Using eSkel to implement the multiple baseline stereo application

Anne Benoit, Murray Cole, Stephen Gilmore and Jane Hillston

School of Informatics, The University of Edinburgh, James Clerk Maxwell Building,
The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK
abenoitl@inf.ed.ac.uk
http://homepages.inf.ed.ac.uk/abenoitl/eSkel

Abstract: We give an overview of the Edinburgh Skeleton Libra$kel a structured parallel programming library
which offers a range of skeletal parallel programming constructs to the C/MPI programmer. Then we illustrate the
efficacy of such a high level approach through an application of multiple baseline stereo. We describe the application
and show different ways to introduce parallelism using algorithmic skeletons. Some performance results will be
reported.

Keywords: High-level parallel programming, algorithmic skeletons, Edinburgh Skeleton Library, pipeline, deal, mul-
tiple baseline stereo application, image matching.

Structured parallel programming with eSkel

The skeletal approach to parallel programming is well documented in the research literature (see [2, 3, 5, 6] for sur-
veys). It observes that many parallel algorithms can be characterised and classified by their adherence to one or more
of a number of generic patterns of computation and interaction. For instance, a variety of applications in image and
signal processing are naturally expressed as process pipelines, with parallelism both between pipeline stages, and
within each stage by replication and/or more traditional data parallelism [7].

Skeletal programming proposes that such patterns be abstracted and provided as a programmer’s toolkit, with specifi-
cations which transcend architectural variations but implementations which recognise these to enhance performance.
This level of abstraction makes it easier for the programmer to experiment with a variety of parallel structurings for a

given application, by enabling a clean separation between these structural aspects and the application specific details.

In the eSkel(Edinburgh Skeleton Library) project, motivated by our observations [3] on previous attempts to imple-
ment these ideas, we have begun to define a generic set of skeletons as a library of C functions on top of MPI. A
description of the library and relevant documentation can be found in [1].

The multiple baseline stereo application

We present the multiple baseline stereo application, and we discuss several possible implementations of the application
that we are developing with theSkelibrary. We focus on the programming features offered by a high level parallel
programming library to parallelise any application easily and efficiently.

Presentation of the application

The application we are considering is the multiple baseline stereo described in [4, 8]. The algorithm aims to measure
depth in a scene accurately, with the help of several cameras. The cameras have various baselines, thus allowing to
obtain precise distance estimates with a stereo matching method.

The input consist of three images, acquired from three horizontally aligned, equally spaced cameras. One image is the
reference imagewhile the other two arenatch imagesFor each of 16 disparitie$ = 0..15, the first match image

is shifted byd pixels, and the second image By pixels. Then, aifference imagés created by computing the sum

of squared differences between the reference image and the shifted match images, for each péetedr rhageis

obtained by replacing each pixel in the difference image with the sum of the pixels in a surrounding 13x13 window.
Finally, thedisparity imagds formed by finding, for each pixel, the disparity that minimizes error. We then know the
depth of each pixel, which depends on this disparity.

Parallel implementation with eSkel

We provide in this abstract the outline of our implementations. Several parallel schemes are compared. A sequential
version of the application is the reference implementation. The parallel versions are closely related to the sequential
code, and simply add parallelism by using the skeletons oé8kelibrary.

Since we are interested in computing the disparity image successively for different triplets of images, we can easily
switch to a parallel version of the application by using the well-kn®ipelineskeleton [1]. The operations that we

need to perform on the input images can then be done in parallel at each iteratioeSHeélkbrary offers to the
programmer a data model which allows to transfer easily the various images from one pipeline stage to another.

However, some of the stages are more computationally intensive, and we can easily improve the performance by
replicatingthe most demanding pipeline stages witbeal skeleton. It is similar to a traditional farm, but with tasks
distributed strictly cyclically to workers. It is thus useful while nested in a pipeline, since the deal semantics require
the ordering of outputs from the skeleton to match that of the corresponding inputs, irrespective of the internal speed
of the workers.

Different configurations will be compared. We can psgsistentnesting for stage replication, which means that all

data arriving into a stage is distributed directly to the workers, and similarly the output data is transferred from the
worker to the next stage. We will also illustrate the us¢rafisientnesting, for example to parallelise for a given set

of input the computation of the difference images (one difference image per disparity). The deal is then called within
a stage function, with the data explicitly passed as a parameter. This allows to pre-process the data before calling the
nested skeleton. Performance results will be reported for both approaches.

Conclusions and overview of the paper

In this extended abstract, we have briefly introduced the structured parallel programmingdibkafyand how it can
be used to easily parallelise an application, as illustrated with the multiple baseline stereo application.

The paper will give more details on the parallel algorithms used, through a detailed presenta®kelsind the
offered algorithmic skeletons. Moreover, some numerical results will show the efficacy of this approach. We have
already obtained promising results showing a good speedup of the application with an implementati@eaking

The use of the library not only allows an easy design of parallel applications, but performance models can also be as-
sociated with each skeleton, allowing to reach even better performance for highly demanding computing applications.

References

[1] A. Benoit and M. Cole eSkel's web page2005. http://homepages.inf.ed.ac.uk/mic/eSkel

[2] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computakithfi Press & Pitman, ISBN 0-262-53086-4,
1989. http://homepages.inf.ed.ac.uk/mic/Pubs/skeletonbook.ps.gz

[3] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal ParaIIeI Prograniaratiel Computing
30(3):389-406, 2004.

[4] M. Okutomi and T. Kanade. A Multiple-Baseline Sterd&EE Transactions on Pattern Analysis and Machine Intelligence
15(4):353-363, April 1993.

[5] S. PelagattiStructured Development of Parallel Prograntaylor & Francis, ISBN 0-7484-0759-6, London, 1998.

[6] F.A. Rabhi and S. Gorlatch, editor®atterns and Skeletons for Parallel and Distributed ComputiSgringer Verlag, ISBN
1-85233-506-8, 2003.

[7] J. Subhlok, D. O’'Hallaron, T. Gross, P. Dinda, and J. Webb. Communication and memory requirements as the basis for mapping
task and data parallel programs.Rroceedings of Supercomputing ;9#ages 330-339, Washington, DC, November 1994,

[8] J.A. Webb. Latency and Bandwidth Considerations in Parallel Robotics Image ProcessiSgpdrcomputing’93pages
230-239, Portland, OR, November 1993.

