RSS. However, during the computation of w, we are
lead to perform multiplications by normal factors (the decomposition studied in the case
of the shu�e algorithm). When we multiply v by the ith normal factor it is possible to
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leave the RSS, because the synchronizing event is performed only on automaton i (and not
on the other automata which are synchronized with automaton i). However, during the
�nal multiplication, we must return to RSS because we will by then have performed the
synchronizing transition on all the e�ected automata.

Summary

During the multiplication by a normal factor, we may obtain a vector that is not in RSS. This
can occur during any multiplication in the synchronizing part other than the multiplication
by the last normal factor. In all other cases, and therefore before each addition, the vectors
computed are in RSS. This property may be exploited in order to accelerate algorithms for
multiplication by normal factors.

3.2 Multiplication with Reduced Vector Data Structures

In general #RSS � #PSS. However, in Algorithm 2.3 the computation of all the elements
of the vector is performed as can be seen from line 16 where the elements of the vector
are actually stored. Therefore, in the case of a model with many unreachable states, we
carry out many needless computations since most of the elements of the vector will be zero.
Indeed, we perform #PSS multiplications of a vector slice by a column of the matrix. We
now introduce a new algorithm for the multiplication of normal factors that takes advantage
of the fact that the vector obtained by the vector�description multiplication remains in RSS.
The new probability vectors are of size #RSS and only elements corresponding to reachable
states are stored. This allows us to reduce the number of multiplications from #PSS to
#RSS, by computing only the elements of the result that correspond to reachable states.
However, when the intermediate vector is not in RSS, we are obliged to perform all the
computations to �nd those elements of the resulting vector that are nonzero. The techniques
used to handle intermediate vectors which are not is RSS will be described in detail later.
For comparison purposes, the probability vectors used in the previous algorithms were all
of size #PSS.

Data Structures Used

The fact that we shall store only the values of the vector that correspond to reachable
states means that somewhere we must keep track of the positions of these elements in the
corresponding vector in PSS. We shall use two arrays of size #RSS: the array vec contains
the values of the reachable states and the array positions contains the positions of the
reachable states in the corresponding vector in PSS. Figure 5 illustrates the structures used.

Initialization

When the vector is initialized, we need to know the set of reachable states RSS in order to
be able to �ll the arrays vec and positions corresponding to the initial vector. This may be
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Reachable states

Nonreachable states

0 i j k l m n o p

0 i j k l m n o p

A B C D E F G H

A B C D E F G H

i+1 n+1

vec

v

#RSS

#RSS

positions

#PSS

Figure 5: Illustration of data structures that take advantage of sparsity

done either by applying an algorithm that explores all reachable states ([11]), or by asking
the user to provide an expression which represents the set of reachable states of the system4.
According to the choice of an initial vector, (equiprobable vector, vector provided by the
user, and others) we may complete the arrays with the necessary information.

Division into l-slices

We would like to apply the shu�e algorithm previously described. The idea of an l-slice
remains the same because the format of a normal factor does not change: we wish to compute
v�Inlefti
Q(i)
Inrighti . The division of v into l-slices pl may be carried out by inspecting
the array positions, and by taking the elements that correspond to the l-slice. An l-slice is
a set of consecutive elements and a single sweep over the vector allows us to determine the
limits of l-slices. Figure 6 shows this division. We then work by looping over the l-slices,
just the same as before.

Extracting the zin

The principal di�culty in applying the old algorithm with the new reduced vector data
structure lies in extracting the slices of the vector zin from an l-slice of vec and positions.
Indeed, the previous algorithms used a skipping procedure to extract the vector slices.
When the vector is stored in a reduced structure, it is not possible to perform these skips.
A somewhat similar method can however, be adopted by traversing the vector for each
extraction of a zin, during which the nonzero elements that belong to this zin are found. At
each loop on nrighti (line 6 of Algorithm 2.3), we traverse the l-slice of the vector and store
the elements corresponding to the zin. In order to avoid the numerous vector traversals
implicit in this approach (1 traversal per zin must be extracted, that is nrighti traversals

4This is what actually occurs in the current version of PEPS [14].
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A

A

A

B C D E

i j k l m

B C D E

i j

k l

m

B

C D

E

v full

vec

positions

pnlefti

p1

p2

nrighti � ni =

l < 2 � njumpi

j < njumpi

k � njumpi

njumpi

m � (nlefti � 1) � njumpi

njumpinjumpi

Figure 6: Separation of a reduced vector into l-slices, pl

per l-slice), we may recuperate, in a single sweep, all the zin for the l-slice being treated.
The cost of extracting the zin is therefore divided by nrighti.

We stock all the zin corresponding to an l-slice pl in an array. The zin's are similar to
those used in the extended shu�e algorithm E; they are stored in a vector of length at most
#PSS. Thus, for each l-slice pl (stored in reduced format) we build an extended vector
which contains the sequence of zin, in an appropriate order for this normal factor. Thus,
each element of pl belongs to a given zin, and it is in a speci�c location in this zin. The
number of the zin indicates the zin to which an element belongs. The numbering goes from
0 to nrighti � 1, and corresponds to the numbering introduced in Section 2 (Algorithm E).
The position in zin simply indicates the position of an element in a given zin.

The data structure that holds the zin is a two-dimensional array. Therefore, zin[r]
represents zin nÆ r; it is an array of size ni containing all the elements of zin nÆ r. Thus
zin[r][k] represents the element in position k in zin nÆ r. zin is an array of size nrighti�ni.

To extract the zin, we perform an integer division on the values in the array positions,
which gives, for j from 0 to #RSS, the number of the zin to which belongs the corresponding
element (positions[j] mod nrighti), as well as its place in zin (positions[j] div nrighti). An
integer division by nrighti boils down to recuperating the elements that are spaced nrighti
apart in the extended vector. Figure 7 shows this technique for extracting the zin.

Once we have the zin, it remains to perform the multiplications zin � q�;k (recall the
presentation of the shu�e algorithm of Figure 4) and then to store the results in the correct
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A B C

0 1 k

A B C

0 1 k

A B C

nrighti nrighti

l-slice of position

l-slice of vec element in position k:
zin nÆ (k mod nrighti)
position (k div nrighti) in zin

zinn
Æ(k mod nrighti) zinn

Æ(nrighti � 1)zinn
Æ0 zinn

Æ1

pl

Figure 7: Extracting all the zin for an l-slice of a reduced vector

place in the vector w (reduced format: w:vec and w:positions). It is also necessary to
evaluate the matrices in cases when they are functional. We shall �rst consider the case in
which we remain in RSS (local events only) and then we shall consider the modi�cations
that must be made if we exit the RSS.

Case I: Remain in RSS

We now assume that we have all the zin (for an l-slice). Therefore, we can directly access
a given zin. The fact that we remain in RSS lets us know which elements will be nonzero
in the solution vector obtained: these are the elements corresponding to reachable states.
Therefore we shall compute only the value of elements corresponding to these states. To
do this, we traverse the resulting vector (whose values in the array positions correspond
to reachable states) and we compute the probability for each reachable state, as described
below. We saw previously, during the presentation of the shu�e algorithm (Figure 4) that
the computation of an element of the resulting vector is performed by multiplying a given
zin by a column of the matrix Q(i).

To obtain the number of the zin and the column of the matrix allowing the multiplication
for a given element of the resulting vector, the schema is similar to that corresponding to the
extraction of the zin. Indeed, the elements corresponding to the multiplication by the same
zin are spaced nrighti apart in the extended vector. If we wish to compute the value of the
element in position k, we begin by doing an integer division of k by nrighti. The remainder
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of the division gives us the zin to use for the multiplication, and the quotient gives us the
column of the matrix. The multiplication is carried out as illustrated in Figure 8.

��
��
��

��
��
��X =

 

zin Q(i) zout

Its value is obtained by multiplying zin nÆ (k mod nrighti)
and the column of the matrix (k div nrighti)

The grey position corresponds to a reachable state in position k.

Figure 8: Computation of the values in RSS of an l-slice of the resulting vector

Algorithm 3.1 performs the multiplication w = v � (Inlefti 
 Q(i) 
 Inrighti). We shall
refer to this algorithm as PR, for partially reduced, because the vectors v and w are stored
in reduced format but the algorithm uses intermediate structures in extended format (the
zin). The algorithm corresponds to the case without functions in which it remains in RSS.

The while loops (lines 8 and 14 of Algorithm 3.1) serve to limit our study by l-slice. The
lth l-slice corresponds to elements of the vector that are found between positions l�njumpi
and ((l + 1)� njumpi) � 1. The variables j and j2 mark progress within v and within the
resulting vector w respectively.

It should be noted that we do not perform the division of the position of an element by
nrighti, but that we begin by subtracting l�njumpi from the position. Indeed, l�njumpi
corresponds to the position of the beginning of the l-slice l. To obtain a quotient between
0 and ni � 1, this subtraction is needed. Otherwise, the quotient would lie between l � ni
and ((l + 1)� ni)� 1. In theory, the subtraction is only needed for the computation of the
quotient, but in practice, both computations are performed at the same time. This is why
we also perform the subtraction for the computation of the remainder.

A problem arises in evaluating functional elements, because we can no longer proceed by
traversing positions in a linear fashion. If we were to proceed like this it would be necessary
to re-evaluate the functional matrices for each product of a column of Q(i) by a zin. But
the evaluation of functional elements is very expensive. We would prefer to proceed as we
did in Algorithm 2.3 (E with functions), since this implements a less expensive solution.
Indeed, in this algorithm, states are changed (as functional arguments) progressively by
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Algorithm 3.1

1 j = 0; j2 = 0;
2 for l = 0; 1; : : : ; nlefti � 1 // loop over the l-slices
3 do for r = 0; 1; : : : ; nrighti � 1 // initialization of zin
4 do for k = 0; 1; : : : ; ni � 1
5 do zin[r][k] = 0;
6 end do
7 end do

// Fill in the zin
8 while (j < v:dimension) && (v:positions[j] < (l + 1)� njumpi)
9 do re = (v:positions[j]� l � njumpi) mod nrighti;
10 qo = (v:positions[j]� l � njumpi) quo nrighti;
11 zin[re][qo] = v:vec[j];
12 j = j + 1;
13 end do

// Compute the result
14 while (j2 < w:dimension) && (w:positions[j2] < (l + 1)� njumpi)
15 do re = (w:positions[j2]� l � njumpi) mod nrighti;
16 qo = (w:positions[j2]� l � njumpi) quo nrighti;
17 w:vec[j2] = zin[re]�Q(i)[qo]; // Q(i)[qo] represents column qo of matrix Q(i)

18 j2 = j2 + 1;
19 end do
20 end do

Algorithm 3.1: PR without functions - Case I: Remain in RSS
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increments. The change of state occurs when zin is changed (the loop containing lines 6 to
20 of Algorithm 2.3). For a given zin, only a single function evaluation is needed.

In the case of reduced probability vectors, it is necessary to proceed in a di�erent way to
that of Algorithm 3.1, which performs a linear traversal. We must now treat the zin in the
same order as in Algorithm 2.3. Algorithm 3.2 performs the multiplication with function
evaluations in the innermost loop. We now provide details on the di�erent phases involved.

The initialization of the zin and their extraction occur in the same way as for the al-
gorithm without function evaluation (Algorithm 3.1, lines 1 to 12). For the initialization
functions we must add the subvectors with the local states of automata, and the same for the
initialization of several arrays considered below. These arrays are used to store information
concerning the computations that must be performed when a linear traversal is no longer
possible. To decrease the amount of computation, we keep elements that are known to be
nonzero in an array and perform the computations only for these elements. An algorithm
that does not use arrays must perform nrighti traversals of the l-slice. A single traversal of
the l-slice of w provides all the elements that will be nonzero, but these elements will not
be in the correct order. In the case of Algorithm 3.1, a single traversal provides us with the
elements to be computed, one after the other. and there is therefore no neeed of arrays since
elements are handled in a linear fashion. The traversal is performed by lines 13 through 20
of Algorithm 3.2. Intermediate information is stored in the following arrays:

� the array used speci�es zout which contain at least one reachable state. The zout
are numbered in the same way as the zin: zout[r] = zin[r] � Q(i)(: : : ) with r 2
[0 : : : nrighti � 1]. The array used is an array of booleans of size nrighti. Element
used[r] has the value true if and only if zout n

Æ r contains at least one element that
corresponds to a reachable state. With each change of l-slice, all the values of this
array are initialized to false.

� the array index is a counter to keep track of how many reachable states are present
in each zout. Thus, the zout n

Æ r contain index[r] reachable states.

� the array useful indicates the position in zout of an element to be computed. Only
places corresponding to reachable states are noted, and they are numbered from 1 to
index[r] for zout n

Æ r. Element useful[r][k] corresponds to the position in zout n
Æ r of

the kth reachable state of this zout.

� the array place holds the place in the resulting vector of the elements of zout. Once
a value has been computed, it must be stored in the vector. Element number k in
zout n

Æ r will therefore be placed at place[r][k] in the resulting vector.

It is then possible to compute the nonzero elements as before, but not in the same
order (we �rst compute all those corresponding to the same zin). To do this, we perform
a loop on nrighti (line 22), and we perform the evaluation of the matrix only if this is
necessary (line 24). The evaluation must be performed if we have to compute at least one
corresponding element of zout, i.e., if the corresponding value of used is true.
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Algorithm 3.2

1 j = 0; j2 = 0;
2 initialize l1 = 1; l2 = 1; : : : ; li�1 = 1;
3 for l = 0; 1; : : : ; nlefti � 1 // loop over the l-slices
4 do initialization of zin to 0
5 initialization of index to 0
6 initialization of used to false

// Fill in the zin
7 while (j < v:dimension) && (v:positions[j] < (l + 1)� njumpi)
8 do re = (v:positions[j]� l � njumpi) mod nrighti;
9 qo = (v:positions[j]� l � njumpi) quo nrighti;
10 zin[re][qo] = v:vec[j];
11 j = j + 1;
12 end do

// Intermediate information
13 while (j2 < w:dimension) && (w:positions[j2] < (l + 1)� njumpi)
14 do re = (w:positions[j2]� l � njumpi) mod nrighti;
15 qo = (w:positions[j2]� l � njumpi) quo nrighti;
16 used[re] = true; // Which zout must be computed
17 useful[re][index[re]] = qo; // For a given zout, the places used
18 place[re][index[re]] = j2; // For a given zout, the place in the vector

// into which to store the result
19 index[re] = index[re] + 1; j2 = j2 + 1;
20 end do
21 initialize ri+1 = 1; ri+2 = 1; : : : ; rN = 1;
22 for r = 0; 1; : : : ; nrighti � 1 // Compute the result
23 do if (used[r])

24 evaluate Q(i)(a
(1)
l1
; : : : ; a

(N)
rN ); // Evaluate only if necessary

25 for k = 0; 1; : : : ; index[r]� 1
// Multiplication by the matrix column

26 do w:vec[place[r][k]] = zin[r] �Q(i)[useful[r][k]];
27 end do
28 end if
29 next ri+1; ri+2; : : : ; rN ;
30 end do
31 next l1; l2; : : : ; li�1;
32 end do

Algorithm 3.2: PR with functions - Case I: Remain in RSS
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Finally, we compute each element corresponding to a reachable state of this zout n
Æ r,

by carrying out a loop from 0 to index[r]� 1 (line 25). The array place lets us know where
to store the result in the vector, and the array useful lets us know the column of the matrix
to be used in the multiplication. The computation (line 26) is similar to that performed by
line 17 of Algorithm 3.1.

Case II: RSS is exceeded

During the multiplication of a vector v by a tensor product
O

g

N

i=1
Q

(i)
e corresponding to the

treatment of a synchronizing event e, the intermediate vectors computed are not necessarily
in RSS. No longer can we perform the computation of a zin by using only a column of a
matrix which gives a result corresponding to a reachable state, because we do not know
where the nonzero values will be in the resulting vector. In this case, we must form the

products zin �Q
(i)
e , and only keep the nonzero elements on exit. We must therefore update

the array positions of the resulting vector when we �ll the vector with nonzero elements.
In most cases, the number of states with a nonzero probability on exit is less than or

equal to #RSS. It is therefore possible to use the same size of vector. However, it sometimes
happens (but rarely in our experience) that the number of states increases. In this case,
it becomes necessary to dynamically reallocate memory in which to store the vector (the
arrays vec and positions are not su�ciently large)5.

The previous algorithms (3.1 and 3.2) read the positions of v (vector on entry) and of w
(resulting vector) separately. Indeed, when we stay within RSS, the values of the positions
of w are already initialized to the positions of the states in RSS. On the other hand, it is
possible that the positions of v are di�erent, notable if we have just handled a case which
leaves the RSS. When we know that we leave the RSS, we compute the positions of w during
the vector�matrix multiplications. We no longer use the known positions as in the previous
case.

The principal di�erence with Algorithm 3.2 is that we do not perform the search for which
elements to compute (lines 13 through 20). Thus, we no longer perform the multiplication
of a zin by the column of a matrix, but the multiplication of a zin by the entire matrix, and
we store all the nonzero elements as a (position, value) pair. When the multiplications of an
l-slice have been completed, we store the nonzero elements obtained in the resulting vector,
and update the arrays positions and vec.

Algorithm 3.3 performs the multiplication in the case when we leave the RSS and there
are functions to be evaluated. Here we handle the zin in the same order as in Algorithm 2.3;
the evaluations are performed in the same manner. The multiplication of line 14 stores the
nonzero elements in zout during the computation zin � Q(i). After sorting these elements
into increasing order (line 17), we can store the results in the solution vector (lines 18 to
22). We do not necessarily use all of array vec, which means that it is useful to include a

5We have not yet implemented dynamic reallocation in PEPS; instead we simply alert the user that the
expanded method should be used. This happens very rarely and is the reason why we have not had need of
dynamic reallocation for the moment.
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position equal to �1 once all the nonzero elements have been stored. In this way we know
what part of the array has been used.

Algorithm 3.3

1 j = 0; j2 = 0;
2 initialize l1 = 1; l2 = 1; : : : ; li�1 = 1;
3 for l = 0; 1; : : : ; nlefti � 1 // loop over the l-slices
4 do initialize the zin to 0 and remove zout;

// Fill in the zin
5 while (j < v:dimension) && (v:positions[j] < (l + 1)� njumpi)
6 do re = (v:positions[j]� l � njumpi) mod nrighti;
7 qo = (v:positions[j]� l � njumpi) quo nrighti;
8 zin[re][qo] = v:vec[j];
9 j = j + 1;
10 end do
11 initialize ri+1 = 1; ri+2 = 1; : : : ; rN = 1;
12 for r = 1; 2; : : : ; nrighti // Computation of the result

13 do evaluate Q(i)(a
(1)
l1
; : : : ; a

(N)
rN );

14 multiply zout = zin �Q(i);
15 next ri+1; ri+2; : : : ; rN ;
16 end do
17 Sort zout by increasing position order;
18 while ((pos; val) 2 zout) // Store the result of the l-slice
19 do w:positions[j2] = pos+ l� njumpi;
20 w:vec[j2] = val;
21 j2 = j2 + 1;
22 end do
23 if (j2 � dimension)
24 Warn the user of array over�ow, or else reallocate dynamically.
25 end if
26 next l1; l2; : : : ; li�1;
27 end do

// If needed, place a marker to keep the last position used in the array
28 if (j2 < dimension)
29 w:positions[j2] = �1
30 end if

Algorithm 3.3: PR with functions - Case II: RSS is exceeded
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Complexity

We end this section with a study of the complexity of the algorithmsPR, and by a theoretical
comparison with algorithm E. The complexity of the product of a vector by a classic tensor
product term is obtained by observing the number of multiplications of a vector slice by
a column of a matrix. In the case of algorithm E, we perform #PSS products, while
we only perform #RSS for algorithm PR if we remain in RSS. When we leave RSS, we
cannot exploit the properties that permitted us to reduce the number of computations. The
improvement with respect to algorithm E is therefore zero. This algorithm is therefore only
interesting from the point of view of amount of computation if we remain in RSS.

In the case of functional matrices, the complexity remains of the same order (the number
of computations does not change) but the evaluation of the matrix represents an important
cost. We reduce the number of evaluations with respect to algorithm E if certain vector�
matrix multiplications yield a zero result. If the model has a high percentage of nonreachable
states, this decrease in the number of evaluations is signi�cant.

As far as the amount of memory occupied by PR is concerned, we note that the vectors
are stored in a reduced format, which allows an improvement in memory with respect to
the shu�e algorithm. The vectors are of size 2 � #RSS (two arrays of size #RSS) in
reduced format while they were of size#PSS in extended format. However, the intermediate
structures which are used for the shu�e (PR) are stored in extended format. We use
arrays of size nrighti �ni in which to store the zin and other intermediate information. By
de�nition, nrighti � ni � nlefti = #PSS. Thus we use an array of size #PSS. If it is
impossible to hold this array in memory, the algorithm cannot be used. The classic shu�e
algorithm (E) stores the vector in a structure of size #PSS. The improvement in memory
of the new algorithm is therefore zero.

We now wish to improve this algorithm from the perspective of memory usage, so that
we will have no need of any data structure of size #PSS.

4 Improvements in Memory Requirements

The algorithms of the previous section (PR) show improvements from the point of view of
execution time: when it is known in advance, only nonzero elements of the resulting vector
are computed. However, the amount of computation remains high once the vector leaves
the RSS, and the gain in memory when compared to algorithm E is zero, because we still
use data structures of size #PSS. In this section we present new algorithms which use no
data structure of size #PSS, but which lose a little in computation time in cases when we
remain in RSS.

Memory Structures

For this new algorithm, we used the Standard Template Library (STL). This library has
containers in which to store and organize a set of objects, iterators with which to sweep across
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these containers, and generic algorithms which act on the containers (sorting algorithms,
algorithms for searching, and so on). We will use containers containing triplets (number,
place, index). A triplet is stored per element of an l-slice.

� number represents the number of zin or of zout corresponding to the element.

� place represents the place of the element in the zin or in the zout.

� index represents the index of the element in the reduced vector. This allows us to
�nd the value of the element as vec[index].

Initialization and division into l-slices

The initialization phase is similar to that presented in the previous section. Indeed, the
structures used are the same. Also, we need to know the elements of the RSS. The division
into l-slices is handled in the same way. (Figure 6).

Collecting information

We handle the l-slices in a sequential manner, just like the algorithms of section 3 (PR).
Thus, for each l-slice, we begin by collecting the necessary information for an e�cient exe-
cution of the remainder of the algorithm. In the case in which we remain in RSS, the array
positions of the output vector w is initialized with the positions of the states of RSS. We
then perform:

� a traversal of the l-slice of the positions of the incoming vector v, to construct a
container infozin. This container indicates for each element of the vector (reachable
state), the zin to which it belongs, its place in this zin, and the index of this element
in the reduced vector.

� a traversal of the l-slice of the positions of the output vector w, to complete a container
infozout similar to infozin, but which takes into account the positions of the vector w
(these may be di�erent from those of v if v has been obtained by a case that exits the
RSS).

In the case in which we exit RSS, only the traversal of the l-slice of the positions of the
incoming vector v is necessary. We do not know which elements are likely to be nonzero
in the resulting vector. The traversal is similar to that performed in the case in which we
remain in RSS; we �ll the array infozin in the same manner.

Extraction of the zin

In order to extract the zin, we just need to perform a sort6 on the containers so that all
the elements of the same zin end up in adjacent positions. We then perform a loop on the

6 The STL sort used is introsort, a variant of quicksort which o�ers a complexity of O(N logN) in the
worst case.
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zin (on nrighti). We use an iterator, izin to traverse infozin, and, if we remain in RSS,
a second iterator, izout to traverse infozout. The elements of the same zin are now placed
consecutively and a single traversal of infozin allows us to get the zin one after the other.
Figure 9 shows this extraction of the zin.

0 0 0 0

0 0 0

2 2

1 3 3

3 5 6 8 9

2 25 5

3 3 1

3 8 5 9 6

0

v(3) v(8)

30 0 3
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loop on nrighti r = 0 r = 1 r = 2 r = 5

infozin before sortinginfozin after sorting

number
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Æ0 zinn

Æ2 zinn
Æ5

izin
izin

izinizin

Figure 9: Extracting the zin from infozin

The sequence of operations depends on the following cases:

� If we remain in RSS, we check if there are elements of the current zout to be treated.
The iterator izout lets us know which is the next zout that contains the elements of
RSS; we therefore know if there are elements likely to be nonzero in the current zout.
If there are no elements in this zout, we increment the subvector with the local states
of automata on the right of the matrix. If not, we extract all the elements of the
current zin (situated after izin). We look to see which elements need to be multiplied
(elements of the current zout determined from izout), and we can �nally perform the
multiplication of the zin by the column of the matrix. We have all the information we
need available to us.

� If RSS is exceeded, the treatment is similar, but infozout no longer exists. We extract
the current zin from the izin, then we perform the sparse multiplication of zin by the
entire matrix. The treatment for recuperating the nonzero elements and storing them
in the resulting vector is then identical to that of Algorithm 3.3.

Algorithms 4.1 and 4.2 correspond respectively to the case in which we remain in RSS
and the case in which we exit the RSS, with the evaluation of functions in the innermost
loop.
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Algorithm 4.1

1 j = 0; j2 = 0;
2 initialize l1 = 1; l2 = 1; : : : ; li�1 = 1;
3 for l = 0; 1; : : : ; nlefti � 1 // loop over the l-slices
4 do delete infozin and infozout;
5 initialize izin and izout;

// Fill in infozin

6 while (j < v:dimension) && (v:positions[j] < (l + 1)� njumpi)
7 do re = (v:positions[j]� l � njumpi) mod nrighti;
8 qo = (v:positions[j]� l � njumpi) div nrighti;
9 append (re,qo,j) to infozin;
10 j = j + 1;
11 end do

// Fill in infozout

12 while (j2 < w:dimension) && (w:positions[j2] < (l + 1)� njumpi)
13 do re = (w:positions[j2]� l � njumpi) mod nrighti;
14 qo = (w:positions[j2]� l � njumpi) div nrighti;
15 append (re,qo,j2) to infozout;
16 j2 = j2 + 1;
17 end do
18 sort infozin and infozout according to their numbers;
19 initialize ri+1 = 1; ri+2 = 1; : : : ; rN = 1;
20 for r = 0; 1; : : : ; nrighti � 1 // detail of an l-slice: loop over the zin
21 do (numo; poso; indo) = izout;
22 if (numo == r)
23 delete zin;
24 (numi; posi; indi) = izin;
25 while (numi == r) // extract zin
26 do append (posi; v:vec[indi]) to zin
27 increment izin;
28 (numi; posi; indi) = izin;
29 end do

30 evaluate Q(i)(a
(1)
l1
; : : : ; a

(N)
rN );

31 while (numo == r) // Compute result

32 do w:vec[indo] = zin �Q(i)[poso]; // Multiplication by a column
33 increment izout;
34 (numo; poso; indo) = izout;
35 end do
36 end if
37 next ri+1; ri+2; : : : ; rN ;
38 end do
39 next l1; l2; : : : ; li�1;
40 end do

Algorithm 4.1: FR with functions - Case I: Remain in RSS
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Algorithm 4.2

1 j = 0; j2 = 0;
2 initialize l1 = 1; l2 = 1; : : : ; li�1 = 1;
3 for l = 0; 1; : : : ; nlefti � 1 // loop over the l-slices
4 do delete infozin and infozout;
5 initialize izin and izout;

// Fill in infozin

6 while (j < v:dimension) && (v:positions[j] < (l + 1)� njumpi)
7 do re = (v:positions[j]� l � njumpi) mod nrighti;
8 qo = (v:positions[j]� l � njumpi) div nrighti;
9 append (re,qo,j) to infozin;
10 j = j + 1;
11 end do
12 sort infozin according to number;
13 initialize ri+1 = 1; ri+2 = 1; : : : ; rN = 1;
14 for r = 0; 1; : : : ; nrighti � 1 // detail of the l-slice: loop over the zin
15 do (num; pos; ind) = izin;
16 if (num == r)
17 delete zin;
18 while (num == r) // extract zin
19 do append (pos; v:vec[ind]) to zin
20 increment izin;
21 (num; pos; ind) = izin;
22 end do

23 evaluate Q(i)(a
(1)
l1
; : : : ; a

(N)
rN );

24 multiply zout = zin �Q(i);
25 end if
26 next ri+1; ri+2; : : : ; rN ;
27 end do
28 sort zout according to increasing position number;
29 while ((pos; val) 2 zout) // Store the result of the l-slice
30 do w:positions[j2] = pos+ l� njumpi;
31 w:vec[j2] = val;
32 j2 = j2 + 1;
33 end do
34 if (j2 � dimension)
35 Warn the user of array over�ow, or else reallocate dynamically.
36 end if
37 next l1; l2; : : : ; li�1;
38 end do

// If needed, place a marker to keep the last position used in the array
39 if (j2 < dimension)
40 w:positions[j2] = �1
41 end if

Algorithm 4.2: FR with functions - Case II: RSS is exceeded
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Complexity of the algorithm

The number of multiplications of a vector slice by a column for the algorithm FR remains
identical to that of algorithm PR (#RSS). We also need to do a sort per l-slice, but the
complexity of the sort is less that the complexity generated by all the other computations.
We sort a structure of maximum size #RSS, while the traversals performed are of the order
of #PSS (nrighti traversals). When the percentage of nonreachable states is high, the
improvement is signi�cant (#PSS � #RSS).

The gain in memory is equally important for we no longer use arrays of size nrighti.
All the arrays are of size #RSS. We have therefore ful�lled our objective of not using any
structure of size #PSS while maintaining an e�cient algorithm.

Now that we have presented shu�e algorithms that take advantage of reduced probability
vector structures, we present an algorithm for reordering automata that allows us to improve
the shu�e algorithm in certain cases, by reducing the number of function evaluations that
must be performed, for all three categories of algorithm E, PR and FR.

5 Reordering Automata to Improve Performance

Several methods for evaluating functions during the the vector�descriptor multiplication of
the shu�e algorithm are possible ([7, 15]). The �rst, which we call the no permutation
method, performs the function evaluation in the innermost loop of the algorithm. The
algorithms detailed previously used this method. We may also use permutations to reduce
the number of function evaluations (which we shall callmethod with permutation). The
reordering techniques that are presented in [7, 8], allow us to perform, in certain cases,
these evaluations outside the innermost loop. We will not present the theory behind these
reordering techniques here, but will only show their e�ect on the algorithms that we have
developed in this paper.

To implement these techniques, we must �rst perform a vector permutation. When
we use reduced vectors, this must obviously be modi�ed; this is why we give details of
this algorithm in both the expanded and reduced vector cases. We shall then describe the
modi�cations that must be made to the vector�descriptor multiplication algorithms that
have been presented.

5.1 The Permutation Algorithm

The vector permutation algorithm must change if the structure of the vector changes. We
shall �rst present the principles of the permutation, and explain how it works. Then we
shall provide details of the algorithm in the extended vector case, and �nally its adaption
to the reduced vector case.
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Permutation Principle

We assume that we possess a reordering of the automata that allows us to reduce the number
of function evaluations. When the order of the automata change, the elements of the vector
must change also, because their lexicographical ordering has changed. The table below shows
the states of a vector when the automata are ordered in two di�erent ways. The elements
of the vector are sorted according to a lexicographical ordering expressed by the list of the
automata in some order. On the left, we use the order A(1);A(2);A(3). The automata have
size 2, 3, 2 respectively. On the right, we have reordered the automata as A(3);A(1);A(2).

A(1);A(2);A(3) A(3);A(1);A(2)

position x(1) x(2) x(3) position x(1) x(2) x(3)

0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 0
2 0 1 0 2 0 2 0
3 0 1 1 3 1 0 0
4 0 2 0 4 1 1 0
5 0 2 1 5 1 2 0
6 1 0 0 6 0 0 1
7 1 0 1 7 0 1 1
8 1 1 0 8 0 2 1
9 1 1 1 9 1 0 1
10 1 2 0 10 1 1 1
11 1 2 1 11 1 2 1

No matter which order is used, it is always easy to increment the state of the vector by
+1. Incrementing a vector corresponds to incrementing a local state, with a possible carry-
over, as explained previously in the case of the shu�e algorithm (Section 2). We provide
details of this algorithm to allow for a better understanding of the permutation algorithm,
which is founded on these increments.

To perform the increment, we consider the automata from the last to the �rst, and
we try to increment the individual states of the automata. An incrementation is invalid
when the individual state of the automaton to be incremented is its last state. When an
incrementation is invalid, the individual state of the automaton is restored to its �rst state
(reset), and the next state is considered (which is the automaton preceding it in the automata
ordering). The procedure stops as soon as a valid incrementation can take place. In the
previous example, and for the order A(1);A(2);A(3), we look, for example, to increment the
state (0; 1; 1) by +1. The automaton A(3) is the �rst that we try to increment. But this
automaton is in its last state, and so its value is set to 0. We then try to increment A(2),
and this incrementation is valid. Thus the state (0; 2; 0) is obtained.

When we perform, for a permutation, an increment according to some lexicographical
ordering, we need to be able to compute the position of the state in the permuted vector, i.e.,
according to a di�erent lexicographical ordering. We compute this new position from the
current position in the permuted vector. In our example, the position of the state (0; 1; 1)
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in the new lexicographical ordering A(3);A(1);A(2) is 7. The positions of the state after the
incrementation (state (0; 2; 0)) is 2. To compute the new position, we proceed by increments
and decrements corresponding to the increments and resets performed on the individual
states of the automata. The values of these increments depends on the new lexicographical
order. A valid increment of +1 on an individual state corresponds to an addition of nrighti
on the order, and a reset of the state of an automaton corresponds to a subtraction of
nrighti � ni on the position. In our example we perform a reset on the state of automaton
A(3), and in the new lexicographical order nright3 = 2 � 3 = 6. We therefore obtain the
position 7� 6 = 1. We then increment the value of the state of automaton A(2), for which
nright2 = 1 in the new lexicographical order. We therefore increment the order 1, to obtain
2.

We wish to perform the permutation of the vector in traversing this vector sequentially.
We know the position of the initial state according to the new lexicographical order. We
perform an increment of +1 on the state of the vector to be permuted and we compute the
position of the next state according to the new automata order, as explained above. The
permutation algorithm for extended vectors is trivial and is presented in the next paragraph.
We shall then show how this can be adapted for the case of reduced vectors.

Permutations for extended vectors

The permutation of a vector in extended format is immediate. We take advantage of the
change in the lexicographical order. The algorithm creates a new vector structure (an array
of size #PSS). We traverse sequentially the vector to be permuted, v, and we see which is
the new place for each element in the permuted vector w (position idx). In order to know this
position, we increment the current state (state) by +1, and we compute the position (idx)
of this state in the permuted vector. Figure 10 and Algorithm 5.1 present the premutation
of a vector stored in extended format.

Algorithm 5.1

1 create a new array w of size #PSS
2 initialize state ; // initial state in v
3 idx = 0; // index in w (position of state in the permuted vector)
4 for i = 0; 1; : : : ;#PSS // sequential traversal of v
5 do w[idx] = v[i]; // element of the vector in position i: now at position idx
6 increment the state state by +1
7 update the position idx according to the new lexicographical order
8 end do
9 v = w;

Algorithm 5.1: Permutation of a vector v in extended format
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Figure 10: Permutation of a vector in extended format

Permutation of a Reduced Vector

In Algorithm 5.1, we perform accesses to w to store the element corresponding to position
idx in this vector (line 5). When the vector is stored in reduced format, this operation is
no longer possible because we only store the reachable states and we do not have a direct
correspondance between idx and the index of the state in the extended vector. This last
index depends on the number of reachable states that precede the state in position idx
according to the new lexicographical order in the resulting vector.

We choose nevertheless to proceed in a similar manner to that of the extended algorithm.
Thus we perform a loop on #PSS. We proceed by increments of +1 on the state of the
vector (state). We can, as before, compute the position of this state in the permuted vector
(idx). When the state of the vector v is reachable (value present in the vector v which is
stored in reduced format), we store the pair (new position, value) in an STL vector called
w. Once this loop has terminated, we possess all the values to store in the resulting vector,
as well as their positions. However, these positions are not necessarily in increasing order.
Thus we must sort this vector in increasing order and then store the result in a reduced
vector (arrays newpos and newvec). The iterator iw allows us to traverse the STL vector
w. Algorithm 5.2 performs this permutation.

5.2 Vector�Descriptor Multiplication Algorithms

Once the permutation algorithm has been taken care of, we can apply the reordering tech-
nique and hence perform the function evaluations outside the innermost loop. Only one
matrix evaluation per l-slice needs to be performed. The modi�cations that must be per-
formed on the algorithms presented in the previous sections are now considered.
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Algorithm 5.2

1 create new arrays newpos and newvec of size #RSS
2 initialize state ; // initial state in v
3 idx = 0; // index in w (order of state in the permuted vector)
4 k = 0; // pointer to the current element of the reduced vector
5 for i = 0; 1; : : : ;#PSS
6 do if (i == positions[k]) // got a reachable state
7 append (idx; vec[k]) to w
8 k = k + 1;
9 end if
10 increment state by +1
11 update the position idx according to the new lexicographical order
12 end do
13 Sort w and initialize iw at the beginning of w
14 k = 0;
15 while (iw is not at the end of w) // store the elements of w in newpos and newvec
16 do (pos; val) = iw;
17 newpos[k] = pos;
18 newvec[k] = val;
19 k = k + 1; increment iw;
20 end do
21 positions = newpos; vec = newvec;

Algorithm 5.2: Permutation of a reduced vector v
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Algorithm E (Section 2)

In the case of the expanded shu�e algorithm, it is su�cient to simply change the place of
the line that corresponds to the evaluation of the matrix in Algorithm 2.3, to move it out
of the innermost loop. Line 12 is therefore moved to a new position between lines 5 and 6.

Algorithm PR (Section 3)

In the case in which we leave the RSS, algorithm PR (Algorithm 3.3) is modi�ed by simply
moving line 13 and putting it between lines 11 and 12 (this moves the matrix evaluation
outside the innermost loop).

On the other hand, a simple modi�cation of Algorithm 3.2 is not the most appropriate
solution in the case in which we remain within the RSS. Algorithm 3.1 without function
evaluations is much more simple than Algorithm 3.2, but we must rewrite it in order to
recreate the innermost loop in which the function evaluations should be handled. We are
therefore obliged to treat the zin in a sequential order, and, especially, to compute all the
resulting elements obtained by the multiplication of the same zin by a column of the matrix,
one after the other, to avoid costly re-evaluations.

When we only perform a single matrix evaluation per l-slice, the order in which we handle
the zin is no longer important. This means that we can take Algorithm 3.1, which performs
the computation of the elements of the result sequentially, without worrying about the order
of the zin. It is therefore su�cient to add the vector initializations, the increments of the
left and right subvectors and the evaluation of the matrix between lines 7 and 8, to this
algorithm.

Algorithm FR (Section 4)

In the algorithms presented in this section, the structure must be maintained. We shall
therefore be content to move the evaluation out of the innermost loop by moving the cor-
responding line. For the case in which we remain in RSS (Algorithm 4.1), we move line 30
so that it lies between lines 19 and 20. When RSS is exceeded (Algorithm 4.2), we move
line 23 so that it lies between lines 14 and 15. In this way, we only perform a single matrix
evaluation per l-slice.

6 Comparison Tests

Now that the principal algorithms have been presented, we shall study their performance
and compare them with one another on the basis of both memory needs and execution time.
We present results obtained from three classic models chosen from the literature ([7, 8, 15]).
The �rst model, called mutex1, performs resource sharing with the use of functions; the
second, mutex2, represents the same model, but with functions replaced by synchronizing
transitions; and the third, queue, represents a queueing network model with blocking and
priority service.
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6.1 Test Conditions

All numerical experiments were performed using the software package, PEPS ([14]), into
which we implanted the three new algorithms. All execution times were measured to within
a tenth of a second on a 531 MHz Pentium III PC with 128 MB of memory and running
Linux Mandrake 2.2.14. Convergence was veri�ed to an absolute precision of ten decimal
places, i.e., the results have a tolerance of the order of 10�10. In all experiments, the initial
vectors were chosen to be equiprobable.

The changes that we made to PEPS only concerned the vector descriptor multiplication.
As a result, the improvement or deterioration in performance of the new algorithms are
identical for all the iterative methods (Power, Arnoldi, GMRES) and for all the di�erent
types of preconditioning. Because of this we restrict our numerical experiments to a single
iterative method, the unpreconditioned power method.

Presentation of Results

The results are presented in two tables for each model. The �rst gives the results in terms
of execution time, and the second in terms of memory needs. The two tables have the same
structure.

� The initial columns give the parameters of the model (values of N and P for the
mutex examples), as well as the number of states of the system, (column #PSS), the
number of reachable states, (column #RSS), and their ratio, (column %), given as
(#RSS=#PSS)� 100.

� Column E (extended) presents the results obtained when the algorithm of section 2 is
used, i.e., the extended shu�e algorithm E.

� Column PR (partially reduced) presents the results obtained by the algorithms of Sec-
tion 3, PR, which improve execution time, but which use intermediate data structures
that are of size #PSS.

� The results of column FR (fully reduced) are obtained using the algorithms presented
in Section 4 (FR), which reduce memory requirements.

The computation times are actually given in two subcolumns, the �rst provides the
compilation time (comp) while the second subcolumn presents the execution time (exec).

The memory requirements are also given in two subcolumns, the �rst provides the size
of the descriptors (des) while the values given in the second (exec) are taken from the
system during execution. They represent the totality of memory used by PEPS during its
execution (i.e., during the solution of a model). This includes the data, memory structures
reserved by the procedure, and also the process stack. The only parameters that change from
one algorithm to the next are the memory structures reserved by the algorithms (vectors,
intermediate array structures, and so on).
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6.2 Mutex1

In the resource sharing model, called mutex1, N distinct clients share P identical units of
a common resource. Each client is modeled by an automaton having two states: sleeping

and active. In state sleeping, the client does not use any resource while in state active, it
uses one unit of the common resource.

Notice that if P = 1, this model represents the classical mutual exclusion model whith n
clients. Similarly if P � N , this model represents the case in which the clients are completely
independent.

An automaton A(i) in sleeping mode can move to state active according to a rate �i
multiplied by a function f de�ned by7:

f(~x) = Æ

 
NX
i=1

Æ(x(i) = active) < P

!

This function represents the mechanism by which access to the units of resource is restricted.
The semantics of this function is as follows: access permission is granted if at least one unit

of the resource is available. A unit of resource is freed at a di�erent rate for each automaton
A(i) (�i). Freeing up resource, as opposed to acquiring resource, occurs in an independent
manner. Figure 11 illustrates this model.

This model has no synchronizing transitions; it has local transitions only. We use this
model to test the algorithms in the case when we remain in RSS, with functional matrices.
For the tests, we use the values �i = 6 and �i = 9 for all automata. The values of N and P
are varied according to the experiment.

sleeping

active

sleeping

active

�1

�1f

�N

�Nf

A(1) A(N)

Figure 11: The resource sharing model, mutex1

Method without permutation

The �rst tests were performed with the method without permutation on a mutex1 model
with 16 clients, and a number of units of resources that varied between 1 and 16.

7 Recall that Æ(b) is a function that equals 1 if the expression b is true, otherwise this function is equal
to zero.
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Execution time (sec) - mutex1
Model E PR FR

N P #PSS #RSS % comp exec comp exec comp exec
16 1 65536 17 0.03% 2.4 27.2 0.02 1 0.02 3.5
16 4 65536 2517 3.8% 2.4 112 0.14 11.5 0.14 22.1
16 6 65536 14893 22.7% 2.4 178.2 0.68 70 0.68 93.1
16 8 65536 39203 59.8% 2.4 235.4 1.6 206.6 1.6 267.4
16 10 65536 58651 89.5% 2.7 292.7 2.3 348.6 2.3 478.9
16 12 65536 64839 98.9% 2.6 332 2.5 419.6 2.5 612.9
16 16 65536 65536 100% 3.7 27 3.7 84.9 3.7 377.8

This example shows the performance of the algorithms when the percentage of nonreach-
able states is varied. The compilation is identical for algorithms PR and FR, and faster than
the compilation of algorithm E. In fact, algorithm E needs to generate all the diagonal ele-
ments while PR and FR store only the diagonal elements corresponding to reachable states,
and therefore only compute these elements during the compilation.

As concerns the new algorithms PR and FR presented in this paper, we notice, as
expected, that algorithm PR is faster than algorithm FR. These algorithms, which take
advantage of a large percentage of nonreachable states, are faster than algorithm E so long
as the percentage of reachable states remains reasonable (less than 60% for PR, less than
50% for FR).

Memory used (KB) - mutex1
Model E PR FR

N P #PSS #RSS % des exec des exec des exec
16 1 65536 17 0.03% 522 4208 10 4476 10 2124
16 4 65536 2517 3.8% 522 4208 30 4584 30 2304
16 6 65536 14893 22.7% 522 4208 126 5116 126 3128
16 8 65536 39203 59.8% 522 4208 316 6176 316 4748
16 10 65536 58651 89.5% 522 4212 468 7016 468 6040
16 12 65536 64839 98.9% 522 4212 516 7280 516 6448
16 16 65536 65536 100% 522 4212 522 7832 522 6516

As for memory needs, we note �rst of all, that the size of the descriptor is �xed in the case
of algorithm E, while it depends on the number of reachable states for the other algorithms.
This is linked to the fact that in the case of PR and FR we only store the elements of the
diagonal corresponding to reachable states, while E stores all the elements of the diagonal.

During execution, we notice that algorithm FR permits a signi�cant reduction in memory
needs with respect to algorithm E as long as the the percentage of nonreachable states is
su�ciently high. Indeed, when we are working in reduced vector format, we use structures
of the size of #RSS, but an element of the vector needs additional information which is
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also stored. Thus, once we exceed 50% of reachable states, we should not hope to produce a
gain in memory since a vector is stored with the help of two arrays of size #RSS, which is
greater than #PSS. The intermediate structures used in PR make its memory use greater
in all cases than that of algorithm E.

We performed additional experiments on larger models to determine the limits and the
possibilities of the algorithms developed. The indication (-) in the tables means that the
algorithm did not terminate, due to a need for excessive memory. For N = 24, only the
column FR appears in the table, because the two other algorithms did not terminate.

Execution time (sec) - mutex1
Model E PR FR

N P #PSS #RSS % comp exec comp exec comp exec
20 1 1048576 21 0.002% 51.8 601.7 0.2 21.2 0.2 64.4
20 4 1048576 6196 0.6% 56.4 2266.7 0.6 105 0.6 263.6
20 6 1048576 60460 5.8% 59.5 3285.1 3.9 440.9 3.9 698
20 8 1048576 263950 25.2% 62.9 4675.1 15.8 1952.7 15.8 2604.2
20 10 1048576 616666 58.8% 58.6 6154.7 34.1 5160.1 34.1 7047.5
20 20 1048576 1048576 100% 92.9 586.6 88 2159.5 88 12585.3

Model FR
N P #PSS #RSS % comp exec
24 1 16777216 25 0.0001% 2.6 1100.9
24 4 16777216 12952 0.08% 3.7 3986.6
24 6 16777216 190051 1.1% 18.7 7018.6
24 8 16777216 1271626 7.6% 102.3 19671.4
24 10 16777216 4540386 27% 331.6 101348.6
24 12 16777216 9740686 58% 672.6 -

Memory used (KB) - mutex1
Model E PR FR

N P #PSS #RSS % des exec des exec des exec
20 1 1048576 21 0.002% 8207 35164 15 39776 15 2380
20 4 1048576 6196 0.6% 8207 35164 63 40040 63 2816
20 6 1048576 60460 5.8% 8207 35164 487 42400 487 6428
20 8 1048576 263950 25.2% 8207 35164 2077 51128 2077 19932
20 10 1048576 616666 58.8% 8207 35164 4833 66292 4833 43360
20 20 1048576 1048576 100% 8207 35164 8207 84860 8207 72052
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Model FR
N P #PSS #RSS % des exec
24 1 16777216 25 0.0001% 21 6252
24 4 16777216 12952 0.08% 122 7116
24 6 16777216 190051 1.1% 1506 18896
24 8 16777216 1271626 7.6% 9956 90712
24 10 16777216 4540386 27% 35493 307768
24 12 16777216 9740686 58% 76120 424808

The results obtained with N = 20 con�rms our previous observations (N = 16).
Algorithm PR however, uses a great deal of intermediate memory structures which limits

its application on large models. Its usefulness lies in the acceleration that it brings to models
with a large percentage of nonreachable states and which are not too large (it is therefore
better than FR). So, for N = 20, PR is better than FR in terms of execution time. As for
algorithm E, it is most appropriate for models with few nonreachable states. It is the best
algorithm when P � 10.

When N = 24, only algorithm FR is successful. The limits of algorithm FR are reached
when the percentage of nonreachable states is high. When P � 12, the memory needs of
algorithm FR become excessive and the solution cannot be computed. Here we see that
algorithm FR takes advantage of the large number of nonreachable states; if the model has
few unreachable states, FR becomes ine�cient and unusable.

Method with permutation

We performed another series of test on this model, but this time using the algorithms with
permutations. We restricted ourselves to the case when P = 16 to observe the behavior of the
algorithms, knowing that this method performs less well than those without permutation,
since all the evaluations must take place. This means that we perform permutations without
eliminating function evaluations. The data relative to the compilation and the size of the
descriptor also remain identical. We present the results concerning the execution time and
memory needs in the same table.

Execution time (sec) and Memory used (KB) - mutex1
Model E PR FR

N P #PSS #RSS % sec KB sec KB sec KB
16 1 65536 17 0.03% 32.2 4208 29.5 4496 29.3 2144
16 4 65536 2517 3.8% 132.4 4208 124 4636 123.1 2292
16 6 65536 14893 22.7% 209.8 4208 220 5312 217.7 2972
16 8 65536 39203 59.8% 277.9 4208 367 6656 368.1 4304
16 10 65536 58651 89.5% 345.8 4212 545.7 7724 542.7 5372
16 12 65536 64839 98.9% 392 4212 659.8 8060 656.6 5708
16 16 65536 65536 100% 26.8 4212 99 7344 379.5 6536
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We can see from these results that algorithm PR and FR yield a reduction in execution
time that is less than that obtained in the method with permutation. This is due to the
fact that the permutation of reduced vectors results in an additional cost with respect to
the permutation of extended vectors. We can also note that algorithm FR performs better
than PR in these examples, both in terms of computation time and in memory needs. In the
future, when we use the methods with permutation in models without synchronizing events,
we shall use algorithm FR in place of PR.

6.3 Mutex2

It is possible to represent the resource sharing model by means of a stochastic automata
network without the use of functions: mutex2. This representation produces a more com-
plex model and makes execution times longer, but it is nevertheless interesting to test the
algorithms without function evaluation and when we leave the RSS (from handling synchro-
nizing events). To model the resource sharing, we continue to use one automaton per client,
with the same two states sleeping and active. An additional automaton of size P +1 is also
used, where P is the number of units of resource available.

An automaton A(i) in state sleeping can move to the state active by a synchronizing
event, pi which removes a unit of resource from the resource pool. Similarly, when an
automaton �nishes using the resource, it uses a synchronizing event, ri, to return the resource
to the pool. Figure 12 illustrates this concept.

sleeping

active

sleeping

active

A(1) A(N)

p1

r1 rN

pN

A(N+1)0 1 P

p1; :::; pN p1; :::; pN p1; :::; pN

r1; :::; rNr1; :::; rNr1; :::; rN

Figure 12: The resource sharing model, mutex2

There are no functions in this example. The method without permutation is therefore
identical to the method with permutation.
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Execution time (sec) - mutex2
Model E PR FR

N P #PSS #RSS % comp exec comp exec comp exec
16 1 131072 17 0.01% 33.6 13.6 0.07 6.1 0.07 2.2
16 4 327680 2517 0.77% 84.3 85.4 0.7 40.1 0.7 11.1
16 6 458752 14893 3.25% 116.1 174.9 3.9 101.3 3.9 47.9
16 8 589824 39203 6.65% 149.1 296.5 9.9 219.8 9.9 150.3
16 10 720896 58651 8.14% 182.6 563.1 15.3 449.8 15.3 350.9
16 12 851968 64839 7.61% 215.6 1002.5 16.8 774.6 16.8 603.5
16 16 1114112 65536 5.88% 283.3 1861.5 17 1350 17 918.2

Memory used (KB) - mutex2
Model E PR FR

N P #PSS #RSS % des exec des exec des exec
16 1 131072 17 0.01% 1210 6480 187 7928 187 2368
16 4 327680 2517 0.77% 2747 12672 207 21784 207 2628
16 6 458752 14893 3.25% 3772 16800 304 37440 304 3628
16 8 589824 39203 6.65% 4796 20928 494 59860 494 5564
16 10 720896 58651 8.14% 5821 25060 647 84604 647 7116
16 12 851968 64839 7.61% 6845 29188 696 112564 696 7628
16 16 1114112 65536 5.88% 8894 37452 702 179872 702 7780

Perhaps the �rst thing to note in these tests is the real ine�ciency of algorithm PR which
is worse than algorithm FR both from the point of view of memory needs and from execution
time. The di�erence in memory needs can be explained by the fact that algorithm PR
uses intermediate data structures that are of size #PSS, while FR only uses reduced data
structures. As for execution time, we have already seen that algorithm PR is not e�cient
when we leave RSS, because we do not know which elements of the result do not need to
be computed, and hence we perform #PSS multiplications of vector slices by a column of
the matrix. Algorithm FR carries out tests in order to know if a zin contains at least one
nonzero element before evaluating the matrix, and only then performs the multiplication of
zin by the matrix. These tests allow for a decrease in the number of multiplications, which
in turn occasions an improvement in time when compared to algorithm PR which does not
perform these tests. In what follows, we will no longer use algorithm PR when we leave
RSS. We shall use algorithm FR in its place.

The use of synchronizing transitions creates a model with relatively few reachable states.
We are, in e�ect, obliged to increase the state space, when compared to the model mutex1,
but the reachable state space remains the same size. So, here we only test models in which
algorithm FR is better that algorithm E.
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Algorithm FR is therefore the most appropriate when the model contains synchronized
transitions, both from the point of view of memory needs as well as from the point of view
of execution time.

6.4 Queuing Network Model

The third model is that of an open queueing network with blocking and priority service,
(queue). It consists of N �nite capacity queues and N � 1 di�erent classes of customers.
For i = 1 : : :N � 1, customers of class i arrive from the exterior to queue i according to an
exponential distribution of rate �i. Customers are lost if the queue is full. The server at
queue i serves customers according to an exponential distribution with rate �i.

Customers who have been served by queues 1 : : :N�1 proceed to queue N . If this queue
is full, the customers are blocked and the servers of the other queues must stop. Hence,
these servers cannot serve a new customer while queue N is full. When a place becomes
available in this queue, the customers that have been blocked at the exit of the other queues
are transferred towards queue N .

Queue N serves customers of class i (i = 1 : : :N � 1) according to an exponential distri-
bution with rate �iN . It is the only queue which serves all N � 1 classes of customer. In this
queue, for 1 � i < j � N � 1, customers of class i have priority over those of class j. Thus,
a customer cannot be served in queue N if there is another customer with a higher priority
in this queue. After receiving service in queue N , customers leave the system.

We shall let Ci denote the capacity of queue i (for i = 1 : : :N). Figure 13 illustrates this
model.

�1 �1

lost

C1

CN

�1N

lost

�N�1

CN�1

�N�1

�N�1

N

Figure 13: Open queuing network model with N queues with blocking and priority service

Queues i, for i = 1 : : :N �1, are each represented by a single automaton, Ai, with Ci+1
states. When there are k customers in one of the queues, the automaton is in state k. The
queue N needs N � 1 automata for its representation; AN;i corresponds to the number of
class i customers present in the queue, for i = 1 : : :N � 1.
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This SAN has N � 1 synchronizing events: si (i = 1 : : :N � 1) corresponds to a transfer
of a customer of class i from queue i to queue N . In addition to these synchronizing events,
this SAN uses functions. The �rst, f , is a function that restricts arrivals into queue N . This
function has the value 0 when queue N is full, and 1 in all other cases.

f(~x) = Æ

 "
N�1X
k=1

x(N;k)

#
< CN

!

where x(N;k) represent the number of customers of class k (k = 1 : : :N � 1) in queue N ;
xN;k corresponds to the state of automaton AN;k.

To describe the priority of di�erent classes of customers, we use N � 2 functions g(k), for
k = 2 : : :N � 1.

g(k)(~x) = Æ

 "
k�1X
m=1

x(N;m)

#
= 0

!

The function g(k) expresses the priority of customers of class m, with m < k, over those of
class k. This function has the value 0 when a customer of class m is present in queue N ,
and prevents, in this case, the service of any client of class k. Its value is 1 in all other
cases. Figure 14 presents this stochastic automata network for numerical values N = 3,
C1 = C2 = 1 and C3 = 2.
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Figure 14: SAN model for the queueing network model with blocking and priority service

The set of reachable states (RSS) has size

#RSS = (

N�1Y
i=1

(Ci + 1))� (CN + 1)� (CN + 2)� : : :� (CN + (N � 1))=(N � 1)!
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while the product state space (PSS) has size

#PSS = (

N�1Y
i=1

(Ci + 1))� (CN + 1)N�1

Thus, for a �xed number of queues, N , the larger that CN becomes, the more nonreachable
states the model contains. For CN tending towards in�nity, #PSS = (N � 1)!�#RSS.

Results

The tests were performed using the method without permutation on a queuing network
model, in which the number of queues N and the capacity of the queue N are varied. Thus,
the size of the model and the percentage of reachable to nonreachable states changed. In all
the examples, for i = 1 : : :N � 1, Ci = 1, �i = 6, �i = 9 and �iN = 9.

Moreover, for these tests, we no longer use algorithm PR when RSS is exceeded, because
we have already shown that this algorithm is ine�cient in this case (results of the mutex2
model). We therefore use algorithm FR in this case. The column PR/FR is obtained by
using algorithm PR when we remain in RSS, and algorithm FR when RSS is exceeded.

Execution time (sec) - queue
Model E PR/FR FR

N CN #PSS #RSS % comp exec comp exec comp exec
8 2 279936 4608 1.6% 18.9 5733.6 0.4 957.9 0.4 1496.3
8 3 2097152 15360 0.7% 147.2 68048.9 1.4 10583.5 1.4 15343.2

Memory used (KB) - queue
Model E PR/FR FR

N CN #PSS #RSS % des exec des exec des exec
8 2 279936 4608 1.6% 2222 10984 71 13608 71 2600
8 3 2097152 15360 0.7% 16419 68236 155 111240 155 3912

For this kind of model, algorithm FR is best in terms of memory used. In fact, the
percentage of nonreachable states is high because of the synchronized transitions. The
use of an algorithm combining PR and FR allow us to obtain an execution time that is
superior to that obtained with FR alone. Synchronizations do not reduce the performances
of algorithm PR/FR whereas it does reduce the performance of PR. However, the memory
used by this algorithm is similar to the memory used by PR and is therefore a limitation to
the application of this new algorithm.

When N = 12 and CN = 2, we have #PSS = 362797056 and #RSS = 159744. This
model with many states can be solved only with algorithm FR.
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7 Conclusions

In this paper we presented two new algorithms based on the shu�e algorithm. The com-
parative tests that were performed allow us to reach the following conclusions:

� Algorithm E, or the extended shu�e algorithm is the most e�cient when the
percentage of reachable states is large. So, whenever more than half the states are
reachable, this is the preferred algorithm.

� Algorithm PR takes advantage when the percentage of nonreachable states is high
to improve the performance of the vector�descriptor multiplication when we remain
in the RSS. However, it uses intermediate structures that are of size #PSS, which
limits its applicability on very large models. Furthermore, when we leave the RSS the
performances are worse than algorithm FR, and we do not recommend its use in this
case. The gain in time with respect to the classic algorithm E is substantial when the
models are not too large and have many nonreachable states, so long as we remain in
RSS. The principal use of PR therefore resides in models with a moderate percentage
of nonreachable states which are moderately large, which remain in RSS.

� Algorithm FR keeps all data structures to be of reduced size. This permits us to
handle very large models, models which none of the other algorithms can handle. We
notice however, a loss in computation time with respect to algorithm PR when we
remain in RSS. This is the price we pay in order to be able to handle the largest
models.

We shall also compare our results with those obtained in generating the global matrix
(in Harwell-Boeing (HB) format) and then performing a vector-matrix multiplication using
standard sparse matrix multiplication. For this comparison, we have integrated into PEPS
such an algorithm. The generation of the global matrix is unfortunately long with this
software. However, when we have the global matrix, there is no doubt that time-wise this
algorithm performs best. It is from the memory point of view that it is limitated. Therefore,
the new algorithms allow us to solve models that can't be solved with the HBF algorithm.

We have therefore ful�lled our objective: algorithm FR allows us to handle models which
cannot be handled by any other algorithm. However, all the algorithms that were tested are
better for a given type of model. To exploit the particularities of all these algorithms, we
believe that is is appropriate to program a heuristic which automatically choses the most
appropriate algorithm. Thus, in PEPS, the user may either choose the algorithm, or else
leave the choice of the most appropriate algorithm for the particular model (taking into
account all the parameters such as percentage of reachable states, size of model, etc.) to the
program itself.

Finally, the new algorithms were only compared to the extended shu�e algorithm and the
algorithm that generates the global matrix in HB format. A comparison with other classical
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algorithms, and notable algorithms that use Petri nets, [2, 1, 12], were not included. Such
a comparison will be performed in future work.
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