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Abstract

Much attention has been paid recently to the use of Kronecker or tensor product modelling techniques for evaluating the
performance of parallel and distributed systems. While this approach facilitates the description of such systems and mimimizes
memory requirements, it has suffered in the past from the fact that computation times have been excessively long. In this paper
we propose a suite of modelling strategems and numerical procedures that go a long way to alleviating this drawback. Of
particular note are the benefits obtained by using functional transitions that are implemented via a generalized tensor algebra.
Examples are presented which illustrate the reduction in computation time as each suggested improvement is deployed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic processes in general, and Markov chains in particular, constitute a modeling paradigm that
has broad applicability to many branches of science and engineering. Markov chain models have been
proposed as an effective tool for analyzing a great variety of systems. However, their use has not been as
widely accepted as one would have hoped or expected. This is an unfortunate situation since the theory
and application of Markov chain techniques constitute a unifying theme in the application of mathematics
to many problems in biology, engineering, economics, physical science, and social science; the numer-
ical computation of stationary and transient probabilities associated with large scale applications is a
fundamental concern. A major reason for this is the well-known state-space explosion problem, whereby
even simply stated models generate huge numbers of states. This leads to computational difficulties, both

∗ Corresponding author. Tel.:+33-476-612089; fax:+33-476-612099.
E-mail addresses:anne.benoit@imag.fr (A. Benoit), billy@csc.ncsu.edu (W.J. Stewart).

0166-5316/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.peva.2004.04.002



368 A. Benoit et al. / Performance Evaluation 58 (2004) 367–390

from the point of view of memory requirements (for storing the states, transition matrix and solution/work
vectors) and from the point of view of computation time, since large state-space models frequently require
large amounts of time to compute transient and/or stationary distributions.

These obstacles were apparent from the very first modeling packages. Indeed, when Wallace and
Rosenberg[34] presented their RQA-1 (Recursive Queue Analyzer) software package in 1966, they
incorporated a compact storage scheme that took advantage of the special structure of the transition
matrices their package could handle. Wallace and Rosenberg identified within the nonzero structure of
the matrix, linear patterns (generally parallel to the diagonal) in which the elements were all identical.
They then represented all these elements by specifying a nonzero value and the beginning and ending
position of the linear structure in the matrix. The numerical solution method used was the power method
of Von Mises. There has been much progress since 1966 both in terms of storage requirements and
numerical solution techniques. Novel ways of model representation were developed and these in turn
instigated further savings in storage and computation time. Chief among these are stochastic Petri nets
(SPNs) and stochastic automata networks (SANs). Each of these approaches has benefited from advances
in the other.

Stochastic Petri nets, and later generalized SPNs (GSPNs) and superposed GSPNs have a Markov
chain as their underlying stochastic structure[1,10,11,16,17,24]. This Markov chain may be stored in
any number of ways. Memory efficient implementations favor an implementation that is based either on
a Kronecker product formalism or on a structured tree format such as binary decision diagrams (BDDs)
[4,5,31], Multi-Terminal BDDs (MTBDDs)[22] and matrix diagrams[14,25]. Using these techniques,
the transition matrix can be stored extremely compactly, to such an extent that memory requirements
for this matrix is negligible. These efficient means for storing the transition matrix may be accompanied
with efficient techniques for storing the state space of the Markov chain[12,13,26]. The state space is
required during the matrix generation phase and again after stationary or transient solutions have been
found in order to relate computed stationary or transient measures to the initial model itself. The only
remaining storage sink is the solution vector itself, plus work vectors that are used in computing solution
vectors. Some numerical solution methods (e.g., Gauss–Seidel[35]) need only a single vector (although
for slowly converging processes it may be necessary to keep the computed approximation from several
tens of iterations prior to the current iterate) and even here some recent work aims to mimimize this in
certain types of model, specifically those that can be represented as Kronecker products.

Stochastic Automata Networks (SANs) have been discussed in the literature for over a decade[6,16,19,
21,23,27–29]. It has been observed that they provide a natural means of describing parallel and dis-
tributed systems. Each component of the system is represented by a separate, low-order matrix which
describes, probabilistically, how this component makes a transition from one possible state to another.
Thus, if a component were completely independent, its representing matrix would define a Markov
chain whose evolution in time mimics that of the component. Since components generally do not func-
tion independently of each other, information must also be provided which details their interaction.
For example, the actions of one component might be synchronized with those of another, or again
the behavior of one component might depend on (i.e., be a function of) the internal state of a second
component.

With this information, it is of course possible to construct a global matrix representing the entire system,
to manage this global matrix in a compacted format and to apply sparse matrix technology to obtain both
transient and stationary distributions from which all manners of system performance measures may be
derived. However, the key element of the SAN approach is that a global matrix is never generated. The
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individual component matrices and information concerning component interactions are combined into
what is called the SANDescriptor, and is written as a sum of tensor products.

The SAN descriptor approach keeps memory requirements within manageable limits and avoids the
state space explosion associated with some state-based approaches. We wish to stress that in order to
benefit from this compact form, the descriptor is never expanded into a single large matrix. Consequently,
all subsequent operations must necessarily work with the model in its descriptor form and hence numerical
operations on the underlying Markov chain transition matrix become more costly. Previously, this cost was
sufficiently high to discourage the application of SAN technologies. Recent results obtained by the authors
and others[8,9,20]will most likely change this situation. In this paper we show how the application of
successive modelling strategems and numerical savoir-faire reduce the time needed to compute stationary
distributions by several orders of magnitude, thereby reducing considerably this perceived disadvantage.

In the next section, we shall describe SANs more formally and introduce a number of results and
theorems of which we shall have need in this paper.Section 3presents a suite of approaches for reducing
computational costs and memory requirements. In particular, we shall emphasize the essential role that
functional transitions play in this scenario, and introduce new forms of the basic shuffle algorithm that
works exclusively with vectors that are the size of the reachable state space. We shall also consider some
reordering strategies and the effect of grouping large numbers of very small automata into a much fewer
number of larger automata. We also briefly describe our efforts in attempting to derive preconditioners for
a number of iterative solution methods.Section 4describes two rather different types of model, a resource
sharing model and a queueing network model, on which the various strategies described inSection 3are
tested. In the final section, we discuss the results obtained and exhibit the benefits that can be obtained
from the complete suite of time-reducing strategies.

2. Stochastic automata networks

A SAN is a set of automata whose dynamic behavior is governed by a set ofevents. Events are said to be
local if they provoke a transition in a single automaton, andsynchronizingif they provoke a transition in
more than one automaton. It goes without saying that a single event can generate more than one transition.
A transition that results from a synchronizing event is said to be asynchronized transition; otherwise it is
called alocal transition. We shall denote the number of states in automatoni by ni and we shall denote
byN the number of automata in the SAN.

The behavior of each automaton,A(i), for i = 1, . . . , N, is described by a set of square matri-
ces, all of orderni. In our context, a SAN is studied as a continuous-time Markov chain. The rate
at which event transitions occur may be constant or may depend upon the state in which they take
place. In this last case they are said to be functional (or state-dependent). Synchronized transitions
may be functional or non-functional. Functional transitions allow a system to be modeled as a SAN
using fewer automata and fewer synchronizing transitions. In other words, if functional transitions can-
not be handled by the modelling techniques used, then a given system may be modeled as a SAN if
additional automata are included and these automata are linked to others by means of synchronizing
transitions.

In the absence of synchronizing events and functional transitions, the matrices which describeA(i)

reduce to a single infinitesimal generator matrix,Q(i), and the global Markov chain generator may be
written as
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Q =
N

�
i=1

Q(i) =
N∑
i=1

In1 ⊗ · · · ⊗ Ini−1 ⊗ Q(i) ⊗ Ini+1 ⊗ · · · ⊗ InN . (1)

The tensor sum formulation is a direct result of the independence of the automata, and the formulation as
a sum of tensor products, a result of the defining property of tensor sums[15]. The probability distribution
at any timet of this independentN-dimensional system is known to be

π(t) =
N

�
i=1

π(i)(t). (2)

Now consider the case of SANs which contain synchronizing events but no functional transitions and let
us denote byQ(i)

l , i = 1,2, . . . , N, the matrix consisting only of the transitions that are local toA(i).
Then, the part of the global infinitesimal generator that consists uniquely of local transitions may be
obtained by forming the tensor sum of the matricesQ

(1)
l ,Q

(2)
l , . . . ,Q

(N)

l . As is shown in[27], stochastic
automata networks may always be treated by separating out the local transitions, handling these in the
usual fashion by means of a tensor sum and then incorporating the sum of two additional tensor products
per synchronizing event. The first of these two additional tensor products may be thought of as representing
the actual synchronizing event and its rates, and the second corresponds to an updating of the diagonal
elements in the infinitesimal generator to reflect these transitions.Eq. (1)becomes

Q =
N

�
i=1

Q
(i)

l +
∑
e∈E

(
N

�
i=1

Q
(i)

e+ +
N

�
i=1

Q
(i)

e−

)
. (3)

HereE is the set of synchronizing events. Furthermore, since tensor sums are defined in terms of a matrix
sum of tensor products, the infinitesimal generator of a system containingN stochastic automata withE
synchronizing events (and no functional transition rates) may be written as

Q =
2E+N∑
j=1

N

�
i=1

Q
(i)
j . (4)

This formula is referred to as thedescriptorof the stochastic automata network.
Let us momentarily return toEq. (3) to consider how best to handle the diagonal elements ofQ.

Since the numerical methods used to compute solutions of SANs are usually iterative, the most important
operation is that of multiplying the descriptor with a vector and hence it is essential to keep the cost of this
multiplication to a minimum. One way to reduce costs is to precompute thediagonal of the descriptor.
In this case, the descriptor may be considered as being composed of two parts:

• D, a vector containing the diagonal of the descriptor;
• Q̄, the descriptor itself with the exception that all the diagonal elements of the matrices of each tensor

product term are set to zero.

From a practical point of view, this is most easily accomplished by setting all the diagonal elements
of local matricesQ(i)

l to zero. In each tensor product term corresponding to a synchronizing evente, the
diagonal elements of the matrices corresponding to the automaton which “owns” this event must also be
set to zero. A second advantage of this astuce now becomes apparent. Normally each synchronizing event
generates two tensor product terms. The first term contains the rates of occurrence of the synchronizing
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event and the second contains exclusively the elements with which to adjust the diagonal. This second term,
once computed, only generates elements on the diagonal of the descriptor. Precomputing the diagonal
therefore allows us to eliminate the second tensor product term of each synchronizing event thereby
reducing the number of terms requiring manipulation during the multiplication phase. The diagonal
elements arising from synchronization terms are added to the diagonal elements corresponding to the
tensor sum part of the descriptor and the number of tensor product terms in the descriptor is reduced from
2E+N toE+N. Precomputing the diagonal brings about even greater savings when the descriptor has
functional elements, since the evaluation of functions on the diagonal must all be precomputed, but only
once.

Precomputation of the diagonal does have a cost associated with it, although this cost manifests itself
only once, namely, during the preparation of the descriptor. On the other hand, the benefits derived from
this approach occur each time a vector–descriptor product is computed. A second disadvantage of this
approach is the necessity of storing the diagonal elements themselves. Since the representation of the
matrix is extremely small, this has the effect of almost doubling the amount of memory needed. However,
the augmentation in memory use nevertheless remains low compared to the needs of storing the entire
matrix using sparse matrix technology. To counterbalance these inconveniences, this approach provides
rapid access to the diagonal of the descriptor with the resulting advantages of

• Easy computation of the largest element of the descriptor, since, given that the descriptor is a repre-
sentation of the infinitesimal generator, the largest element will always be found along the diagonal.

• Ease of use for implementing certain preconditioning techniques, which, as we shall see later, require
access to the diagonal.

Now consider the effect of introducing functional transitions into SANs. It should be apparent that the
introduction of functional transition rates has no effect on thestructureof the global transition rate matrix
other than when functions evaluate to zero in which case a degenerate form of the original structure is
obtained. In other words, the placement of zero versus nonzero elements essentially remains unchanged.
What may change is the value of nonzero elements. The nonzero structure of the SAN descriptor is just
as before (except in the case when a function evaluates to zero but even here, the sparse data structures
used need not be altered). However, because of possible value changes, the usual tensor operations are no
longer valid. Since regular tensor products are unable to handle functional transitions it is necessary to use
a Generalized Tensor Algebra(GTA) [19], to overcome this difficulty. In particular, this GTA provides
some associativity, commutativity, distributivity and compatibility over multiplication properties that
enable the descriptor of a SAN with synchronizing events and functional transitions to be handled with
algorithms almost identical to those of SANs with no functional transitions. We shall useB[A] to denote
a matrixB, associated with the automatonB, which may contain transitions that are a function of the state
of the automatonA; A(m)[A(1),A(2), . . . ,A(m−1)] indicates that the matrixA(m) may contain elements
that are a function of one or more of the states of the automataA(1),A(2), . . . ,A(m−1). The notation
⊗g denotes a generalized tensor product. ThusA ⊗g B[A] denotes the generalized tensor product of the
matrixA (having only constant entries) with the functional matrixB[A].

With this background information, we are now ready to explore a suite of approaches destined to
minimize memory requirements and computational burden of applying the SAN modelling concepts.
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3. A suite of approaches for reducing computation costs

3.1. Functional transitions via generalized tensor algebra

In real systems, most events do not simply occur of and by themselves. They occur as a result of
activities and constraints that, if not global to the system are, at a minimum, dependent on various aspects
of it. In other words, they arefunctionsof the state of different components in the system. Thus it is
natural when building mathematical models of complex systems to include transitions that are functions
of the different components. Although this is the most natural manner with which to model functional
transitions, it is not the only way.

We can always create a model without functional transitions, but this implies a possibly substantial
increase in the number of automata and synchronizing transitions needed. Each different function often
requires one additional automaton and a synchronizing transition for each automaton associated with the
function.

There is yet another reason why we should work with functional transitions. The incorporation of
functional transitions into SANs generally leads to a small number of matrices that are relatively full. On
the other hand, avoiding functional transitions using additional automata and synchronizing events leads
to many very sparse matrices. Given that the SAN approach is especially effective when the matrices
are full (indeed, for a large number of sparse matrices, the SAN approach is less effective than a general
sparse matrix[19]), it behooves us to work with functional transitions whenever possible.

However, we saw inSection 2that to permit the use of functional transitions in SANs, it is necessary
to work with a generalized tensor algebra. It now remains to examine the cost of using this generalized
tensor approach. When the matrices which represent the automata contain only constant values and are
full, the cost of performing the operation basic to all iterative solution methods, that of matrix-vector
multiply, or in this case, the product of a vector with the SAN descriptor, is given by

ρN =
N∏
i=1

ni ×
N∑
i=1

ni, (5)

whereni is the number of states in theith automaton andN is the number of automata in the network.
When the matrices are sparse, the cost is even less. In[19] it is shown that for sparse matrices, the
complexity is of the order of

N∑
i=1

zi

N∏
i=1,i�=j

ni =
N∏
i=1

ni

N∑
j=1

zj

nj
, (6)

wherezi denotes the number of nonzero entries inQ(i). To compare this complexity with a global sparse

format, the number of nonzero entries of�
N

i=1Q
(i) is

∏N
i=1 zi. It is hard in general to compare the two

numbers
∏N

i=1 zi and
∏N

i=1 ni
∑N

j=1(zj/nj). Note however that if allzi = N1/(N−1)ni, both orders of
complexity are equal1. If all matrices are sparse (e.g., below this bound), the sparse approach is probably
better in terms of computation time. This remark is valid for a single tensor product. For a descriptor

1 The valueN1/(N−1) lies between 1 and 2.



A. Benoit et al. / Performance Evaluation 58 (2004) 367–390 373

which is a sum of tensor products and where functions in the matricesQ(i) may evaluate to zero, it is hard
to compute, a priori, the order of complexity of each operation.

The savings are due to the fact that once a partial product is formed, it may be used in several places
without having to re-do the multiplication[33]. With functional rates, the elements in the matrices may
change according to their context so it is conceivable that this same savings is not always be possible. It
was observed in[33] that in the case of two automataA andB with matrix representationsA andB[A]
respectively, the number of multiplications needed to premultiplyA ⊗ B[A] with a vectorx remains
identical to the nonfunctional case and moreover, exactly the same algorithm could be used. Furthermore,
it was also observed that whenA contains functional transition rates, but notB, the computation could
be rearranged (via permutations) to computex(A[B] ⊗ B) in the same small number of multiplications
as the nonfunctional case. When both contained functional transition rates (i.e., functions of each other)
no computational savings appeared to be possible.

3.2. A reduced memory shuffle algorithm

SANs allow Markov chains models to be described in a memory efficient manner because their storage
is based on a tensor structure (descriptor). However, the use of independent components connected
via synchronizations and functions may produce a representation with many unreachable states. In the
following, we denote by PSS the product state space, and by RSS the reachable state space.

Within this tensor (Kronecker) framework, a number of algorithms have been proposed to compute
the product of a probability vector and the descriptor. The first and perhaps best-known is the shuffle
algorithm[2,18,19], which computes the product but never needs the matrix explicitly. However, this
algorithm needs to use “extended” vectorsπ̂ with the size of PSS. This algorithm is denotedE-Sh,
for extended shuffle. When there are many unreachable states (|RSS| � |PSS|), E-Sh is not efficient,
because of its use of extended vectors. The probability vector can therefore have many zero elements,
since only states corresponding to reachable states have nonzero probability. Moreover, computations are
carried out for all the elements of the vector, even those elements corresponding to unreachable states.
Therefore, the computation gain obtained by exploiting the tensor formalism can be ruined if many useless
computations are performed, and memory is used for states whose probability is always, by definition of
unreachable states, zero.

The use ofreducedvectors (vectorsπ which contains entries only for reachable states, i.e., vectors
of size |RSS|) allows a reduction in memory needs, and some useless computations are avoided. This
leads to significant memory gains when using iterative methods such as Arnoldi or GMRES which can
possibly require many probability vectors. A modification to theE-Sh shuffle algorithm permits the use
of such vectors. However, to obtain good performance at the computation-time level, some intermediate
vectors of size PSS are also used. An algorithm described in[2] allows us to save computations by
taking into account the fact that the probabilities corresponding to non-reachable states are always zero
in the resulting vector. Thispartially reduced computation corresponds to the algorithm calledPR-Sh.
However, the savings in memory turns out to be somewhat insignificant for the shuffle algorithm itself.
In most cases, this algorithm performs|RSS| multiplications of a vector slice by a column of a matrix,
instead of the|PSS| multiplications required byE-Sh. However, sometimes we cannot reduce the number
of computations when there are synchronizations in the model. From a memory point of view, there is no
real gain even if we use vectors the size of RSS, because the algorithm uses intermediate data structures
whose size is PSS.
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A final version of the shuffle algorithm concentrates on the amount of memory used, and allows us to
handle even more complex models. Thisfullyreduced computation corresponds to the algorithm called
FR − Sh. This algorithm is described in[3]. In this new algorithm, all intermediate data structures are
stored in reduced format. Two arrays of size RSS must be used to keep all information, instead of one
array the size of PSS. This algorithm will be more efficient in terms of memory only when less than half
of the states are reachable. As far as computation time is concerned, the number of multiplications is
reduced to the order of|RSS| × ∑N

j=1 zj/nj. However, we introduce some supplementary costs, most
notably, the cost of a sort which could reachO(|RSS|log(|RSS|)).

3.3. Further strategies for reducing vector–descriptor computation costs

We saw inSection 3.1that generalized tensor product algorithms are available that, in most cases,
keep the cost of multiplying a vector with a tensor product to that of the usual nongeneralized case. This
is most important in the presence of functional transitions, which would otherwise require considerably
more terms. However, it should be borne in mind that a SAN descriptor is a sum of tensor products. In
this section we recommend two different procedures which when implemented reduce the computational
costs of forming the product of a vector with a complete SAN descriptor. The first concerns the manner
in which normal factors should be processed; the second is that of automata grouping.

3.3.1. Re-ordering normal factors
Generally, in a descriptor, there are terms with functions and terms without functions; furthermore the

function arguments have various forms. It is obvious that when a term includes functions, it incurs an
overhead. This cost is mainly due to

a. the computation of individual automata states (the arguments) from a global state index;
b. the function evaluation itself knowing the individual automata states;
c. the number of these evaluations.

The actual cost of all three of these is model dependent. However, the number of these evaluations and
the cost may be reduced as shown below.

Remark. The operators⊗ and⊕ are not commutative. However, we shall have need of a pseudo-com-
mutativity property that may be formalized as follows. Letσ be a permutation of the set of integers
[1,2, . . . , N]. Then there exists a permutation matrix,Pσ , of order

∏N
i=1 ni, such that

N

�
i=1

A(i) = Pσ

N

�
i=1

A(σ(i))PT
σ .

A proof of this property may be found in[29] whereinPσ is explicitly given. Intuitively, thePσ trans-
formation boils down to considering the probability vector entries according to different lexicographic
orders.PT

σ is the transpose (and inverse) of this permutation matrix. In the sequel, we assume that, using
a permutationσ, the tensor product is well ordered as given in[19].

Algorithms. We have tested different algorithms based on the algorithmE-Sh without functional ele-
ments to show how we can use reordering in order to develop improved algorithms. The basic version
is an algorithm without normal factor permutations. The function evaluations are performed in an inner
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loop (the so-calledr loop, see[2,3]). The cost of function evaluations can be reduced by choosing an
appropriate order for each normal factor. If we use a permutation, we minimize the number of function
evaluations by moving all the function evaluations out of the innerr loop. Evaluation takes place only
when a parameter value has changed (in thel loop, in the terminology of[2,3]). This improved algorithm
reorders each normal factor, for all terms of the descriptor.

A final algorithm applies the reordering of each normal factor, if and only if necessary. Indeed, the
choice of the multiplication procedure may be different for each tensor term. We wish to point out two
simple cases in which the number of function evaluations cannot be reduced. The first occurs if the ranking
1, . . . , N is best; the second when there is a single functional normal factor whose parameters are all the
other automata. These features are discussed in detail in[2].

3.3.2. Automata grouping
We now examine a computation-saving strategy that is based on the reduction of a SAN to an equivalent

SAN having fewer automata. The concept of equivalence is made by means of an algebraic transformation
of the infinitesimal generator to which the SAN corresponds. As we have seen, the descriptor of a well
defined SAN may be written as

Q =
N

�g
i=1

Q
(i)

l +
∑
e∈E

[
N

�g
i=1

Q
(i)

e+ +
N

�g
i=1

Q
(i)

e−

]
. (7)

Let us now defineB groups calledb1, . . . , bB and, without loss of generality, let us suppose that the
groupbi is composed of indices [ci + 1, . . . , ci+1] with c1 = 0 andcB+1 = N. Thusb1 = [1, . . . , c2],
b2 = [c2 + 1, . . . , c3], . . . , andbB = [cB + 1, . . . , N]. Letting di = ci + 1 and using the associativity
of generalized tensor sums and products, the descriptor may be rewritten as

Q =
B

�g
i=1

(
ci+1

�g
j=di

Q
(j)

l

)
+
∑
e∈E

[
B

�g
i=1

(
ci+1

�
j=dig

Q
(j)

e+

)
+

B

�g
i=1

(
ci+1

�
j=dig

Q
(j)

e−

)]
.

Let us define the following matrices:

R
(i)

l =
ci+1

�g
j=di

Q
(j)

l , R
(i)

e+ =
ci+1

�g
j=di

Q
(j)

e+ , R
(i)

e− =
ci+1

�g
j=di

Q
(j)

e− .

By definition, these matrices correspond to agrouped automata, which we shall callG(i), of a SAN that
is equivalent to the one defined in(7), i.e.

Q =
B

�g
i=1

R
(i)

l +
∑
e∈E

[
B

�g
i=1

R
(i)

e+ +
B

�g
i=1

R
(i)

e−

]
. (8)

The product state space of each automataG(i) is
∏ci+1

j=di
nj. This purely algebraic formulation is the basis

for a computation reducing strategy obtained by grouping automata. Grouping may be used to achieve a
number of objectives including those of

• eliminating synchronizing events;
• eliminating functional transitions;
• reducing the size of the state space.
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Grouping can bring about many benefits. The limit of this process is a single automaton containing
all the states of the Markov chain. However we do not wish to go to this extreme. Observe that just four
automata each of order 100 brings us to the limit of what is currently possible to solve using regular
sparse matrix techniques yet memory requirements for four automata of size 100 remain modest. More
details may be found in[30].

3.4. Projection methods and preconditioning for sums of tensor product matrices

In searching to minimize computation time, we first examined how the use of functional transitions
can keep SAN models relatively simple without increasing computational complexity. Then we turned
our attention to two ways of reducing the computational burden of forming vector-descriptor products.
The final step in the use of the SAN methodology is the computation of stationary distributions by means
of iterative or projection methods. It is to this final aspect that we now direct our attention.

As we have seen, an operation that can be carried out with little difficulty is that of forming the product
of the compact descriptor of a SAN and a vector. This means that numerical iterative methods, whose basic
operation is a vector-matrix multiply, may be applied with little difficulty. In the modelling community,
the best known of these methods is the power method[32]. Unfortunately this is often a very slow method.
More sophisticated projection methods also have a matrix vector multiplication as their basic operation
and these generally converge much more quickly. However, in order for projection methods to perform
to their potential, they need to be complemented with preconditioners, a means whereby the distribution
of the eigenvalue spectrum is modified to achieve a better rate of convergence. Our primary purpose in
the remainder of this section is to address this issue, to examine what types of preconditioners can be
used within the SAN context and to observe which ones work and which ones do not. Some previous
results concerning the application of projection methods to compute stationary solutions of SANs have
been presented in[33]. Strategies used so far to find such approximations in stochastic automata networks
have been based on two principles. The first is that multiplication byA does not require thatA be stored
explicitly: one can find approximations toA−1 in terms of powers ofA. The second is that although it is
expensive to invert the sum of theAi’s, it is relatively easy to invert each of the component matricesAi.

The first approach was previously tested and proved to be unsatisfactory[33]. For example, it is possible
to use polynomial preconditioning, or to obtain the Neuman series expansion of the inverse ofA. In [33],
it was shown that the cost of such preconditionings was prohibitive. This was again found to be the case
in [18]. Other results can be found in[7] but they do not address functional transition rates. Consequently,
we will not address these techniques further. More information, including much experimentation may be
found in the references. Instead, we will move on to alternative approaches.

3.4.1. Incomplete factorizations
The most common, and general-purpose, approach to preconditioning a sparse linear system is to obtain

the incomplete factorization ofA:

A = LU + R

in whichL is a sparse unit lower triangular matrix,U is a sparse upper triangular matrix andR, the residual
matrix, is supposedly small, i.e., close to zero. The reader is referred to[32] for details. For example, the
ILU(0) factorization obtains factorsL andU which have the same structure as the lower and upper parts
of A respectively. For this to be possible, the matrixA must be available explicitly. A SAN descriptor can
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not directly use these options because of the manner in which the matrix (descriptor) is stored, not in a
standard sparse format, but as a sum of tensor products. Nevertheless we point out that a tensor product

A = �
N

i=1A
(i) may still be able to benefit from such incompleteLU factorizations. Indeed, the property

of compatibility of tensor product with traditional matrix multiplication and the property of associativity
implies that

A =
N

�
i=1

A(i) =
N

�
i=1

[L(i)U(i)] =
N

�
i=1

[L(i)]
N

�
i=1

[U(i)], (9)

whereL(i) andU(i) are theLU factors of the sequence{A(i)}. It should be noticed that the tensor product
of two upper (lower) triangular matrices is also an upper (lower) triangular matrix. This allows us to

factor a tensor productA = �
N

i=1A
(i) by factoring theA(i). Furthermore, an algorithm similar to the one

used to multiply a vector by a tensor product may be used to obtain the product of an arbitrary vectorv

by the inverse of a triangular tensor term (�
N

i=1[L
(i)] or �

N

i=1[U
(i)]).

3.4.2. ILU preconditioning for functional tensor terms
As shown byEq. (9), each tensor product term of a descriptor can be decomposed into matricesL

andU in a tensor format. We shall work with the descriptor,Eq. (4), before the diagonal elements are
removed, since removing diagonal terms may aversely affect theLU decomposition of local matrices. In
addition to this, two problems may hinder and indeed prevent us from obtaining theLU decomposition
of tensor terms and their subsequent use in preconditioning. This results from the nature of the individual
matrices to be decomposed. They may contain functional elements and they may be singular.

3.4.2.1. Matrices containing functional elements.The first restriction to the individual decomposition
of each tensor term is the existence of functional elements in local matrices. Given that we only require
an approximation, it is possible to use heuristics to eliminate such elements. In our experiments five
possibilities were tested:

• replace functional elements with zero;
• replace functional elements by one of their values, chosen at random;
• replace functional elements by their largest value;
• replace functional elements by their smallest value;
• replace functional elements by their average value.

Our experiments showed that all these options are pretty much the same, with a slight advantage for
the choice of the average value. However, these experiments showed that to obtain satisfactory precondi-
tioning, it is necessary to reduce, if not completely eliminate functional elements by means of automata
grouping.

3.4.2.2. Matrices that are singular.It is possible that during the application of the decomposition
algorithm, pivot elements become zero, even when a full pivoting strategy is employed. This is guaranteed
to happen when the matrix is singular. A number of approaches were used to try to mitigate this situation.
One possibility is to incorporate aregularizationof the matrices before their decomposition. These
regularization techniques transform the local matrices, while retaining some of their properties. We
experimented with two such forms of regularization,
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• a translation which consists of adding a small value to all of the diagonal elements of the matrix and
• a transformation which consists of replacing each of the diagonal elements by the largest (in modulus)

of all diagonal elements,

as well as with no regularization at all. In this latter case, only the unit upper triangular matrix,L, available
at the moment at which the decomposition breaks down, was used (the corresponding upper triangular
matrixU is ignored).

Having described how the experiments handle incomplete factorizations we now move on to describe
how they are incorporated into preconditioning strategies. We shall use the following notation:

• Q the descriptor obtained with the elimination of all of the functional elements of the descriptorQ and
replaced by their average values.

• M(i) the matrix that regroups theith term of the sum of the descriptorQ (Q ≡ ∑(N+2E)
i=1 M(i)).

• L(i) (U(i)) the lower (upper) triangular matrix that results from theLU decomposition of the matrix
M(i)(≡ [L(i)U(i)])

Note that the inverse of eachM(i) may be easily obtained by means ofEq. (9). In attempting to form
incompleteLU factorizations we experimented with combinations of the inverses of the individual tensor
terms. We tried three different possibilities:

• the sum of the inverses of all the tensor termsM(i);
• the product of the inverses of all the tensor termsM(i);
• the inverse of a single tensor termM(i).

These approaches, which may seem naive, are actually derived from theAdditive SchwarzandMulti-
plicative Schwartzmethods. Just as in these methods, the principle is to use the inverse of each term as
a component of the problem. In this way, the use of combinations of components permits us to develop
modular preconditioning. Intuitively, this type of preconditioning will be most beneficial when applied
to a model in which there is little interaction among the components. In the option which uses the sum
of the inverses of each matrixM(i) as a preconditioner, we need to multiply the descriptor by

N+2E∑
i=1

[M(i)]−1.

We call thisadditive preconditioning. For example, in applying this preconditioning to the power method,
the iteration becomes

x(k+1) = x(k)Q

N+2E∑
i=1

[M(i)]−1.

Notice that the execution of this algorithm requires an additional vector in which to store intermediate
values of the multiplication by each of the(N + 2E) terms.

In the second option, we use the product of the inverses of each matrixM(i) as the preconditioning
matrix. In the power method, the corresponding iteration becomes

x(k+1) = x(k)Q

(N+2E)∏
i=1

[L(i)U(i)]−1.
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We call thismultiplicative preconditioning. Unlike the previous preconditioning, multiplicative precon-
ditioning does not require an additional vector.

The third and final preconditioning option is the least expensive, because a single termM(i) is chosen
and its inverse used as the preconditioning matrix:

[M(i)]−1 with i ∈ [1 . . . (N + 2E)].

Furthermore, it is possible to use each of the termsM(i) in an alternating manner so that all are used at one
point or another during the execution of the algorithm. We refer to this asalternating preconditioning.

Unfortunately, the results we obtained withILU decompositions of the tensor terms did not turn out to
be very successful. Although we did get convergence in several cases, there was only one case in which
this was achieved with a better computation time than the non-preconditioned case. In fact, in the power
method, almost none of these preconditioning approaches worked. It turned out that among all three types
of preconditioning, the alternating type worked best. It has the advantage of being simple to handle and
only minimally increases the computation time of an iteration.

3.4.3. Diagonal preconditioning
Having failed to develop good preconditioners based on either the inverse written in terms of its powers

or on incomplete factorizations, we turned our attention to the simplest of all preconditioning strategies:
the use a diagonal matrixD, whose diagonal elements are simply those of the diagonal ofQ. The system
to be solved then becomes

xQD−1 = 0.

In the case of a matrix stored as a descriptor, this type of preconditioning is extremely easy to use. Indeed,
the diagonal of the descriptor is already calculated and even stored in a vector format. Furthermore,
the computation of the inverse of a diagonal matrix is elementary. Although we found that diagonal
preconditioning performed better than the other preconditioning techniques, in the final analysis, all that
can be said is that diagonal preconditioning is sometimes marginally better than no preconditioning.
Much research remains to be carried out in this area.

4. Examples

4.1. A model of resource sharing

We shall use a well-known “Resource Sharing” model as a test example. In the model,N distinguishable
processes share a certain resource. Each of these processes alternates between asleepingstate and a
resourceusingstate. However, the number of processes that may concurrently use the resource is limited
to P where 1≤ P ≤ N so that when a process wishing to move from the sleeping state to the resource
using state findsP processes already using the resource, that process fails to access the resource and
remains in the sleeping state. Notice that whenP = 1 this model reduces to the usual mutual exclusion
problem. WhenP = N all of the processes are independent. We shall letλ(i) be the rate at which process
i awakes from the sleeping state wishing to access the resource, andµ(i), the rate at which this same
process releases the resource when it has possession of it.
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Fig. 1. Resource sharing model – Mutex1.

4.1.1. Model with functions
In our SAN representation with functions, each process is modeled by a two state automatonA(i), the

two states beingsleepingandusing. We shall letsA(i) denote the current state of automatonA(i). Also,
we introduce the function

f = δ

(
N∑
i=1

δ(sA(i) = using) < P

)
,

whereδ(b) is an integer function that has the value 1 if the booleanb is true, and the value 0 otherwise.
Thus the functionf has the value 1 when access is permitted to the resource and has the value 0 otherwise.
This model, which we shall callMutex1, is graphically illustrated inFig. 1.

The SAN product state space for this model is of size 2N . Notice that whenP = 1, the reachable state
space is of sizeN +1, which is considerably smaller than the product state space, while whenP = N the
reachable state space is the entire product state space. Other values ofP give rise to intermediate cases.

4.1.2. Model without functions
Let us now look at how this same system may be modeled without using functional transitions. One

possibility is to introduce an additional automaton, a resource pool automaton, which counts the number
of units of resource available at any moment. The action of a process in acquiring a resource could then be
represented as a synchronizing event requiring the cooperation of the demanding process and the resource
pool. A further synchronizing event would be needed for a process to return resource to the resource pool.
Fig. 2 illustrates theResource Sharingsystem modeled using an additional “resource pool” automaton
and synchronizing events. To differentiate it from the previous implementation, we shall call this model
Mutex2.

Fig. 2. Resource sharing model without functions – Mutex2.
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Fig. 3. Queueing network example with four queues and two classes of customer – QN model.

In this model, each processiwishing to acquire a resource must synchronize its action (by means of the
synchronizing eventsi) with that of the resource pool automaton. Likewise, when finished with a unit of
the resource, its return to the resource pool is governed by the synchronizing eventti. The SAN product
state space for this model is of size 2N ∗ (P + 1), and the reachable state space size is identical to that of
Mutex1.

4.2. A queueing network model

The second example refers to an open queueing network model with finite capacity queues (with
blocking and loss patterns), different classes of customers, priority and complex load-dependent service
rates2. We shall use a four-queue system with two classes of customer as indicated inFig. 3.

We assume that both classes of customer enter the first service center (queue 0) with ratesλ1 for class
1 andλ2 for class 2. Let the capacity of queue 0 beK0 for customers of both classes. Once served at
this center, customers of classes 1 and 2 go, respectively, to service centers 1 and 2. If queue 1 is full (its
capacity is denoted byK1), customers of class 1 will be blocked in service center 0. On the other hand,
class 2 customers are lost if queue 2 is full. The capacity of queue 2 is denoted byK2.

In service center 0, customers of class 1 are served with a variable rate that is inversely proportional to
the number of class 1 customers present in service center 3. Similarly, in this same service center, class 2
customers are served with a variable rate that is inversely proportional to the number of class 2 customers
in service center 2. There is no priority between customers of classes 1 and 2 in this first service center.

In service center 1, which serves class 1 customers only, the service rate is given byµ11. After service
here, customers enter the final service center (queue 3) if there is an available slot in the queue. Otherwise
the customer is blocked. In service center 2, which serves class 2 customers only, the service rate is given
byµ22 and again, exiting customers attempt to enter the final service center, but may be blocked.

2 Usually the term “load-dependent service rate” refers to a service rate that depends only on the number of customers in the
current queue. We use the term “complex load-dependent service rate” to indicate a different kind of dependency where the
service rate depends on the number of customers in other queues.
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Fig. 4. Queueuing network model – QN1.

Service center 3 provides service to both classes of customer giving priority to class 1 over class 2.
Class 2 customers are served only if there are no customers of class 1 in the queue. The service rates in
the service center are given byµ31 andµ32 respectively and its capacity is denoted byK3.

4.2.1. Model with functions
A SAN model equivalent to the queueing network model just presented may be defined with six

automata and functional transition rates. Two automata are needed to describe each of the service centers
visited by both classes of customer and one automaton to describe each of the service centers visited by
only one class of customer. This SAN model is represented graphically inFig. 4and we shall refer to it
as QN1.

Arrivals to and departures from the system are represented by local events since they affect only one
automaton. The routing of customers between service centers occasions synchronized events since the
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state of two automata are altered simultaneously. We denote such events byeij representing the departure
of a customer from service centeri to service centerj. The evente01 represents the departure of a class
1 customer from service center 0 to service center 13. The departure of class 2 customers from service
center 0 (loss behavior) is also represented by a synchronized event even though it only changes the
state of the automaton representing class 2 customers in service center 0 (A(02)). However since this only
happens when queue 2 is full (automatonA(22) is in its last state) a synchronized event synchronizes the
transition representing the departure of a customer from queue 0 (an arc from statei to statei − 1 in
automatonA(02)) with the “circular” transition of the last state of automatonA(22).

Functional rates are used to represent:

• the capacity restriction of queues represented by automata 0 and 3;
• the dependent service rates in service center 0.

The functionf0 represents the capacity restriction in queue 0. It is evaluated as true (1) if there is room
for another customer in queue 0, i.e., if the number of class 1 plus class 2 customers is less than the
capacity of the queue. Hence both ratesλ1 andλ2 must be multiplied byf0 where

f0 = (stA(01) + stA(02)) < K0.

Analogously, functionf3 represents the capacity restriction in queue 3, and the transition rates (µ11 and
µ22) of the synchronized eventse13 ande23 in automataA(11) andA(22) respectively must be multiplied
by the function

f3 = (stA(31) + stA(32)) < K3.

The dependent service rates in service center 0 are represented by two functions called respectivelyg1

andg2. The functiong1 is inversely proportional to the number of class 1 customers in service center 1
(the state of automatonA(31)), i.e.,

g1 = µ01

(1 + stA(31))
.

The service rate of class 2 customers is analogously represented by

g2 = µ02

(1 + stA(32))
.

The last function,h3, represents the priority of class 1 over class 2 customers in service center 3. This
function must be multiplied by the rateµ32:

h3 = stA(31) = 0.

The product state space of this model is given by

PSS= (K0 + 1)2 × (K1 + 1) × (K2 + 1) × (K3 + 1)2.

However, only some of these states are reachable since obviously, the sum of the states of automata
representing the same service center cannot be greater than the capacity of the service center.

3 Notice that it is unnecessary to specify the class of the customer in the name of the event.
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4.2.2. Model without functions
Unlike the previous Mutex example, the equivalent functionless SAN model has the same number and

size of automata and will therefore have the same product state space. In fact, to remove the functions of
the previous model (QN1) we must introduce a large number of synchronized events that mostly represent
possible (non-zero) evaluations of each function.

The functionf0 is replaced with several synchronized events to handle the two automata that represent
the first service station. These events allow the arrival of a customer only if queue 0 is not full. It is
necessary to include two synchronized events (one for each customer class) for each state in which an
arrival is possible (states 0 throughK0 − 1).

The functionf3 already appears in synchronized events (eventse13 ande23) in QN1. These events
synchronize the automaton from which a customer departs and the automaton to which the customer
arrives. To remove the function, it is necessary to include into these synchronizations, a third automaton
which is used to verify if queue 3 has an available slot into which the incoming customer can be placed.
This can be achieved using a similar technique to that employed to remove functionf0. It is necessary
to replace each of the synchronized eventse13 ande23 by as many synchronized events as the number of
states of the automata for which an arrival is possible (i.e.,K3 − 1).

The functionsg1 andg2 also appear in synchronized events in QN1. Each event synchronizes only two
automata (A(01) andA(11) for evente01 andA(02) andA(22) for evente02). However these functions refer
to the automata describing the state of service center 3. In order to remove these functions it is necessary
to extend the synchronized eventse01 ande02 to include the corresponding automaton (A(31) for e01 and
A(32) for e02). Not only is the complexity of these synchronized events increased, but it is also necessary
to split these events into different events with different rates according to the number of clients in service
center 3.

Functionh3 is the most easily eliminated. It transforms local events consisting of the departure of class
2 customers in service center 3 (transitions from statei to statei − 1 state ofA(32)) into events that are
always synchronized with the first state of automatonA(31).

5. Numerical results

The numerical experiments where conducted in a IBM PC-like environment with an Intel Xeon proces-
sor, 1700 MHz clock speed, and 1.5 Gb memory running the software PEPS[29] on Linux OS (Mandrake
8.0)4.

The memory use is taken from the system during execution. It represents the totality of memory used by
PEPS during its execution (i.e., during the solution of a model). This includes the data, memory structures
reserved by the procedure, and also the process stack. The only parameters that change from one algorithm
to the next are the memory structures reserved by the algorithms (probability vectors, intermediate array
structures, and so on).

4 The examples used in this paper are available in the PEPS format with the software package PEPS athttp://www-
id.imag.fr/Logiciels/peps.

http://www-id.imag.fr/Logiciels/peps
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5.1. Mutex models

In the Mutex models, we used the following parameter values:N = 20 andP = 16 with λ1 through
λ8 = 6,λ9 throughλ15 = 5,λ16 throughλ20 = 3, and, for all customers,µ = 5. This model has 1,047,225
reachable states.

The table below displays the results obtained. The results obtained with the base model (Mutex 2; the
model with no functional transitions) are shown in the first row. The solution method used is the standard
power method. Each successive row adds an additional feature to this base model. The second row
incorporates functional transitions (Mutex1). The third row includes the concept of re-ordering automata
(which is meaningless for this example, since all automata are identical). The fourth row groups the
automata in two groups (each group having 10 automata). The fifth row uses the GMRES method with
10 vectors in the Krylov subspace. The last row indicates the use of diagonal preconditioning and fails
to converge in this example.

Where appropriate, results are given in both PSS and RSS implementations. Notice however, that for
this example, it is inappropriate to continue the series of optimizations in the RSS context. Observe that in
the row “ordering” the solution in the PSS context is better both from the execution time and memory use
points of view. This is as should be expected. For this example, once the concept of functional transitions
is introduced, the number of states in the product space becomes close to the number of reachable states.
This fact, together with the greater complexity of the algorithms in the RSS context, dictate that the
solution in the PSS is preferable.

Technique Common information Solution in PSS Solution in RSS

PSS (st.) Convergence
(it.)

Time per
it. (s)

Mem.
use (Mb)

Time per
it. (s)

Mem.
use (Mb)

No Func. 17825792 111 53.63 564.1 44.27 88.9
Functions 1048576 111 20.32 35.4 33.85 72.2
Ordering 1048576 111 20.32 35.4 33.85 72.2
Grouping 1048576 111 4.55 35.9 – –
Project. 1048576 39 7.06 109.7 – –
Precond. – – – – – –

5.2. Queueing network models

In the queueing network models, the parameter values used areK0 = K1 = K2 = K3 = 9 (10 states
to each automaton),λ1 = 3, λ2 = 2,µ01 = 9,µ02 = 8,µ11 = 7,µ22 = 5,µ31 = 6, andµ32 = 4. This
model has 302,500 reachable states.

The layout of the table of results is similar to that of the first model. The first row in the table concerns
the base model, without functions (QN2); no reordering of automata, the use of the power method, and
so on. The second row shows the results obtained when functional transitions are incorporated (QN1).
The third row shows the effects of re-ordering automata. The fourth row presents the results obtained
when the automata are combined into three groups, the first containing the automata that represent
service center 1, the second contains the automata that represent service centers 1 and 2, and the third
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contains the automata representing service center 3. The fifth row shows the results obtained with the
Arnoldi method using 10 vectors in the Krylov subspace and the final row indicates the use of diagonal
preconditioning.

Observe that in these results, the effect of the grouping strategy is to reduce the number of states in the
PSS to exactly the reachable state space. Thus, it is inappropriate to continue the suite of experiments in
the RSS context.

Technique Common information Solution in PSS Solution in RSS

PSS (st.) Convergence
(it.)

Time per
it. (s)

Mem.
use (Mb)

Time per
it. (s)

Mem.
use (Mb)

No Func. 1000000 3286 4.61 33.9 11.06 26.3
Functions 1000000 3286 4.61 33.8 4.68 26.2
Ordering 1000000 3286 1.40 33.8 3.58 26.2
Grouping 302500 3286 0.05 12.1 – –
Project. 302500 488 0.06 33.1 – –
Precond. 302500 315 0.07 33.1 – –

5.3. Analysis of the results

A number of important observations may be made concerning the results just presented. Notice first
that the use of functions may result in a decrease in the size of the product state space and the number of
synchronizing events in a model. This decrease results in memory savings in the PSS context (obviously,
the probability vectors are smaller), and also in the RSS context because functions reduce the size of the
descriptor. This may be observed in the Mutex example.

To analyze the impact of functions on execution time, the analysis is a little more complex: As a rough
guideline, working in the RSS context is beneficial when the ratio between the RSS and PSS is greater
than 50%. The use of functions can, in some cases. Reduce the size of the PSS (the RSS remains the
same), as can be seen in the Mutex example and it should be noted that a decrease in the size of the
PSS can diminish the benefits of working in the RSS context. The table below provides additional data
when the ratio RSS over PSS is below 50% for models with and without functions (line 1,P = 4); when
the ratio is below 50% for the model without function, and above 50% for the model with functions
(line 2, P = 16); and when the ratio is above 50% for the model with and without function (line 3,
queue). (Note that the fourth configuration is impossible.) In the caseP = 4, the solution in RSS with
function is significantly better, and the solutions in RSS are globally better. In the caseP = 16, the
solution in PSS with function is the best, it is better than the solution in RSS without function. In the
casequeue, the solution in PSS with function is significantly better, and the solutions in PSS are globally
better. The benefits obtained from the use of functions is clearly shown in this table: functions simplify
the descriptor, leading to less terms in the summation and to local matrices that are less sparse. Indeed,
Kronecker algorithms are most efficient on models that are “not too sparse” and the use of functions helps
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significantly in this direction.

Model Sol. in PSS functions Sol. in PSS no func. Sol. in RSS functions Sol. in RSS no func.

Time Mem Time Mem Time Mem Time Mem

P = 4 19.68 35.4 15.51 167.9 2.68 3 4.88 4.5
P = 16 20.32 35.4 53.63 564.1 33.85 72.2 44.27 88.9
Queue 1.4 33.8 4.6 33.9 3.58 26.2 11.06 26.3

In the queuing network example, the use of functions does not lead to a diminished PSS, and the simplifi-
cation of the descriptor seems to be offset by the cost of function evaluations. Although the use of functions
seems to be beneficial in terms of memory use and in many cases, in terms of execution time too, we
noticed that the cost of function evaluations can be rather high. The module which implements function
evaluation in our software packagePeps can probably be optimized, thus reducing this model-dependent
additional cost. One possibility is to reduce the cost of a function evaluation using a more clever imple-
mentation; another is to reduce the number of function evaluations. We investigated two directions to
reduce this number, one related to the shuffle algorithm itself (re-ordering normal factors) and the second
related to the model representation (automata grouping). It can be observed that re-ordering does not
bring any benefit to the Mutex example, as every functional rate in this model depends on the global
state. Nevertheless, re-ordering brings significant gain for the queuing network example, for obtaining
the solution in the PSS. Grouping of automata is very beneficial for both models. Unfortunately, this is
not always the case, for we have encountered models where grouping adds complexity to the function set
and leads to worse performance.

The last two optimization attempts do not concern functions, but they show how far one can go. In
both examples, projection methods bring an important reduction in the number of iterations with only a
small increase in iteration time. Preconditioning does not lead to convergence for the Mutex example,
and brings little benefit to the queuing network example.

It can be observed that, for the Mutex example, in going from 111 iterations of 53 s each to 39 it-
erations of 7 s each we gain a factor of 21, and for the queuing network example in going from 3286
iterations of 4.61 s each to 315 iterations of 0.07 s each, we gain a factor 687. This illustrates the fact
that the generalized shuffle algebra is an important concept, but that its efficient use requires technical
optimizations and hence should be used in conjunction with enhancement techniques such as those found
in the Markov chain literature: techniques such as the use of projection methods. It also argues for the
need of further research in the area of preconditioning techniques that are effective and well adopted to
SANs.
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