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ABSTRACT

We present new techniques for computing the solution of large Markov chain models whose
generators can be represented in the form of a generalized tensor algebra, such as Stochastic Automata
Networks (SAN). Many large systems include a number of replication of identical components. This
paper exploits replication by aggregating similar components. This leads to a state space reduction,
based on lumpability. We define SAN with replicas, and we show how such SAN models can be
strongly aggregated, taking functional rates into account. A tensor representation of the matrix of
the aggregated Markov chain is proposed, allowing to store this chain in a compact manner and to
handle larger models with replicas more efficiently. Examples and numerical results are presented to
illustrate the reduction in state space and, consequently, the memory and processing time gains.

1. Introduction

The high complexity of dynamic systems in many areas of application makes them difficult to
analyze [25]. Continuous time Markov chains (CTMC) facilitate their performance and even
reliability analysis. CTMC are often used as the underlying concept of a high level formalism
interpreted by a software package, which generates the state space and the infinitesimal
generator of the underlying CTMC, and computes stationary and transient solutions.

The primary difficulty in developing a software tool to handle large-scale Markov chains
comes from the explosion in the number of states. Indeed, CTMC modeling real systems
are usually huge and sophisticated algorithms are needed to handle them. In order to keep
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memory requirements manageable, Stochastic Automata Networks (SAN) were introduced
[20, 10]. The SAN formalism allows Markov chains models to be described in a memory efficient
manner due to their storage based on a tensor representation. A somewhat different approach
based on Stochastic Petri Nets allows us to obtain a similar tensor formalism, as shown by
Donatelli [8, 9]. Furthermore, analysis techniques for these formalisms have been proposed.
Direct solution methods, such as Gaussian elimination, are generally not used because the
amount of fill-in that occurs necessitates a prohibitive amount of storage space. Iterative
methods, which can take advantage of sparse storage techniques to hold the infinitesimal
generator, are more appropriate [20, 25, 11], even though here also, memory requirements can
become too large for real life models. In order to analyze large CTMC models with loosely
coupled blocks, some iterative aggregation/disaggregation (a/d) methods have been proposed
in [25], and an a/d algorithm has also been proposed for SAN in [4].

In fact, it will be necessary to develop techniques to reduce the complexity of the Markov
chain that will be analyzed. Fortunately, many large real systems include a considerable large
number of identical (replicated) components. Taking such replications of components into
account, a reduced Markov chain resulting from strong aggregation [21, 16] can be generated.
Previous studies on weak lumpability [2, 18] have also shown how to group identical states, but
this kind of aggregation depends on the initial state of the model. Lumpability and equivalence
relations have been defined and discussed in [3, 6, 13, 14, 23].

In the previous approaches, lumping on the state space of a Markov chain is described.
Some other techniques to exploit replications are based on hierarchical models [19].
These techniques generate the reduced Markov chain directly from the model specification.
Hierarchical Markovian models are useful for analysing complex systems, and techniques to
generate a reduced Markov chain from the specification of the model have been developed.
Some a/d algorithms can also be applied to such models [5]. For Stochastic Activity Networks
(a particular class of Stochastic Petri Nets), an algorithm for reducing the state space in
the presence of replicated subsystems has been developed [22]. Some similar techniques exist
for finite states machines, as shown in [7]. In [15], a symmetric composition for Stochastic
Process Algebras is proposed. Its operational semantics is compact and intuitive, and it allows
a compact description of systems with replicas.

All these approaches present lumpability conditions for various modeling techniques in order
to reduce the state space. The goal of this paper is to present an equivalent technique that can
be used to efficiently aggregate SAN models. The lumpability conditions, as shown earlier
in [21, 16], will be described and used in order to demonstrate that a SAN with replicas
can be strongly aggregated. Identical automata within the model are detected and they can be
automatically grouped and aggregated in order to generate the reduced Markov chain. A similar
approach is described by Siegle in [24], but it doesn’t take functional rates, one of the major
components of SAN models, into account. In his work [3], Buchholz defines the equivalence
relations for Stochastic Automata Networks, and particularly equivalent representations for a
Stochastic Automata. Gusak [14] specifies how to check lumpability conditions on the generator
of a continuous-time SAN. These approaches emphasis on equivalence relations, but they don’t
give any formal definition of replicas for SAN. The proof of the aggregation is therefore not
formal, and moreover they don’t give a tensorial expression of the matrix of the aggregated
Markov chain.

What we aim to do is to define formally SAN with replicas in order to formalize the
aggregation of such SAN. In the next section, the concept of SAN is briefly described in
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order to be able to define SAN models with replicas in Section 3 and to discuss the SAN
aggregation in Section 4. A tensorial expression of the matrix of the aggregated Markov chain
is proposed. The final section shows the benefits of aggregation and some numerical results of
practical examples.

2. Stochastic Automata Networks (SAN)

Continuous-time Stochastic Automata Networks [10, 11, 20] describe a system as a set of
subsystems that interact. Each subsystem is modeled by a stochastic automaton, and some
rules between the states of each automaton describe the interactions between subsystems.

Each automaton is composed of states, called local states, and transitions among them.
Transitions on each automaton are labeled with the list of the events that may trigger it.
An event is triggered after a delay which is exponentially distributed and the exponentially
distributed variables corresponding to each event are independent. Each event is defined by
its name and its rate.

When the occurrence of the same event can lead to different target states, a probability of
occurrence is assigned to each possible transition. The label on the transition is evt(prob), where
evt is the event name, and prob is the probability of occurrence of each possible transition.
When only one transition is possible, the probability can be omitted.

There are basically two ways in which stochastic automata interact. Firstly, the rate at
which an event may occur can be a function of the state of other automata. Such rates
are called functional rates. Rates that are not functional are said to be constant rates. The
probabilities of occurrence can also be functional. Secondly, an event may involve more than
one automaton: the occurrence of such event triggers transitions in two or more automata at the
same time. Such events are called synchronizing events, in opposition to events involving only
one automaton, called local events. As local events, synchronizing events may have constant
or functional rates and probabilities.

Consider a SAN model with N automata and E events. It is a N-component Markov chain
whose components are not necessarily independent (due to the possible presence of functional
rates and synchronizing events). A local state of i-th automaton (A® | i = 1..N) is denoted
z() while the complete set of states for this automaton is denoted S, and the cardinality of
S is denoted by ni. § = SM x...x S™) s called the product state space, and its cardinality
is equal to Hf;l ni. A global state for the model is a vector z = (z(V),..., (™) € §. The
reachable state space of the model is denoted by S; it is generally smaller than the product
state space since synchronizing events and functional rates may prevent some states in S from
occurring.

An automaton is involved by an event if it has at least one transition labeled by this event.
The set of automata involved by an event e is denoted by O.. The event e can occur if, and
only if, all the automata in O, are in a local state from which one of those transitions can
be triggered. When it occurs, all the corresponding transitions are triggered. Notice that for
a local event e, O, is reduced to the automaton involved by this event, and that only one
transition occurs.

For i = 1..N, the behavior of automaton A is described by a set of square matrices, all of
order n;. We shall denote the set of synchronizing events by £S. Let us denote, for i = 1..N,
and for e € £S :
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) Ql(i) the matrix consisting only of the transitions that are local to automaton A(;

. fol the positive synchronization matrix of A®, which represents the occurrence of the
synchronizing event e and its rates;

. QEQ the negative synchronization matrix of A%, which corresponds to an updating of
the diagonal elements for event e.

Notice that if A® is not in O, then Qﬁ and fol are identity matrices.
Then, it has been shown in [10, 11] that the transition matrix can be expressed as:

N N N
=@, "+ | Qe+ R, e (1)
i=1 e€lS \ i=1 i=1

The tensor sum corresponds to the analysis of the local events, while the tensor products
correspond to the analysis of the synchronizing events. Notice the use of generalized tensor

algebra [10, 20], é.e., the use of operators @ and ® , instead of @ and ).
g )

3. SAN models with replicas

Although large systems often contain identical components, we turn our attention to two
different cases: systems where all subsystems are equal, and systems where only some sets of
subsystems are equal among themselves. The first case is modeled by a SAN composed of one
replica, and the second case is modeled by a SAN with multiple replicas. In this section we
formally describe SAN models composed of one replica and SAN models with multiple replicas
with an illustrating example for each case.

3.1. SAN models composed of one replica

Informally, a SAN composed of one replica consists of a set of N identical automata, i.e.,
the states of each automaton are identical, and the transitions are labeled with identical
synchronizing events or replicated local events (for a given transition, the local events have the
same rate in each automaton). This implies that the synchronizing events involve all replicated
automata. Moreover, we have a replica only if the functions are not changed by a permutation
of the parameters. For example, if N = 2, for all functional rate f and for all z(*) € S®) and
z?) € S, we must have f(z(V,2?) = f(2?,2(M) (remember that S is the state space
of automaton A()). Formalizing the definition of such SAN:

A SAN composed of one replica is a SAN model with N automata, such that,
for i =1..N, we have:

- all local matrices Ql(') are identical (equal to Q;);

- for every synchronizing event e € £S, all matrices Qﬁ and all matrices Qfﬁ
are identical and respectively equal to Q.4 and Q.—; only one automaton hold the
transition rate f. of the event (matrices feQet and feQe—);

- for all functional rates f, for all permutations o of [1..N], and for each global
state x = (M, ... 2N, f(x) = flo(z)), where o(z) = (x°D), ..., 27

(the functions are not changed by a permutation of the parameters).
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The concept of a SAN composed of one replica is now illustrated through a small example.

3.2. The basic resource sharing model — RS1

In this model, NV, distinguishable processes share IV, identical units of a common resource. Each
of these processes alternates between a sleeping state and a resource using state. Notice that
when N, = 1 this model reduces to the usual mutual exclusion problem and when N, = N,
all of the processes are independent. Let A9} be the rate at which process i awakes from the
sleeping state wishing to access the resource, and let ;¥ be the rate at which this same process
releases the resource after using.

Each process is modeled by a two-state automaton A the two states being sleeping and
using. Assuming 6(b) a function that equals 1 if the expression b is true, otherwise this function
equals 0, then let the function f be defined by:

NP
f(@) =46 Z&(az(i) == using) | < N, (2)
i=1
where z(?) is the local state of automaton A%, and z = (V... (™)) is the global state of

the SAN. Thus the function f has the value 1 when access to the resource is permitted (there
is at least one available resource) and has the value 0 otherwise.

When all rates are identical (A1) = ... = (M) = X and ™ = ... = p(™) = ), there
are two local events per process:

. evtg) corresponds to “acquiring a resource” by the i-th process and it has a rate Af;
. evt&z) corresponds to “releasing a resource” by the i-th process and it has a rate u.

This model, called RS1, is graphically illustrated in Figure 1.

A Coe A(ND)

sleeping sleeping
evt,(ql) evtsz)

evtl(zl) ’ : ) evthp)

using using Q

Figure 1. Basic resource sharing model — RS1

Since this model does not have synchronizing events, there is only one matrix per process:

()

All local matrices are identical, and the function is not changed by a permutation of the
parameters (commutativity of the sum in the definition of f). This SAN is therefore a SAN
composed of one replica.
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3.3. SAN models with multiple replicas

Assuming a SAN with N automata, we define a partition G such that there are K contiguous
subsets of replicated automata (K € [1..N]). Then let kj, be the last automaton index of the h-
th subset, called subset h (h € [1..K]). Assuming arbitrarily kg = 0, we may denote by SIj the
set of indexes of the automata in subset h: SIj, = (kp—1+1,..., k) and by Ry, = kp — kp—1 the
number of automata in the subset h (Rp, = Card(SI;)). An illustration of this decomposition
into K subsets is given in Figure 2.

subset 1 : SI; = (1,2) subset 2 : SIs = (3,4,5) subset 3: SIz = (6)
Ry =2 Ry =3 Ry =1
ko =0 ky =2 ko =5 ks =6

Figure 2. Decomposition into subsets of a SAN with NV =6 and K =3

First let us define a set of permutations such that there can be an exchange inside each
subset, but not between different subsets:

Definition of P: For a given SAN and a partition G (such as defined above), let
P be the set of permutations of [1..N] such that

oc€P <= Vhe[l.K], Vi€ S, o(i) € SI}

For h € [1..K], let Py, be the set of permutations inside the corresponding subset
(permutations of [(kn—1 + 1) .. kp]). 0 € P can be expressed as a combination of
permutations oy, € Py, denoted by o = (01 ... 0k).

State vector structure due to multiple replicas

Let z = (..., (™) be a global state of the SAN.

It can be decomposed into subsets, x = (z1 ... xx) where zp (h € [1..K]) is a vector
such that xp = (x(kr—1tD  gkn)),

Then, for o € P, denote o(x) = (z°M, ..., 7).
If 0 = (01 ... oK) is defined as above,

o(z) = (o1(21) ... ox (zx)), and for (h € [1..K]), op(x;) = (z7Fn-1+D)  go(kn))

Note that the composition is stable within P, that is to say: let ¢, 7 € P, then 0 = p o7 is
also in P. It is also obvious that when o, goes through Py, for h € [1..K], then o goes through
P. For K =1 (SAN composed of one replica), P equals the set of permutations of [1..N].

Considering the example in Figure 2 with each automaton having two local states (1
and 2), the global state z = (2,1,1,1,2,1) means that A®, A®) A® and A® are in
local state 1, while A™ and A®) are in local state 2. Let o be the permutation such that
o(z) =(1,2,1,2,1,1). We have in both global states (x and o(z)):
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e one automaton from the first subset, two automata from the second subset, and one
automaton from the third subset in state 1; and

e one automaton from the first subset, one automaton from the second subset, and no
automata from the third subset in state 2.

Having the same number of automata in all local states means that we can exchange global
states with a permutation of P.
A formal definition of SAN models with multiple replicas can be as follows:

A SAN with multiple replicas is a SAN model with N automata and o partition
G, such that, for h = 1..K, we have:

- for all j € SIy, the local matrices Ql(j) are identical (equal to Qi p));

- for every synchronizing event e € ES, for all j € SIy, all matrices ng_a and fo_)
are identical and respectively equal to Qcq ) and Q._ py; only one automaton
in the SAN holds the transition rate f. of the event (matrices feQ(c4,) and
feQ(e—,n)); this automaton is therefore not necessary in the subset h;

- for all functional rates f, for all permutations o € P, and for each global state x,
f(x) = f(o(x)) (for each subset h, the function is not changed by a permutation of
the parameters “state of A®»—1TD7 ¢ “state of Akr)7),

A SAN is said to be without replica if there are N subsets with only one automaton in
each subset (K = N and k;, = h for h = 1..N). On the other hand, a SAN composed of
one replica is a SAN for which all automata are in the same subset (K = 1), as for the RS1
example presented in Section 3.2. A SAN with multiple replicas is therefore a SAN for
which 1 < K < N.

Note also that synchronizing events may affect several subsets (as well as only one subset).
The conditions in the above definitions expresses that automata in the same replica have the
same behavior with respect to all synchronizing events.

3.4. The resource sharing model with different rates — RS2

In this model (Figure 3), we consider N, processes partitioned in K groups with different rates
for acquiring and releasing N, units of a common resource (the N, units of resource can be
used by any process of any group). For each process of each group (h € [1..K], i € SI}), we
have two local events:

. evt,(j’)h is the local event corresponding to “acquiring a resource” by process ¢ of group h.
It has rate A f (f has the definition given in Equation 2 for the example RST);

. evtgb is the local event corresponding to “releasing a resource” by process 4 of group h.
It has rate pp.

There are no synchronizing events, so we have only local matrices. For h = 1..K and ¢ € S},
G _ [ =M Anf
Lh 12 —Hh

Inside each subset, the local matrices are identical, and the function is not changed by a
permutation of the parameters. This SAN is therefore a SAN with multiple replicas.
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ADiesSnL - - - AW i € STk
sleeping sleeping
evtif)l evtif)K
evt((j,)l evt((j,)K
using using
replicated R1 times replicated Rk times

Figure 3. Resource sharing model, different rates — RS2

3.5. How to detect replicas in a SAN model

Since large systems are often described with identical components, it is usual to describe these
identical components as replicas during the model specification. So the partition G of replicated
automata is usually given by the user during the model specification phase. In fact, we just
have to be sure that the properties of SAN with multiple replicas (or with one replica) are
checked for the user defined model. Therefore we don’t have to detect the subsets, because
they are given by the model itself.

The current implementation of replica detection in the PEPS software tool [1] is based
only on the verification of properties on identical components informed during the model
specification.

4. Aggregation of Replicas

Now that we have introduced the notion of replicas in SAN, we can proceed to model
aggregation. In this following, we assume that we have an initial SAN and a decomposition
into subsets. Our goal is to obtain a reduced Markov chain resulting from strong aggregation
(the formal definition of strong aggregation will be given in Section 4.2). Firstly, it is shown
how aggregation intuitively works on a small example. After that, we prove that a SAN
with multiple replicas can be strongly aggregated. Finally, it is shown that the matrix of
the aggregated Markov chain can still be written as a tensor expression.

4.1. Aggregation example

We will show how aggregation works on the basic resource sharing model RS1 (Figure 1,
Section 3.2), with N, = 3 processes and N, = 2 resources. This SAN is composed of one
replica, as shown previously, i.e., P is the set of permutations of [1..N].

All equivalent states of the initial SAN within a permutation of P are grouped into one state
of the aggregated Markov chain. We can arbitrarily choose one particular state to represent
each group of global states, which we call equivalence classes. Assuming 1 as the local state
sleeping and 2 as the local state using, the aggregated Markov chain of this example has four
equivalence classes represented by the global states (1,1,1), (1,1,2), (1,2,2), and (2,2,2). All the
global states of the initial SAN are equivalent to one of these states. We just need to know
how many processes are using the resources, but it does not matter which process(es) is (are)
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using them. For example, being in global state (1,1,2) or (1,2,1) means that one resource is
currently used.

If C1 and C2 represent two different equivalence classes, the transition rate from state C'1 to
state C2 of the aggregated chain is obtained by summing up the transition rates of the initial
SAN from one original global state of C1 to all the original global states of C2t. The aggregated
Markov chain for RS? is represented in Figure 4, and the formal definition of aggregation is
presented in the next section.

3\ 2\
e .
B Gm o
~ R
Iz 2p R
Figure 4. RS1 — N, = 3 and N, = 2 — aggregated Markov chain

Notice that state (2,2,2) is not reachable (only two automata can use the resource
simultaneously). The state space of the aggregated Markov chain, denoted by S,,,, may have
some unreachable states, which can be suppressed, obtaining the state space Sgq,-

4.2. Strong aggregation of SAN with replicas

In this section we study the conditions of strong aggregation of SAN with replicas. We consider
a partition of the state space = (Q4,...,Qr), and recall the definition of strong aggregation
[3, 16, 21].

Definition of strong aggregation: A Markov chain can be strongly aggregated
on the partition Q if for any initial vector, the aggregated chain (whose states are
Q,, for v € [1.T]) is a Markov chain and the transition rates of this chain do not
depend on the initial vector.

Finally, a condition of strong aggregation is given by the following theorem:

Theorem of Rosenblatt: Consider a continuous time Markov chain with state
space Q, and a partition of the state space Q = (Qy,...,Qr). If, for all 8,v € [1..T],
the probability of passing from a state x € Qg to ), always has the same value
for each state x from Qg, then the Markov chain can be strongly aggregated on the
partition 2.

A proof of this theorem can be found in [16].

The transition rate from a state Qg of the aggregated chain to another state Q. (8, € [1..'])
is the sum of transition rates in the initial SAN from one state of {23 to all the states of (2,.

TWe will see in the next section that the choice of the state of C1 in the initial SAN does not affect the result.
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Due to the condition of Rosenblatt, we can arbitrarily choose any of the states of {03, and the
result will not be affected.

We have seen the conditions needed to aggregate a Markov chain. We now investigate
whether a SAN with multiple replicas can be aggregated, and prove that a SAN with multiple
replicas can be strongly aggregated. To do this, we first define the partition of the state
space that we want to consider in the theorem of Rosenblatt, then introduce some notation,
and finally prove that the condition of Rosenblatt is satisfied for the considered partition
(Lemma 1).

State space partition:
Two global states z and y (z,y € S) are equivalent if
o eP o(z)=y

For both global states, there is in each subset the same number of automata in a given
local state. The partition that we consider is @ = (Q4,...,Qr), where each Q, (v € [1..I'])
corresponds to a class of equivalent states. All the states in (2, are equivalent, so we can
choose for each (), one particular state ry € €1, and for all other states z € 2, we can find
a permutation 7 € P such that 7(z) = rv.

Notation:

- If 2 is a global state of the SAN, z(?) is the local state of A, for i = 1..N. Notice that if
T € P, then 7(z)® = z(7()),

- If A is a matrix, ¢ and j two indexes, then a;; represents the element of A on row ¢ and
column j. It may be functional, and a;;(z) is the function evaluated for the global state x.

- The descriptor @) described in Formula (1) can be decomposed into three parts:
Q = L+, ces5(Pe+ Ne) where the matrix L corresponds to the local part of the descriptor,
Pe to the positive synchronization part for event e, and Ne to the negative synchronization
part for event e.

- If z and y are two global states of the SAN, quy = loy + ), cs5(Pay + negy) is the rate of
passing from state = to state y.

- If z is a global state of the SAN and v € [1..['], then g, is the cumulative rate of passing
from state = to one of the states of y:  gz0, =3 cq. Coy-
This can also be defined for the matrix L, and for Pe and Ne (where e € £S):
lmQ,, = Zyeg lmy; Dézq, = Eye(h, Dezxy, NeézQ., = Eyeg% Negy-.
Notice that all states in (1, are equivalent within a permutation of P, so we have
lzq, = Zyem loy = Y ep lzo(ry)- The same can be written for pe and ne.

Lemma 1: The Rosenblatt condition is satisfied for the SAN on the partition
Q = (Q,...,0r). In other words, for all B,y € [1..I'], the probability of passing
from a state x € Qg to Q, always has the same value for each state x in (g:
Vz € Q[J’ 4zQ, = 4rpQ., -

The proof of this Lemma is in the appendix. With the application of the Theorem of
Rosenblatt, the Markov chain underlying the SAN can therefore be strongly aggregated on
the partition €.

The aggregated Markov chain is defined on the set of equivalence classes defined by the
permutations of P. These equivalence classes are built from the product state space of the
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initial SAN which may contain unreachable states. AAs a consequence, some of these equivalence
classes may also be unreachable. Let us denote by S,4, this state space of equivalence classes
(product state space of the aggregated Markov chain).

4.8. Tensor expression of the matriz of the aggregated Markov chain

This section aims at showing how we can express the matrix of the aggregated Markov chain
as a tensor expression.

Recall that the descriptor @ of the initial SAN described in formula (1) can be decomposed
into three parts: Q = L+ ) .og(Pe + N¢). L is a tensor sum; all P, and N, are tensor
products.

Let Z and § be two global states of the aggregated state space (equivalence classes), and
z € & be any of the global states of the equivalence class (it is a global state of the original
state space). The generator of the aggregated Markov chain, denoted by Q, is defined by
dig = Zyeg ey = Egep 9zo(y)

Moreover, with the definition of Q, qoy = loy + ), ces(Pexy + nesy), and finally

G5 = ) looy) T (Z Peroty) + neza(y)>

oc€P e€€ES \o€eP ocEP

Therefore, the matrix () can be expressed as a sum of matrices: Q = L + Yece 8(155 +N,),
where, for each global state  and §, and for a =1, a = pe or a = ne (e € £8),

a5 = 2 pep Gao(y)

Now we consider a lumped version of each matrix A (A can be any of the matrix L, P, and
N,, where e € £S), denoted by A. This lumped matrix (defined in the following) is a tensor
expression, obtained by the aggregation of each subset of replicated automaton. The equivalent
SAN obtained is not defined there, we work only on the matrix expression of this SAN.

We want to prove that Q = L + > eces(Pe + Ne), where Q is the matrix of the aggregated
Markov chain. So, we will have a tensor expression of Q.

To prove this, we work on each term a, where a can be [, pe or ne (e € £S), and we show
that &jg = djg

We consider first the tensor products P, and N, for e € £S. Then we explore the case of
the tensor sum L.

N
Let A be one of the tensor products P, or N, e € £S5: A = ® QY.
9

i=1
Let z and y be two global states. With the definition of generalized tensor product, we have
B o PAAO))
Azy = Hi:1 qxz(i)y(i)(x)'

~ _ _ N (2)
So az5 = EaeP Ozo(y) = ZaeP [Tz, qw(i)g(y(i))(x)
Recall that o can be expressed as a combination o = (07 ... 0x). So we have

01€EP1 ok €EPk i=1

If we decompose the product into subsets, we can replace in the product term, o by the
corresponding oy, where h € [1..K], and factorize the independent terms:
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K
az5 = H ( Z H qi’i()i)o.h(y(i))(z)> (3)

h=1 \on€EPn i€SI)

Then let us define the lumped matrix A as a tensor product of K matrices: A= ® Ah,
9

he[l..K]
where A, h € [1..K], is defined by

&ghgh(ﬁ): Z H qiz()i)o.h(y(i))(j:)

on €EPR €SI,

K) = (@D, V).

8

Recall that & = (Z; ...
Then we have

K K
azy = H &ghgh (Z) = H Z H ‘Ig(gz()nah(y(i))(ﬁ) (4)

h=1 h=1o0pEPy i€ST)

Due to the properties of the functions, when we evaluate them with all x € Z, we always
have the same result, so formula (2) and (3) are equal, which prove the result @z5 = az.

N
Now, let A be the tensor sum L: A = @ QY.
9

i=1
Let z and y be two global states. With the definition of generalized tensor sum, we have
N° G
Aoy = Y iy qiz()i)y(i)(;E)A(z(‘i)’y(i))y wheret A0 40y = [zt v jzi Oatiryn -
. _ N (i)
So azy = EUE'P Azo(y) = EaeP dim qmz(i),,(y(i))(x)A(z(i),a(y(i)))
Notice that the only o = (01 ... 0k) giving a nonzero result for A, ,(,@)) are such that

only one of the o4, h = 1..K, is not the identity (denoted by id).
Let 61, = (id ... oy, ...id) be such a permutation. Then we have:

K N
Gz =) ( > Z‘Ii?ﬂah(y(ﬂ)(””)Aw,ah(y(“)))

h=1 \op€Py i=1

Az 5, (y9)) can be non null only for ¢ € S, so finally,

K
Gzy = Z < Z Z q:(;()i)a.h(y(i))(m)A(z(i),&h(y(i)))> (5)

h=1 \on€Py i€SIy

Then let us define the lumped matrix A as a tensor sum of K matrices: A = @ Ah,
9

h€[l..K]
where A" h € [1..K], is defined by

Fouo = 1ifu = v, and 0 otherwise
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fw?by
w;'

17 Z Z qw(’ Jop(y(®) )A(Z(’) on(Y)))

onE€EPy i€EST)

and A(w(z) y@) = HjeSIh J#i gyt -
Then we have

K
azy = &ghgh(@ = Z ( Z Z qg()n,,h(ym)(f)A?z(n,gh(y(,.)))> H Sapy,  (6)
h=1

on €EPr 1€SIT) kE[l..K],k#h

In equation (5), the product [[¢(1. k) kh Oziy, multiplied by the AP (2 0n (5e))) is equivalent

to the A, 5, 4y defined for equation (4).
The two formula are therefore identical, and Gz = azy-

Tensor expression of Q
We have proven that Q = L + + > eces(Pe + Ne), and with the expression of the different
lumped matrix, we have

~ h ~ h
0= @, 1Y [ ®, 2+ ®,

he[L. K] e€ES \ye[1..K] he(l..K]

and all the matrices A" have been defined above.
Thus, we obtain a compact representation of the aggregated Markov chain, as if each subset
has been aggregated in an independent way.

5. The benefits of aggregation

We have seen that we can strongly aggregate a SAN with multiple replicas, but we still need
to see what benefits it brings in order to justify this aggregation. We will at first present some
theoretical results, then we will show the benefits of aggregation on practical examples.

5.1. Theoretical results

Consider a SAN composed of one replica with NV automata, and let M be the number of
states per automaton (it is the same for all automata because of the replication). The total
number of states of the SAN is then M”~. We wish to calculate the number of states of the
reduced Markov chain. Notice that we do not take unreachable states into account, and some
states of the aggregated Markov chain can be removed (as seen in the examples).

For a given global state of the initial SAN, let us denote by na,, (m € [1..M]) the number
of automata that are in state m. The number of states of the aggregated Markov chain is
therefore bounded by the number of integer solutions of the equation Zm 1 Mam = N, which
is [17]

N+M-1\ (N+M-1)!
( M-1 ) T NI(M —1)!
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Aggregation is beneficial only when there are several automata. For example, if we aggregate
a SAN with N = 2 and M = 5, we have initially 52 = 25 states and we obtain 15 states after
aggregation. For large values of N, it becomes much more interesting. For example, when
N = 100 and M = 5, we obtain an order of 4.6 million states after aggregation, instead of
the 5! & 1070 initial states. If we have N automata with 2 states each, we have initially 2%V
states, and only NV + 1 after aggregation.

Aggregation is useful for large SAN models, and it can be observed that in these cases, the
state space reduction is significant. We have drawn some curves that show the state space
reduction: percentage of the aggregated product state space size compared to the original
product state space size, function of N, for different values of M (Figure 5).

Sagsl
100 x [Sage|
‘S| 100

80
60
40

20

0 2 4 6 8 10 12 14 N

Figure 5. State space reduction

For N > 10, the size of the aggregated state space is negligible compared to the size of the

original product state space, and the reduction is more significant for larger values of M.

For a SAN with multiple replicas, we have for each subset h € [1..K] %
aggregated states (M}, is the number of states of the automata of the subset h, and Ry
the number of replicas), what makes a total of HhK:1 % states. For example, if
we have 2 subsets of R automaton, each having 2 states, and K other subsets containing
only one automaton with M states each, we have initially 2F x 2F x M¥ states, and only

(R+1) x (R+1) x MX states after aggregation.

5.2. Numerical results

This section aims to show the practical benefits of aggregation through a few examples. At
first, we introduce some examples, and then we summarize the results.

RS1 and RS2 These models have already been described in Sections 3.2 and 3.4.
Figure 6 shows the aggregated Markov chain for the RSI model®. State i (i = 1..N,)

$1n fact, Figure 6 is a generalization of the model in Figure 4.
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corresponds to the state i processes are using a resource. The part with dotted lines correspond
to the unreachable states, it can be suppressed from the Markov chain.

NyA (Np =N +DA 0 0
/\ T ~-~ - \\\\l"
(] I | ] [ | 4 Np
A ‘ 7
K’ Ne (Nr +1)p Npp

Figure 6. RS1 — aggregated Markov chain

The size of the SAN before aggregation is |S| = 2V and |S| = Z?QO (]\;”)
The size of the aggregated Markov chain is |S’agg| = N, + 1, and when we suppress the
unreachable states, |Syg9| = Ny + 1.

For the RS2, the aggregated state (i1,...,ix) means that i; processes of the group h
(h = 1..K) are using a resource. Some numerical results will be provided, showing the reduction

of the state space in some special cases.

Resource sharing model with failure — RS3 This model is similar to RS, except that the
system may fail. Each of the IV, processes has an additional state fail, and can go to this state
via a synchronizing transition from both states sleeping and using. The event evtsq; (rate Ay)
corresponds to a failure of the system. The occurrence of the event evt,., (rate A,) means that
the system has been repaired, and then all the processes are back in state sleeping.

An additional automaton represents the state of the system, it can be failure or active.
Transitions from one state to another occur with evts,; and evtre,. The other events are
the same than those of RS (Section 3.2). This model, which we shall call RSS, is graphically
illustrated in Figure 7.

A(N p+1)
sleeping
(1) e’Utfail
evt s failure
activ
evtrep

using

replicated N, times

Figure 7. Resource Sharing Model with failure — RS3

In this case, all process automata are replicated, so we can aggregate them. Figure 8 shows the
aggregated Markov chain (without the unreachable states). State i (¢ = 1..N,.) corresponds
to the state i processes are using a resource, and state fail corresponds to the failure of the
system.

The size of the SAN before aggregation is || = 2% 3™ and |S| = 1 + N (V%) (one more
state than for RS1, corresponding to the global state the system is in failure).
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(Np — Ny 4+ 1)A

Figure 8. RS3 — aggregated Markov chain

The size of the aggregated Markov chain is |.§agg| = (Np + 2)(Np + 1), and when we suppress
the unreachable states, |Sqgq| = Ny + 2.

On/Off Sources model — OS This fourth model presents a case in which s on/off sources
feed a limited capacity (C requests) queue. The SAN for this model is represented by s + 1
automata. Each source is represented by a two-states automaton (local states on and off), and
an additional automaton with C' + 1 states. The arrival rate of the queue is a function of the
state of the sources automata, and the service rate is a constant value p (rate of the event
evts). We consider two groups of sources, the first with s; sources (automata 1 to s1), and
rate A1, and the second with s, = s — s1 sources (automata s; + 1 to s), and rate A». These
source rates shall be added to the arrival rate when the source is in the state on. Then the
rate of the event of arrival in the queue evt; is

A1 Szl 0 (st(A(i) == on)) + A2 i ) (st(A(i) == on))
i=1

1=s1+1

Figure 9 illustrates this SAN model. The events evt((f) and evtgf) have constant rates,
depending only of the type of source (group 1 or group 2).

This model has three subsets (K = 3), and the first and second subsets can be aggregated.
The first subset aggregation results in an automaton with s; + 1 states, and the second
subset aggregation results in an automaton with s; 4+ 1 states. The reduced state space is
then [Saye| = (s14+1) X (s2+1) x (C'+1), instead of the original state space |S| = 2° x (C'+1).

Cluster with Bus Communication — CB This fourth model represents a cluster with N,
processing nodes with a simple behavior:
- each node i alternates from idle (Id®) to processing (Pr(?) state;
- being in the idle state a node can pass to transmission (T'z(?) state if no other node is already
transmitting; or it can pass to reception (Rz(?)) state if there is another node transmitting;
- after transmitting or receiving each node returns to idle state.

Such model could be seen as a simple description of UDP protocol over a shared bus, or
other communication protocol in which there is no need of commitment between send/receive
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AW AG)
Off Off
evtfcl) evtgf)
evt((zl) evtés)
On On
A(s—l—l)
evty evt; evts evty
o e e 1
evts evts evts evts

Figure 9. On/Off Sources model — OS

connections. Despite the application of such model, our interest in this paper is the description
of a SAN with NN, automata with four states each. This replicated automata model is

represented in Figure 10. All events in this SAN are local, but events lgi) and léi) must be
defined with functional rates (the other events have constant rates), respectively:

- (Zf\;ﬂ S(st(AD == Ta:(i)))) =1 in order to grant access to reception state if there is one
node transmitting; and
- (Zﬁ’l 5(st(AD == Ta:(i)))) = 0 in order to grant access to transmission state if no node

is already transmitting.

When all nodes have the same rates this model is a SAN composed of one replica. Only the
global states in which only one node, at most, is transmitting are reachable, i.e.:

NP
reachability = Z 6(st(A(i) —— Tx(i))) <1

i=1

Numerical Results We present here some numerical results obtained with the software package
PEPS [1] aggregating and solving the presented examples. The aggregation of replicas was
automaticaly performed by PEPS using the model specification information (see Section 3.5),
and the lumped SAN models were stored in the tensor format (see Section 4.3). The computer
used to run the examples was an IBM-PC running Linux OS (Mandrake distribution, version
8.0), with 1.5 Gbytes of RAM and with 2.0 GHz Pentium IV processor. The indicated
processing times do not take system time into account, i.e., they refer only to the user time
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Figure 10. Cluster with Bus Communication replicated automaton — CB

spent to perform one iteration¥, in order to compute the steady-state probabilities!. A time
of 0 sec. means that the time is negligible (less than 10~* sec.). An indication — means that
PEPS was unable to solve the model (too many states).

Model initial SAN aggregated Markov chain
Kl |S] | Time (sec.) 18agq] | [Saggl | Time (sec.)
RS1 1,048,576 616,666 15.7 21 11 0.000
N, =20, N, =10
RS1 - - || 10,001 | 8,001 0.004
N, = 10,000, N, = 8,000 210000
RS2
K=2 N,=10 1,048,576 616,666 15.7 96 51 0.000
R1 = 5, R2 = 15
RS3 6,973,568, 802 616,667 - 462 12 0.000
N, =20, N, =10
[oF}
s1 =12, 89 =4, K, = 1,000 65,601,536 | 65,601,536 101.5 || 65,065 | 65,065 0.032
0OS
s1 =8, 8 =8, K, =1,000 65,601,536 | 65,601,536 101.5 | 81,081 | 81,081 0.034
CB 16,777,216 | 2,657,205 72.6 455 169 0.000
N, =12
CB 1,073,741,824 | 86,093,442 - 816 256 0.000
N, =15

The results show that aggregation always produce a significant state space reduction. This
is true even when the original product state space is equal to the original reachable state space
(model OS). The cardinality of the subsets, as in the two OS models presented, has little
effect when compared to the gains achieved by the aggregation technique. The time required

YThe number of iterations may vary according to the choosen numerical input parameters. However, the time
to perform one iteration is not affected by the choice of numerical parameters. The solution method used to
compute results was power iteration, but the other methods available in PEPS (Arnoldi and GMRES) have a
quite similar time costs per iteration that depends on the cost of one vector-description multiplication [12].
IThe technique presented in this paper is probably also useful for transient analysis. However, our interest
here is limited to stationary solution, since this is the only solution formally defined for SAN models and
implemented in the PEPS software tool.
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to compute performance indexes for this model becomes quite negligible. Taking replicas into
account can even make possible to solve problems that were too large before, as the proposed
RS3 model, the RS1 model with N, = 10,000, and the CB model with N, = 15. In fact,
the last OS with a little bit more than 65 million states is the largest model directly solved
by PEPS until now. Larger models can be solved, but with the current computational power,
and specially the current memory limitations, there is no much room to handle larger models,
unless some aggregation technique, like ours, is employed.

6. Conclusions

In this paper, we have defined SAN models with replicas, and have exposed a technique
to aggregate such models. We proved a theorem showing how strong aggregation can be
performed, and how the matrix of the aggregated Markov chain can be expressed as a tensor
expression. The theoretical benefits of such an aggregation are also presented and verified by
the numerical achievements of the implementation in the PEPS software tool.

Notice that the subsets of replicated automata have to be defined at the high level
specification. This is often a fake problem since the replicas are usually known when modeling
a particular system.

The implementation of the automatic generation of the aggregated Markov Chain in PEPS
proved the efficiency of the proposed technique. The implemented algorithm generates the
tensor expression of the matrix very quickly (much faster than the time spent by one single
iteration). The resulting tensor expression is usually much more compact, so we can compute
the numerical solution with an impressive reduction of CPU costs.

In this paper, we work only on the matrices describing such SAN to prove that the matrix
of the aggregated Markov chain can be expressed as a tensor expression. We could as future
work define formally an equivalent SAN resulting from the aggregation of each subset.

Finally, we plan to work on applications, e.g., communication protocols, to experiment those
new techniques on real and large systems with a significant number of replicas. Many models
in communication could not be solved by SAN due to the limitation of the product state space
size, but we do believe that the proposed technique can boost the use of SAN to such practical
cases.

The authors wish to thank Cyril Guilloud for his preliminary work on SAN aggregation.
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Appendix: proof of Lemma, 1

To prove Lemma, 1, we decompose the problem into two parts, corresponding respectively to
the local part of the descriptor (Lemma 2) and the synchronizing part (Lemma 3).

Lemma 2: For all 8,7y € [1.T], the probability of passing from a state x € Qg
to Q, with a local transition always has the same value for each state x in Qg:
Vo € Qp lea, =lrpa,.

e PROOF OF LEMMA 2
Let 8,7 € [1.T], z € Q3 and let 7 € P be the permutation such that z = 7(rf).
With the definition of a generalized tensor sum ([10, 25]), for y € ., we have

N i N i) . - .
lay = Yiey [ql(’;mym (@) [[j21 i 6;E(j)y(j)j| , Where Ql(z) is the local transition matrix of
automaton A, and d,, = 1 if u = v, and 0 otherwise.

In order to simplify the notation, let us define A, ¢ = Hj.vzl’#i )y (i) »

Then we have

N
le7 = Z lwy = Z law(r'y) = Z qu(g(i)r,y(a(i))(x) Az(i)rry(ﬂ(i))

yEQ, o€P o€P i=1

Moreover, we have x = 7(rf3), so

N
le_y = Z Z ql(z,)‘ﬁ(q—(i)) (o) (r(rB)) Arﬁ(ﬂ'(i)) ry(e@)

oc€P i=1

Now decompose the equation for each subset of the SAN. Recall that the matrices of a
subset h € [1..K] are all identical to @,z)- Moreover, for o € P, let ¢ € P be the permutation
@ =co7 ! Then 0 = p o7 and when o goes through P, ¢ does the same (in a different
;)lrder). Because of the commutativity of the sum, we can replace >, p with }_p. Then we

ave:

K
Lo, = D D D Qny rprn rteorn (T(PB)) Apgirin) pmyteartin

wEP h=14€SI;

The functions are not changed by a permutation of P, and 7 € P, so we can replace 7(r3)
by r8 in the above equation. Moreover, for each subset h, when i goes through SIp, 7(i)
does the same but in a different order (it is a permutation inside the subset). Because of the
commutativity of a sum, we can change the order and replace 7(7) by 4 in the equation:

K N
lzq, = Z Z Z A1k 184 1y (TB) Arg) ryetin = Z qu(?ﬁ(i) T,Y(¢(i))(rﬂ) AL 36 pye)

0EP h=1i€ST, EP i=1

Finally, luo, = > cp lrg o(ry) = lrp -
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Lemma 3: For all 8,7 € [1..I], the probability of passing from a state x € Qg to
Q. with a synchronizing transition always has the same value for each state x in

QB: Vz € Qﬁ Zeegs (pez'Q'v + neEQv) = Eeefs (peTBQ'y + nerﬂﬂv)‘

e PROOF OF LEMMA 3

Let e € €S, B,v € [1.T], x € Qp and let 7 € P be the permutation such that x = 7(rf).
We will first prove that pe;q, = perga, . The proof for ne is similar.

With the definition of a generalized tensor product ([10, 25]), for y € 2, we have

Pegy = Hfil qg w(i)y(i)(x), where Qg:)_ is the positive synchronization transition matrix of

automaton A,
Moreover, z = 7(rf), so we have

N
pezq, = Z pezy = Z Pero(ry) = Z H qui rBO () T.,Y(a(i))(T(rﬂ))

IS o€P o€P =1

Now decompose the equation for each subset of the SAN. Recall that almost all the matrices
are identical inside a subset g € [1..K]; we denote them by Q.4 ). There is only one particular
matrix in one of the subsets equal to feQ(c4,q), Where f. is the transition rate of the event
(definition of SAN models with replicas).

For o0 € P, let ¢ € P be the permutation ¢ = o o771. Then 0 = ¢ o 7 and when o goes
through P, ¢ does the same (in a different order). Because of the commutativity of the sum,
we can replace ), cp With }° .. Then we have:

K
peso, = > ] (fe(T(Tﬂ)) IT dcet roin m(w(m(T(Tﬁ)))

@€EP h=1 i€STy
The functions are not changed by a permutation of P, and 7 € P, so we can replace 7(r3)
by r8 in the above equation. Moreover, for each subset h, when i goes through SI, 7(i)
does the same but in a different order (it is a permutation inside the subset). Because of the
commutativity of a product, we can change the order and replace 7(z) by 7 in the equation:

K N
bézq, = Z H (fe(rﬂ) H d(e+,n) r® rv(tp(l’))@'ﬂ)) = Z Hqﬁ B r7(¢(i))(rﬂ)

©€EP h=1 i€ST, peP i=1
Finally, bez, = E‘,OEP DPerg o(ry) = PCrp Q-
In a similar way, we can prove that ne;o, = ne,sq,. This is true for all events e € £S5, so
we ﬁnally have ZCEES (per,y + ne:”Q‘y) = 26658 (perﬁg‘v + neTBQ‘y)
O

e PROOF OF LEMMA 1
Let 8,7 € [1.1, z € Q3 and let 7 € P be the permutation such that z = 7(rg).
With the decomposition of (), we have

920, = Eyeﬂ., oy = Zyeﬂ., (loy + Xeces (Peay + neay))

=2 yeq, oy + Xeces (Eyem Peay + 2 ycq, “ewy) = Lo, + Leees (Peaa, + nesa,)
With the application of Lemma 2 and Lemma 3, we finally have
020, = g, + Y eces (per[mw + nerﬁﬂn,) = ¢rpQ,-



