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Abstract

In Grid applications the heterogeneity and potential fail-
ures of the computing infrastructure poses significant
challenges to efficient scheduling. Performance models
have been shown to be useful in providing predictions on
which schedules can be based [1, 2] and most such tech-
niques can also take account of failures and degraded ser-
vice. However, when several alternative schedules are to
be compared it is vital that the analysis of the models does
not become so costly as to outweigh the potential gain of
choosing the best schedule. Moreover, it is vital that the
modelling approach can scale to match the size and com-
plexity of realistic applications.

In this paper we present a novel method of modelling
job execution on Grid compute clusters. As previously we
use Performance Evaluation Process Algebra (PEPA) [3]
as the system description formalism, capturing both work-
load and computing fabric. The novel feature is that
we make a continuous approximation of the state space
underlying the PEPA model and represent it as a set
of ordinary differential equations (ODEs) for solution,
rather than a continuous time, but discrete state space,
Markov chain.

1 Introduction

Grid engines such as Condor [4] and Sun Grid Engine
(SGE) [5] allow users to queue up jobs for execution
on cluster or grid technology to be executed when their

necessary data and hardware resources become available.
The best grid engines provide rich job control languages
and a sophisticated queueing agent. Grid engines are
deployed on compute clusters such as Beowulfs in order
to share computational resources across a number of, pos-
sibly interdependent, jobs [6].

Analysing high-level models of program execution on
Grid clusters allows underused resources to be more
efficiently deployed. This benefits users working with
computationally-intensive problems such as those found
in the physical sciences. For such an analysis to be effec-
tive, the analysis process itself should have low computa-
tional cost, otherwise it could impede the execution of the
genuine computational load. For such an analysis to be
widely applicable it should scale to be able to model com-
pute clusters with a sizeable number of processes, each
of which is executing a large number of compound jobs,
made up of numerous stages. For the analysis to be useful
the models need to faithfully represent the inevitable soft-
ware and hardware failures which will occur at some time
while executing in a sequence of long-running computa-
tions. The intention of the analysis should be to model
realistic Grid configurations, not idealised or simplified
versions of these, and to do this analysis inexpensively.

Many analysis methods in current use do not address
all of the above requirements well. Some methods are
scalable, but have long running times: simulation-based
methods [7, 8, 9] and genetic algorithm-based meth-
ods [10] could be considered to be in this category. As
an analysis method simulation has the disadvantage that it
leaves the additional burden of needing to compute con-
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fidence intervals for the results. Other analysis methods
have efficient solution procedures but do not scale well:
Continuous-Time Markov Chains (CTMCs) as used in [2]
are in this category. Still other methods make strong sim-
plifying assumptions or introduce gross approximations
which compromise their accuracy.

One approach to the problem of scalability is to use
a continuous approximation of the discrete state space
underlying the mathematical representation of the model.
For example, if there are 1000 jobs to be processed it may
be useful to think of a continuous flow of jobs, rather than
singly representing each of the individual states as mea-
sures such asthe number of completed jobsgrow in dis-
crete unit steps. This is an approximation since it may
lead to the model being in a state in which 55.8 jobs
have completed which has no analogue in real life. How-
ever, such systems can be readily represented as a set of
ordinary differential equations (ODEs). Solving such a
system has low computational cost and modest memory
requirements when the system is concise.

This is a significant advantage but suggesting to use
ODEs directly as a modelling language for this applica-
tion would be a questionable one. ODEs would be unfa-
miliar to most of the practicising system managers who
are charged with running Grid services. For this reason,
rather than work directly with ODEs we model with a
high-level language of recursively defined communicat-
ing finite-state processes (the PEPA process algebra [3]),
and generate ODEs from this language [11].

Models in the PEPA stochastic process algebra are con-
cise, and under the application of Hillston’s method [11],
they generate a system of ODEs the number of which is
linear in the number of distinct component types in the
PEPA model. Thus there is no hidden cost in the use of
the high-level language but there are many advantages.
Using other software tools [12, 13, 14], PEPA models
can be checked for freedom from deadlock, satisfaction
of logical properties, or solved for steady-state or tran-
sient measures. Verification procedures such as these are
available for process algebras but not for ODEs, so the use
of a high-level language confers additional benefits above
working with ODEs directly.

ODEs can be solved numerically using solvers which
implement the Runge-Kutta method, or Rosenbrock’s
algorithm, or others. Numerical computing platforms
offer high-level support for the solution of ODEs [15].

We are interested in the solution ofinitial value prob-
lems(IVPs) where the initial quantities of the components
of the problem are known and we wish to find out how
these change over time. Compared with modelling with
CTMCs, modelling with ODEs resembles most strongly
transient analysis of CTMCs: there is no implicit assump-
tion that the system reaches steady-state equilibrium and
we observe states of the system as time progresses, work-
ing forwards from their initial values at timet = 0.

As noted by Gillespie and others [16, 17, 18, 19], the
differential equation approach is applicable when there
are sufficiently large numbers of each interacting entity in
the model (in our case these entities are jobs and servers).
This makes this modelling approach particularly applica-
ble to Grid-scale computing with large numbers of jobs
executing on large compute clusters. In cases of only
a small number of jobs executing on a small number of
processors other analysis methods may be more accu-
rate, including stochastic simulation [16, 18] or CTMC-
based solution. These methods are already available for
the PEPA stochastic process algebra in tools such as the
PEPA Workbench [12], M̈obius [20], PRISM [13] and
The Imperial PEPA Compiler (IPC) [14]. Our differential
equation-based analysis complements these, and allows
PEPA modelling to be applied to systems which are sig-
nificantly larger than those which can be modelled by sim-
ulation or CTMCs.

The original contribution of the present paper is that it
is the first to report on the benefits of mapping stochas-
tic process algebras to ordinary differential equations for
analysis instead of to continuous-time Markov chains,
semi-Markov processes or generalised semi-Markov pro-
cesses. In addition, we believe it to be the first paper to
show the potential for ODEs, however they are obtained,
to be used as a modelling tool for Grid compute clusters.
We suggest that this is particularly valuable for making
rapid performance predictions to be used when on-line
scheduling and re-scheduling decisions have to be made.

Structure of this paper: Section 2 presents an intro-
duction to Performance Evaluation Process Algebra. Sec-
tion 3 presents a simple model of jobs and servers and
discusses its mapping to a system of ODEs. Section 4
presents the model extended with failures and repairs. A
discussion of related work and conclusions follow.
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2 PEPA

We present a brief introduction to PEPA to make the
present paper self-contained. For full details the reader
is referred to [3].

In PEPA modelling a system is viewed as a set ofcom-
ponentswhich carry outactivitieseither individually or in
cooperation with other components. Activities which are
private to the component in which they occur are repre-
sented by the distinguished action type,τ . Each activity is
characterized by anaction typeand a rate. This is written
as a pair such as(α, r) whereα is the action type andr
is theactivity rate. This parameter may be any positive
real number, or may be unspecified. We use the distin-
guished symbol> to indicate that the rate is not specified
by this component. This component is said to bepassive
with respect to this action type and the rate of the shared
activity is defined by another component.

PEPA provides a set of combinators which allow
expressions to be built which define the behaviour of com-
ponents via the activities that they engage in. These com-
binators are presented below.

Prefix: (α, r).P : Prefix is the basic mechanism by
which the behaviours of components are constructed.
This combinator implies that after the component has car-
ried out activity(α, r), it behaves as componentP .

Choice: P1 + P2: This combinator represents a com-
petition between components. The system may behave
either as componentP1 or asP2. All current activities
of the two components are enabled. The first activity to
complete distinguishes one of these components and the
other is then discarded.

Cooperation: P1 BC
L

P2: This describes the synchro-
nization of componentsP1 andP2 over the activities in
the cooperation setL. The components may proceed inde-
pendently with activities whose types do not belong to this
set. A particular case of the cooperation is whenL = ∅.
In this case, components proceed with all activities inde-
pendently. The notationP1 ‖ P2 is used as a shorthand for
P1 BC

∅
P2. In a cooperation, the rate of a shared activity

is defined as the rate of the slowest component.
Hiding: P/L This component behaves likeP except

that any activities of types within the setL arehidden, i.e.
such an activity exhibits the unknown typeτ and the activ-
ity can be regarded as an internal delay by the component.
Such an activity cannot be carried out in cooperation with

any other component: the original action type of a hidden
activity is no longer externally accessible, to an observer
or to another component; the duration is unaffected.

Constant: A
def= P Constants are components whose

meaning is given by a defining equation:A
def= P gives

the constantA the behaviour of the componentP . This
is how we assign names to components (behaviours). An
explicit recursion operator is not provided but components
of infinite behaviour may be readily described using sets
of mutually recursive defining equations.

When PEPA is used to generate a CTMC model the
activity rater is interpreted as the parameter of an expo-
nential distribution, the duration of an activity being a ran-
dom variable. When PEPA is used to generate a system
of ODEs the activity rate is interpreted as a constant rate
of change.

2.1 Derived forms and additional syntax

We now describe some additionalderived forms(“syntac-
tic sugar”) for PEPA. These do not add any expressive
power to the language or require any semantic rules in
addition to those in [3]. We have seen one derived form
already:P1 ‖ P2 is a derived form forP1 BC

∅
P2.

When we are interested in transient behaviour we use
the deadlocked processStopas defined in [21] to signal a
component which performs no further actions. We con-
sider this to be simply an abbreviation for a deadlocked
process, as shown below.

Stop
def=

((
(a, r).Stop

)
BC
{a,b}

(
(b, r).Stop

))
/{ a, b }

Because we will be working with large numbers of jobs
and servers, we introduce another abbreviation: we write
P [n] to denoten copies of componentP executing in par-
allel. For example,

P [5] ≡ (P ‖ P ‖ P ‖ P ‖ P )

and refer to such an abbreviation as anarray of compo-
nents.

We can add another dimension to the array. The three
copies of the componentP in P [3][a, b] are required to
synchronise on the actionsa andb. Thus,

P [3][a, b] ≡ ((P BC
{a,b}

P ) BC
{a,b}

P ).
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2.2 Interpreting a PEPA model as ODEs

An ODE specifies how the value of some continuous
variable varies over continuous time. For example, the
temperature in a container may be modelled by an ODE
describing how the temperature will change dependent on
the current temperature and pressure. The pressure can
be similarly modelled and the equations together form a
system of ODEs describing the state of the container.

In a PEPA model the state at any current time is the
local derivative or state of each component of the model.
When we have large numbers of repeated components it
can make sense to represent each component type as a
continuous variable, and the state of the model as a whole
as the set of such variables. The evolution of each such
variable can then be described by an ODE. The PEPA
definitions of the component specify the activities which
can increase or decrease the number of components exhib-
ited in the current state. The cooperations show when the
number of instances of another component will have an
influence on the evolution of this component.

3 Modelling jobs and servers

We begin to describe modelling jobs and servers, start-
ing with a simplistic model which we will improve by
adding more realistic detail later. Consider jobs with a
number of ordered stages. Here we consider jobs which
consist of three ordered stages. Jobs must be loaded onto a
node before execution. Stage 1 must be completed before
Stage 2 and Stage 2 before Stage 3. After Stage 3 the job
is cleared by being unloaded from the node. At that stage
the job is finished. The PEPA model is below.

Job
def= (load,>).Job1

Job1
def= (stage1,>).Job2

Job2
def= (stage2,>).Job3

Job3
def= (stage3,>).Clearing

Clearing
def= (unload,>).Finished

Finished
def= Stop

Each of these components will correspond to a contin-
uous variable in the system of ODEs. Note that in this
model they do not determine the rate at which the stages

are completed, because they are not supplying the com-
putational effort to achieve this. To find the specification
of those values we must look at the definition of a node,
which executes jobs.

NodeIdle
def= (load, r0).Node1

Node1
def= (stage1, r1).Node2

Node2
def= (stage2, r2).Node3

Node3
def= (stage3, r3).Node4

Node4
def= (unload, r0).NodeIdle

Similarly here each component will generate a distinct
ODE modelling its evolution.

In the example we consider jobs where the first stage
is the cheapest, the second takes twice as long as the first
and the third takes twice as long as the second. Loading
and unloading have equal, unit, cost.

Rate Value Interpretation
r0 1 (Un)loading takes one time unit
r1 0.1 Stage 1 takes ten time units
r2 0.05 Stage 2 takes twenty time units
r3 0.025 Stage 3 takes forty time units

We could add more stages to jobs or vary these rates to
model jobs with a different execution profile, as neces-
sary. The stages are chosen to have the above simple rela-
tionship in their cost in order to assist the readers’ intuitive
interpretation of the results computed below (rather than
to represent realistic Grid compute jobs).

We consider the system initiated as

NodeIdle[100] BC
L

Job[1000]

whereL is { load, stage1, stage2, stage3, unload}.
Thus in the ODE system the variables corresponding to

NodeIdleandJobwill have the initial values shown; all
other variables will be set to zero. Our tool automatically
generates the corresponding system of ODEs taking the
PEPA model as input and producing input suitable for a
third party differential equation solution tool.

Jobs differ from nodes in the obvious way, in that the
rate at which jobs are executed depends on the number of
nodes but not on the number of jobs, save that this must be
greater than zero. (Adding more jobs to the queue cannot
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Figure 1: Plot showing the stages of utilisation of the
nodes while executing 1000 jobs on a cluster of 100
nodes. All nodes are initially and finally idle.

increase the collective rate at which they are completed,
but adding more nodes to the cluster can.)

We compute the collective rate for executing a stage as
a function of the computational cost of jobs of this class
(the r i above), the number of nodes at stagei, (Ni), and a
function on the number of jobs of classi, (Ji):

r i ×min(Ni , Ji)

Our differential equation solution tool does not support
themin function so we approximate this by

r i × Ni × θ(Ji)

where theθ function1 is used to disable execution of jobs
of classi, when there are none (by setting the rate to 0).
Theθ function is below:

θ(x) =
{

1 if x > 0
0 otherwise

The analysis of the model is shown in Figures 1 and 2.
Figure 1 shows the average number of nodes of each stage
as a function of time. Because the second stage of each
job is twice as expensive to compute as the first, there
are on average twice as many nodes executing the second
stage of a job at any time, and the same comparison holds
for the second and third stages.

1Some efficient stochastic simulation algorithms, such as “tau-leap”
algorithms [22] cannot be used on models containing non-differentiable
functions such asθ.
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Figure 2: Plot showing the number of jobs of each stage
while executing 1000 jobs on a cluster of 100 nodes. Jobs
are successively completed until all 1000 are finished.

Figure 2 shows that jobs progress through the system
in linear fashion. We note that the number of unstarted
jobs drops quickly as the nodes first become loaded (the
sharp drop at the start of the graph) and then decreases
steadily as jobs are successively completed. The rate at
which the remaining stage 3 jobs are completed decreases
as the supply of jobs runs out and more nodes are idle.

4 A failure/repair model

We now present a model which represents the failures
and repairs of nodes. Such a model needs to describe at
what points in the system evolution failures can occur, and
identify the consequences of the failures. For example, is
a job lost entirely if its host node fails, or just the current
stage? Formal languages such as process algebras are well
suited to this task, making explicit consequences which
might be underspecified in other modelling approaches,
even for widely-studied systems [23].

Here we take the modelling decision to ignore the
potential failures which could occur during the very brief
stages of loading and unloading jobs. We model a fail-
ure and repair cycle taking a job back to re-execute the
present stage (rather than restart the execution of the job
from the beginning). The modified PEPA description of a
node is below. The definition of jobs remains unchanged.
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Figure 3: Plot showing the stages of utilisation of the
nodes while executing 1000 jobs on a cluster of 100
nodes. Nodes which fail at each stage are recorded. All
nodes are initially and finally functioning and idle.

NodeIdle
def= (load, r0).Node1

Node1
def= (stage1, r1).Node2

+ (fail1, r4).NodeFailed1

Node2
def= (stage2, r2).Node3

+ (fail2, r4).NodeFailed2

Node3
def= (stage3, r3).Node4

+ (fail3, r4).NodeFailed3

Node4
def= (unload, r0).NodeIdle

NodeFailed1
def= (repair1, r5).Node1

NodeFailed2
def= (repair2, r5).Node2

NodeFailed3
def= (repair3, r5).Node3

With regard to the rates of failure of jobs, we estimate
that one in ten jobs may fail during stage 3 (and so one
in 20 during stage 2 and one in 40 during stage 1) and
that the cost of repairs is relatively high, perhaps requir-
ing a reboot of the failed node. We model the repair pro-
cess being automatically initiated after failure, without the
need for operator intervention.
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Figure 4: Plot showing the number of jobs of each stage
while executing 1000 jobs on a cluster of 100 nodes in
the failure/repair model. Jobs are restarted from the stage
where they failed.

Rate Value Interpretation
r4 0.0025 On average 1 in 10 stage 3

jobs will fail
r5 0.0025 Repairing may require the reboot

of a node

The results of evaluating this model are shown in Fig-
ures 3 and 4.

Evidently, in the presence of failures the makespan for
the jobs is considerably longer. We also see the number of
failed nodes rising from the initial configuration where all
nodes are initially functioning. The system reaches local
equilibrium just before the supply of jobs runs out. We
can see that the rate at which jobs are collectively being
completed drops off as more and more nodes become idle
towards the end of the run.

5 Related work

Grid computing has emerged as a potential next gener-
ation platform for solving large-scale problems in many
fields, involving millions of heterogeneous resources scat-
tering across multiple locations. A sophisticated approach
must be taken to analyse and fine-tune the algorithms
before applying them to the real systems. Simulation
appears to be the most commonly used way to analyse
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algorithms on large-scale distributed systems of heteroge-
neous resources. Several simulators have therefore been
conceived and developed for Grids. Thus, the GridSim
toolkit [7] allows modelling and simulation of entities
in parallel and distributed computing for the design and
evaluation of scheduling algorithms. Its primary objec-
tive is to investigate effective resource allocation tech-
niques based on computational economy through simu-
lation. Other simulation tools aim to design and evaluate
Grid middleware, applications and network services for
the computational Grid, as for example MicroGrid [9].
OptorSim [8] focuses on data management, exploring the
stationary and transient behaviour of several optimisation
techniques to reduce data access costs.

Our objectives differ in that we are interested in quite
abstract models with no concern for data. This work is
being developed under the auspices of the ENHANCE
project in which Grid application are structured using
algorithmic skeletons[24], a PEPA template component
being developed for each skeleton. The characteristics
of a particular application and the current state of the
Grid infrastructure are used to generate and parameterise
a PEPA model which is used to investigate different pos-
sible mappings of tasks to processors.

The approach of resorting to a continuous approxima-
tion of a state space composed of many discrete entities
has previously been applied to performance models in
the context of both queues (e.g. [25]) and stochastic Petri
nets [26]. Other authors have applied ODEs directly to
work-stealing algorithms executing in a multi-processor
environment [27] and distributed load-balancing using
greedy algorithms [28]. To the best of our knowledge the
use of continuous approximation has not been previously
applied to process algebra models.

6 Conclusions

Ordinary differential equations represent formally the rate
of change of populations with respect to time. Both
decreasing and increasing change can be represented (for
example here, as nodes fail and are repaired, respec-
tively). ODEs introduce an approximation in that the rel-
ative probabilities of decrease and increase can be more
accurately represented at larger population sizes.

Large population sizes are disadvantageous to many

modelling approaches but they are the conditions under
which the approximation introduced by the use of ODEs
induces the least error. Large populations of computa-
tional nodes and compute jobs are characteristic of Grid
computing, so the approach is applicable there.

ODEs are a deterministic modelling formalism where
the duration of events is constant. This contrasts markedly
with stochastic modelling with exponential distributions
and we need to be cautious about whether or not this is
appropriate for the modelling which we are undertaking.

Grid compute clusters are frequently used for scien-
tific and numerical computing. This has as its building
blocks numerical routines such as matrix vector multipli-
cation. These algorithms have low data dependency and
predictable running times. So much so, in fact, that mod-
elling these by constant distributions may be more accu-
rate than modelling them by exponentials. We have no
analytical or experimental evidence to suggest that the
run-time of a routine which multiplies a matrix by a vec-
tor on the right varies according to an exponential distri-
bution.

The modelling reported here has the potential to scale
to larger, more complex systems, leading towards realis-
tic modelling of Grid computations. Our present model of
Grid nodes executing multi-stage jobs is only a proof-of-
concept of the usability of the analysis method, encour-
aging us to more forwards towards more realistic mod-
els. How best to apply the results of the modelling also
remains as future work, as does fully understanding the
range of applicability of the modelling technique used
here.
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