The PEPS Software Tool

Anne Benoit!, Leonardo Brenner?, Paulo Fernandes?,
Brigitte Plateau', and William J. Stewart®

! Laboratoire ID, CNRS-INRIA-INPG-UJF, 51, av. Jean Kuntzmann
38330 Montbonnot Saint-Martin France
{Anne.Benoit, Brigitte.Plateau}@imag.fr
2 PUCRS, Faculdade de Informética, Av. Ipiranga, 6681
90619-900 Porto Alegre, Brazil
{1brenner, paulof}@inf.pucrs.br
3 NCSU, Computer Science Department, Raleigh, NC 27695-8206, USA
Research supported in part by NSF grant ITR-105682
billy@cs.ncsu.edu

Abstract. PEPS is a software package for solving very large Markov
models expressed as Stochastic Automata Networks (SAN). The SAN
formalism defines a compact storage scheme for the transition matrix of
the Markov chain and it uses tensor algebra to handle the basic vector
matrix multiplications. Among the diverse application areas to which
PEPS may be applied, we cite the areas of computer and communication
performance modeling, distributed and parallel systems and finite ca-
pacity queueing networks. This paper presents the numerical techniques
included in version 2003 of the PEPS software, the basics of its interface
and three practical examples.

1 Introduction

Parallel and distributed systems can be modeled as sets of interacting compo-
nents. Their behavior is usually hard to understand and formal techniques are
necessary to check their correctness and predict their performance. A Stochas-
tic Automata Network (SAN) [6,12] is a formalism to facilitate the modular
description of such systems and it allows the automatic derivation of the under-
lying Markov chain which represents its temporal behavior. Solving this Markov
chain for transient or steady state probabilities allows us to derive performance
indices. The main difficulties in this process is the complexity of the model and
the size of the generated Markov chain.

Several other high-level formalisms have been proposed to help model very
large and complex continuous-time Markov chains in a compact and structured
manner. For example, queueing networks [9], generalized stochastic Petri nets
[1], stochastic reward nets [11] and stochastic activity nets [17] are, thanks to
their extensive modeling capabilities, widely used in diverse application domains,
and notably in the areas of parallel and distributed systems.

The pioneering work on the use of Kronecker algebra for solving large Markov
chains has been conducted in a SAN context. The modular structure of a SAN

model has an impact on the mathematical structure of the Markov chain in that
it induces a product form represented by a tensor product. Other formalisms
have used this Kronecker technique, as, e.g., stochastic Petri nets [5] and process
algebras [10].

The basic idea is to represent the matrix of the Markov chain by means
of a tensor (Kronecker) formula, called descriptor [2]. This formulation allows
very compact storage of the matrix. Moreover, computations can be conducted
using only this formulation, thereby saving considerable amounts of memory (as
compared to an extensive generation of the matrix). Recently, other formats
which considerably reduce the storage cost, such as matrix diagrams [4], have
been proposed. They basically follow the same idea: components of the model
have independent behaviors and are synchronized at some instants; when they
behave independently their properties are stored only once, whatever the state
of the rest of the system. Using tensor products, a single small matrix is all that
is necessary to describe a large number of transitions. Using matrix diagrams (a
representation of the transition matrix as a graph), transitions with the same rate
are represented by a single arc. At this time, SAN algorithms use only Kronecker
technology, but a SAN model could also be solved using matrix diagrams.

A particular SAN feature is the use of functional rates and probabilities
[7]. These are basically state dependent rates, but even if a rate is local for
a component (or a subset of components) of the SAN, the functional rate can
depend on the entire state of the SAN. It is important to notice that this concept
is more general than the usual state dependent concept in queueing networks.
In queueing networks, the state dependent service rate is a rate which depends
only on the state of the queue itself.

The basic technique to solve SAN models is the so-called shuffle algorithm
[13], which makes use of the Kronecker product structure, and has acceptable
complexity [14]. Since the initial introduction of this algorithm, many improve-
ments have been developed including:

— a reduction in the cost of function evaluation by a different implementation
of the shuffle algorithm,

— the reduction of the model product state space and the complexity of the
descriptor formula by the automatic grouping of automata,

— the acceleration of the convergence of iterative methods by using precondi-
tioning techniques and projection methods.

These improvements were implemented in the previous version of the software
dedicated to solving SAN models, called PEPS - Performance Evaluation of
Parallel Systems - (the version PEPS 2000) [2,6,7]. The objective of this paper
is to present the performance of the new version, PEps 2003. It is based on the
previous version, and offers new features and better performance. Furthermore,
the interface has been modified to allow the notion of replication:

— replicas of states when they have the same behavior (typically the inner
states of a queue), and
— replicas of automata (typically, identical components of a system).

Another improvement of the PEPS 2003 version results from the function
evaluation itself: in previous versions, functions were interpreted while in the
new version they are compiled. This paper gives an experimental assessment
of this modification. Finally, the shuffle algorithm has been modified in order
to work with vectors of the size of the reachable state space [3]. Previously,
the shuffle algorithm’s main drawback was the use of vectors of the size of the
product state space. When the reachable state space is small compared to the
product state space (basically less than 50%), the new version of the shuffle
algorithm uses less memory and is more efficient.

This paper is divided in sections as follows. Section 2 presents the SAN
formalism and PEPS syntax by means of an example. Section 3 briefly presents
the algorithms implemented in PEPS. Section 4 presents examples which are used
to compute some numerical results showing the performance of PEPs 2003. This
improved performance is discussed in the conclusions.

2 A Formalism for Stochastic Automata Networks

In a SAN [7,13] a system is described as a collection of interacting subsys-
tems. Each subsystem is modeled by a stochastic automaton, and the interac-
tion among automata is described by firing rules for the transitions inside each
automaton. The SAN models can be defined on a continuous-time or discrete-
time scale. In this paper, attention is focused only on continuous-time models
and therefore the occurrence of transitions is described as a rate of occurrence.
The concepts presented in this paper can be generalized to discrete-time mod-
els, since the theoretical basis of such SAN models has already been established
[2]. In this section an informal description of a SAN is presented, and then the
textual format to input SAN models in the PEPS 2003 tool is briefly described.

2.1 Informal Description

Each automaton is composed of states, called local states, and transitions among
them. Transitions on each automaton are labeled with a list of the events that
may trigger them. Each event is denoted by its name and its rate (only the name
is indicated in the graphical representation of the model). When the occurrence
of the same event can lead to different arrival states, a probability of occurrence
is assigned to each possible transition. The label on the transition is given as
evt(prob), where evt is the event name, and prob is the probability of occurrence.
When not explicitly specified, this probability is set to 1.

There are basically two ways in which stochastic automata interact. First,
the rate at which an event may occur can be a function of the state of other
automata. Such rates are called functional rates. Rates that are not functional
are said to be constant rates. The probabilities of occurrence of events can also be
functional or constant. Second, an event may involve more than one automaton:
the occurrence of such an event triggers transitions in two or more automata
at the same time. Such events are called synchronizing events. They may have

constant or functional rates. An event which involves only one automaton is said
to be a local event.

Consider a SAN model with N automata and E events. It is a N-component
Markov chain whose components are not necessarily independent (due to the
possible presence of functional rates and synchronizing events). A local state of
the i-th automaton (A, where i = 1...N) is denoted z() while the complete
set of states for this automaton is denoted S, and the cardinality of S is
denoted by n;. A global state for the SAN model is a vector z = (), ..., z(M).
S =80 x ... x SV ig called the product state space, and its cardinality is
equal to Hil n;. The reachable state space of the SAN model is denoted by S;
it is generally smaller than the product state space since synchronizing events
and functional rates may prevent some states in S from being reachable. The
set of automata involved with a (local or synchronizing event) e is denoted by
Oe. The event e can occur if, and only if, all the automata in O, are in a local
state from which a transition labeled by e can be triggered. When it occurs, all
the corresponding transitions are triggered. Notice that for a local event e, O,
is reduced to the automaton involved in this event and that only one transition
is triggered.

Fig. 1 presents an example. The first automaton A" has three states z(1),
yW, and z1; the second automaton A has two states z(2) and y(?). The events
of this model are:

— ey, e3 and es: local events involving only A1), with constant rates respec-
tively equal to A1, A2 and Ag;
— e4: a synchronizing event involving A and A®) | with a constant rate Ay;
— es: a local event involving A, with a functional rate f:
— f =, if AD is in state z(1;
— f=0,if AM is in state y);
— f = pa, if AD is in state 21,

When the SAN is in state (2(1), y(?)), the event e4 can occur at rate A4, and
the resulting state of the SAN can be either (y(), () with probability = or
(™, 2?) with probability 1 — .

AW A®
sea(l—
ez, eq(1—) @ . @
€1
B &
€2
Fig. 1. Very Simple SAN model example
We see then that a SAN model is described as a set of automata (each

automaton containing nodes, edges and labels). These may be used to generate
the transition matrix of the Markov chain representing its dynamic behavior

using only elementary matrices. This formulation of the transition matrix is
called the SAN descriptor.

2.2 PEPS 2003 textual format

A textual formalism for describing models is proposed, and it keeps the key
feature of the SAN formalism: its modular specification. PEPS 2003 incorporates
a graph-based approach which is close to model semantics. In this approach each
automaton is represented by a graph, in which the nodes are the states and the
arcs represent the occurrence of events. This textual description has been kept
simple, extensible and flexible.

— Simple because there are few reserved words, just enough to delimit the
different levels of modularity;

— Extensible because the definition of a SAN model is performed hierarchi-
cally;

— Flexible because of the inclusion of replication structures which allow the
reuse of identical automata, and the construction of automata having re-
peated state blocks with the same behavior, such as found in queueing mod-
els.

This section describes the PEPS 2003 textual formalism used to describe
SAN models. To be compatible with PEpPS 2003, any file describing a SAN
should have the suffix . san. Fig. 2 shows an overview of the PEPS input structure.
A SAN description is composed of five blocks (Fig. 2) which are easily located
with their delimiters? (in bold). The other reserved words in the PEPS input
language are indicated with an italic font. The symbols “<” and “>” indicate
mandatory information to be defined by the user. The symbols “{” and “}”
indicate optional information.

The first block identifiers contains all declarations of parameters: numeri-
cal values, functions, or sets of indices (domains) to be used for replicas in the
model definition. An identifier (< id_name >) can be any string of alphanumeric
characters. The numerical values and functions are defined according to a C-like
syntax. In general, the expressions are similar to common mathematical expres-
sions, with logical and arithmetic operators. The arguments of these expressions
can be constant input numbers (input parameters of the model), automata iden-
tifiers or state identifiers. In this last case, the expressions are functions defined
on the SAN model state space. For example, “the number of automata in state
n0” (which gives an integer result) can be expressed as “nb n0”. A function that
returns the value 4 if two automata (A1 and A2) are in different states, and
the value 0 otherwise, is expressed as “(st A1 ! = st A2) x 4”. Comparison
operators return the value “1” for a true result and the value “0” for a false
result®.

4 The word “delimiters” is used to indicate necessary symbols, having a fixed position
in the file.

® In the PEPS 2003 user manual, a full description of the possible functions and the
full grammatical definition of the textual format of SAN models is available [15].

identifiers
< id-name >=< exp >
< id-name >= [domain] §

events
// without replication
loc < evt_name >< rate >< automaton >
syn < evt_name >< rate >< automata >
// with replication
loc < evt_name > [domain] < rate >< automata > [domain]
syn < evi_name > [domain] < rate >< automata > [exp — domain]

{partial} reachability =< ezp > ;

network < net_name > (< type >)
aut < aut_name > {[domain]}
stt < stt_name > {[domain]}
to(< stt-name >)
< evt_name > {< prob >}
stt < stt_-name >
to(< stt-name >)
< evt-name > {< prob >}

results
< res_name >=< exp > §

Fig. 2. Modular structure of SAN textual format

Sets of indices are useful for defining numbers of events, automata, or states
that can be described as replications. A group of replicated automata of A with
the set in index [0...2,5,8...10] defines the set containing the automata A[0],
A[1], A[2], A[5], A[8], A[9], and A[10].

The events block defines each event of the model given

— its type (local or synchronizing);

— its name (an identifier);

— its firing rate (a constant or function previously defined in the identifiers
block);

— its O set, i.e., the automaton, for local events, or the automata, for syn-
chronizing events, concerned by this event.

Additionally, events can be replicated using the sets of indexes (domains). This
facility can be used when events with the same rate appear in a set of automata.

The reachability block contains a function defining the reachable state space
of the SAN model. Usually, this is a Boolean function, returning a nonzero value
for states of S that belongs to S. A model where all the states are reachable has
the reachability function defined as any constant different from zero, e.g., the
value 1. Optionally, a partial reachability function can be defined by adding the
reserved word “partial’. In this case, only a subset of S is defined, and the overall
S will be computed by PEPs 2003.

The network block is the major component of the SAN description and has
a hierarchical structure: a network is composed of a set of automata; each au-
tomaton is composed of a set of states; each state is connected to a set of output
arcs; and each arc has a set of labels identifying events (local or synchronizing)

that may trigger this transition. The first level, named “network”, includes
general information such as the name of the model “< net-name >” and the
type of time scale of the model, namely “continuous” or “discrete”. Currently,
only “continuous” model analysis is available in PEPs 2003.

The delimiter of the automaton is the reserved word “eut’ and “< aut_name >
is the automaton identifier. Optionally, a [domain] definition can be used to repli-
cate it, 7.e., to create a number of copies of this automaton. In this case, if 7 is a
valid index of the defined [domain] and A the name of the replicated automaton,
A[i] is the identifier of one automaton.

The stt section defines a local state of the automaton. “< stt_name >7 is
the state identifier, and [domain] can be used to create replicas of the state. A
description of each output transition from this state is given by the definition of a
“to()” section. The identifier “< stt_name >” inside the parenthesis indicates the
output state of this transition. Inside a group of replicated states, the expression
of the other states inside the group can be made by positional references to the
current (==), the previous (— —) or the successor (++). Larger jumps, e.g., of
states two ahead (42), can also be defined, but any positional reference pointing
to a non-existing state or to a state outside the replicated group is ignored.
Finally, for each transition defined, a set of events (local and synchronizing) that
can trigger the transition can be expressed by their names (“< evi_name >") and
optionally (if different from 1) the probability of occurrence. The from section is
quite similar to the stt section, but it cannot define local states. This is commonly
used to define additional transitions which cannot be defined in the stt section.
A typical use of the from section is to define a transition leaving from only one
state of a group of replicated states to a state outside the group, e.g., a queue
with particular initial or final states may need this kind of transition definition.

The functions used to compute performance indexes of the SAN model are
defined in the results block. The results obtained by PEPS are the mean values of
these functions computed using the stationary probability solution of the model.

3 The PEPS 2003 Software Tool

PEPS is implemented using the C++ programming language, and although the
source code is quite standard, only Linux and Solaris version have been tested.
The main features of version 2000 are [7]:

— Textual description of continuous-time SAN models (without replicas);

— Stationary solution of models using Arnoldi, GMRES and Power iterative
methods [16, 19];

— Numerical optimization regarding functional dependencies, diagonal pre-
computation, preconditioning and algebraic aggregation of automata [6]; and

— Results evaluation.

PEPS 2003 includes some bug corrections and three new features:

— Compact textual description of continuous-time SAN models;

— Numerical solution using probability vectors with the size of the reachable
state space; and
— Fast(er) function evaluation.

The previous Section presented the new textual format used in PEPS 2003 to
allow compact descriptions mostly due to the idea of replications of automata,
states and events. The next two sections (3.1 and 3.2) present the other new
features of version 2003. This paper will not present details on how to install
and operate PEPS; to learn how to do so, the reader is invited to read the user
manual available at the PEPS home page [15].

3.1 Probability Vector Handling

SAN allow Markov chain models to be described in a memory efficient manner
because their storage is based on a tensor structure (descriptor). However, the
use of independent components connected via synchronizations and functions
may produce a representation with many unreachable states (|S| < |S]). Within
this tensor (Kronecker) framework, a number of algorithms have been proposed
to compute the product of a probability vector and the descriptor. The first
and perhaps best-known, is the shuffle algorithm [3,6,7], which computes the
product but never needs the matrix explicitly. However, this algorithm needs
to use “extended” vectors 7 whose size is equal to that of S. This algorithm is
denoted E-Sh, for extended shuffle. This algorithm was the only one available
in PEPs 2000.

However, when there are many unreachable states (|S| < |S|), E-Sh is not
efficient, because of its use of extended vectors. The probability vector will have
many zero elements, since only states corresponding to reachable states have
nonzero probability. Moreover, computations are carried out for all the elements
of the vector, even those elements corresponding to unreachable states. There-
fore, the computation gain obtained by exploiting the tensor formalism may be
negated if many useless computations are performed. Furthermore, memory is
used for states whose probability is always zero.

The use of reduced vectors (vectors m which contains entries only for reach-
able states, i.e., vectors of size |S|) allows a reduction in memory needs, and
some unneeded computations are avoided. This leads to significant memory gains
when using iterative methods such as Arnoldi or GMRES which can possibly re-
quire many probability vectors. A modification to the E-Sh shuffle algorithm
permits the use of such vectors. However, to obtain good performance at the
computation-time level, some intermediate vectors of size S are also used. An
algorithm described in [3] and implemented in PEPS 2003 allows us to save
computations by taking into account the fact that probabilities corresponding
to non-reachable states are always zero in the resulting vector. This partially
reduced computation corresponds to the algorithm called PR-Sh. However,
the savings in memory turns out to be somewhat insignificant for the shuffle
algorithm itself.

A final version of the shuffle algorithm concentrates on the amount of mem-
ory used, and allows us to handle even more complex models. In this algorithm,
all the intermediate data structures are stored in reduced format. This fully re-
duced computation corresponds to the algorithm called FR-Sh. This algorithm
is also implemented in PEPS 2003, and described in [3].

3.2 Fast Function Evaluation

One of the most important improvements of the new version of the PEPS software
is the inclusion of fast function evaluation. The use of functions is one of the key
features of PEPs . It is an intuitive and compact form to represent interdepen-
dences among automata. An efficient numerical solution of SAN models with
functions was published in [7]. This work described properties of the tensor op-
erations and algorithms to reduce the number of function evaluations performed
during vector multiplications.

In the previous version of PEPS (version 2000), the functions were repre-
sented in reverse polish notation which is interpreted during execution time and
evaluated using a stack implemented as a regular data structure. This imple-
mentation is quite flexible, and it allows the transformation of functions during
the compilation of a SAN model®. However, the interpretation of functions may
cost a great amount of time during execution. Typically, for a functional rate in
automata ¢, denoting n; the number of local states of the j-th automaton, and
N the number of automata, each functional element in a matrix corresponding
to the i-th automaton can be evaluated up to (H;V:L ;i 1) times. Additionally,
since PEPS solves the models using iterative methods, all these evaluations must
be carried out during each and every iteration. The efficient algorithm presented
in [7] can take advantage of the particular dependencies of the functional ele-
ments to reduce this number of evaluations, but very often this number remains
quite large.

The natural alternative to function interpretation is to compile the functions
to generate executable code. Since each SAN model has its own functions, the
functional elements are compiled into C++ code by a system call to the gec
compiler to generate a dynamic library which is called by the PEPS software. Such
a technique is similar to the just in time code generation technique employed in
Java environments [20]. In the case of PEPS however, the purpose of such real
time code generation is not to provide machine independence, but to provide a
tailor-made function evaluation to each SAN model.

6 The functions defined in the section identifiers of the model textual description
are rarely used as stated. The generation of the internal representation of a model,
i.e., the operand matrices of the Markovian descriptor, usually create new functions.
This is done, e.g., for the normalization of the descriptor, where all matrix elements
must be divided by a normalizing factor. In the case of automata algebraic grouping,
even more new functions must be created due to the symbolic evaluation of matrix
elements that should be added (in the tensor sum local part) or multiplied (in the
tensor product synchronized part).

The gains obtained by the new function evaluation are substantial during
the iterative solution of the SAN models, but the flexibility of the interpreted
evaluation still justifies its use during the compilation of the model and the
normalization of the descriptor. A version of PEPS 2003 without the compiled
function evaluation is also available to run PEPS on platforms where the gec
compiler is not available.

4 Examples of SAN models in PeEps 2003

In this section three examples are presented to illustrate the modeling power and
the computational effectiveness of PEPS 2003 . For each example, the generic
SAN model is described and then numerical results are computed for some
specific cases. The machine used to run the examples is an IBM-PC running
Linux OS (Mandrake distribution, v.8.0, with 1.5 Gbytes of RAM and with
2.0 GHz Pentium IV processor. PEPS 2003 was compiled using gcc with the
optimization option -03. The indicated processing times do not take system
time into account, i.e., they refer only to the user time spent for one iteration.

4.1 Example: A Model of Resource Sharing

The first example is a traditional resource sharing model, where N distinguish-
able processes share a certain amount (R) of indistinguishable resources. Each of
these processes alternates between a sleeping and a resource using state. When
a process wishing to move from the sleeping to the using state finds R processes
already using the resources, that process fails to access the resource and it re-
turns to the sleeping state. Notice that when R = 1 this model reduces to the
usual mutual exclusion problem. Analogously, when R = IV all the processes are
independent and there is no restriction to access the resources. We shall let A;
be the rate at which process ¢ awakes from the sleeping state wishing to access
the resource, and p;, the rate at which this same process releases the resource.

A A AN

using using e using

Fig. 3. Resource Sharing Model - version 1

In our SAN representation (Fig. 3), each process is modeled by a two state
automaton A, the two states being sleeping and using. We shall let st.A®
denote the current state of automaton A®. Also, we introduce the function

N
f=4é (Z 5(stAD = using) < R> .

i=1

where 6(b)

is an integer function that has the value 1 if the Boolean b is true, and

the value O otherwise. Thus the function f has the value 1 when access to the
resource is permitted and has the value 0 otherwise. Fig. 3 provides a graphical
illustration of this model, called RS1. In this representation each automaton A
has two local events:

— G; which corresponds to the i-th process getting a resource, with rate \; f;
— R; which corresponds to the i-th process releasing a resource, with rate p;.

The textual .san file describing this model is:

// RS model version 1 ==================

// N=4, R=2

//

identifiers
R = 2; // amount of resources
mul = 6; // rate for leaving a resource for process 1
lambdal = 3; // rate for requesting a resource for process 1
£1 = lambdal * (nb using < R);
mu2 =5; // rate for leaving a resource for process 2
lambda2 = 4; // rate for requesting a resource for process 2
£2 = lambda2 * (nb using < R);
mu3 = 4; // rate for leaving a resource for process 3
lambda3 = 6; // rate for requesting a resource for process 3
£3 = lambda3 * (nb using < R);
muéd = 3; // rate for leaving a resource for process 4
lambda4 = 5; // rate for requesting a resource for process 4
f4 = lambda4 * (nb using < R);

events

loc G1 (f1) P1 // local event Gl has rate f1 and appears in automaton P1
loc R1 (mul) P1 // local event Rl has rate mul and appears in automaton P1
loc G2 (f2) P2 // local event G2 has rate f2 and appears in automaton P2
loc R2 (mu2) P2 // local event R2 has rate mu2 and appears in automaton P2
loc G3 (£3) P3 // local event G3 has rate f3 and appears in automaton P3
loc R3 (mu3) P3 // local event R3 has rate mu3 and appears in automaton P3
loc G4 (f4) P4 // local event G4 has rate f4 and appears in automaton P4
loc R4 (mu4) P4 // local event R4 has rate mu4 and appears in automaton P4

reachability

= (nb using <= R); // only the states where at the most R
// resources are being used are reachable

network rsl (continuous)

aut P1 stt
stt
aut P2 stt
stt
aut P3 stt
stt
aut P4 stt
stt

results
full =
empty =
usel =
average =

It was

sleeping to(using) G1
using to(sleeping) R1
sleeping to(using) G2
using to(sleeping) R2
sleeping to(using) G3
using to(sleeping) R3
sleeping to(using) G4
using to(sleeping) R4

nb using == R; // probability of all resources being used

nb using == 0; // probability of all resources being available

st P1 == using; // probability that the first process uses the resource
nb using; // average number of occupied resources

not possible to use replicators to define all four automata in this

example. In fact, the use of replications is only possible if all automata are
identical, which is not the case here since each automaton has different events
(with different rates). If all the processes had the same acquiring (\) and releasing
() rates, this example could be represented more simply as:

//========== RS model version 1 with same rates =============

// N=4, R=2

1/

identifiers
N = [1..4]; // amount (and identifier) of processes
R = 2; // amount of resources
mu = 6; // rate for leaving a resource for all processes
lambda = 3; // rate for requesting a resource for all processess
f = lambda * (nb using < R);

events

loc G (f) P // local event G has rate f and appears in all automata P
loc R (mu) P // local event Rl has rate mu and appears in all automata P

reachability = (nb using <= R); // only the states where at the most R
// resources are being used are reachable
network rsl (continuous)
aut P[proc] stt sleeping to(using) G
stt using to(sleeping) R

results
full = nb using == R; // probability of all resources being used
empty = nb using == 0; // probability of all resources being available
usel = st P[1] == using; // probability that the first process uses the resource
average = nb using; // average number of occupied resources

We wish to point out that in the PEPS documentation, a number of variants
of this model are included, to show that it is possible with only simple modifi-
cations to introduce a complete set of related models. Within the scope of this
paper, it is interesting to describe a specific variation of this model that de-
scribes exactly the same problem, but which does not use functions to represent
the resource contention. In fact, in this case, and in many others, synchronizing
events can be used to generate an equivalent model without functional rates (fre-
geuntly with many more automata, states, and/or synchronizing events). Fig. 4
presents this new model, where an automaton is introduced to represent the
resource pool. The resource allocation (events G;, rate A;) and release (events
R;, rate u;) that were formerly described as local events, will now be synchro-
nizing events that increment the number of occupied resources at each possible
allocation, and decrement it at each release. The resource contention is modeled
by the impossibility of a process passing to the using state when all resources
are occupied, i.e., when the automaton representing the resource is in the last
state (where only release events can happen).

The PEPs 2003 textual format of this model is as follows:

// RS model version 2 ==================

// N=4, R=2

1/

identifiers
R 2; // amount of resources
mul = 6; // rate for leaving a resource for process 1
lambdal = 3; // rate for requesting a resource for process 1
mu2 = 5; // rate for leaving a resource for process 2
lambda2 = 4; // rate for requesting a resource for process 2
mu3 = 4; // rate for leaving a resource for process 3
lambda3 = 6; // rate for requesting a resource for process 3
mué = 3; // rate for leaving a resource for process 4
lambda4 = 5; // rate for requesting a resource for process 4
res_pool = [0..R]; // domain to describe the available resources pool

AW A2 AN

sleeping sleeping s sleeping
R Ry Ry

G, G, Gy
using using s e using

eee GGGy

e

Ri,Ry,....,Ry RiRy... Ry Ry, Ry,..., Ry

AW+

Fig. 4. Resource Sharing Model without functions - version 2

events
syn G1 (f1) P1 RP // event Gl has rate f1 and appears in automata P1 and RP
syn R1 (mul) P1 RP // event R1 has rate mul and appears in automata P1 and RP
syn G2 (f2) P2 RP // event G2 has rate f2 and appears in automata P2 and RP
syn R2 (mu2) P2 RP // event R2 has rate mu2 and appears in automata P2 and RP
syn G3 (£3) P3 RP // event G3 has rate f3 and appears in automata P3 and RP
syn R3 (mu3) P3 RP // event R3 has rate mu3 and appears in automata P3 and RP
syn G4 (f4) P4 RP // event G4 has rate f4 and appears in automata P4 and RP
syn R4 (mu4) P4 RP // event R4 has rate mu4 and appears in automata P4 and RP

reachability = (nb [P1..P4] using == st RP);
// the number of Processes using ressources must be equal to number
// of occupied ressources in the Ressource Pool

network rs2 (continuous)
aut P1 stt sleeping to(using) G1
stt using to(sleeping) R1
aut P2 stt sleeping to(using) G2
stt using to(sleeping) R2
aut P3 stt sleeping to(using) G3
stt using to(sleeping) R3
aut P4 stt sleeping to(using) G4
stt using to(sleeping) R4
aut RP stt n[res_pooll]
to(++) G1 G2 G3 G4
to(--) R1 R2 R3 R4

results
full = st RP == n[R]; // probability of all resources being used
empty = st RP == n[0]; // probability of all resources being available
usel = st P1 == using; // probability of the first process use the resource
average = st RP; // average number of occupied resources

4.2 Example: First Server Available Queue

The second example considers a queue with common exponential arrival and a
finite number (C) of distinguishable and ordered servers (C;,i = 1...C). As
a client arrives, it is served by the first available server, i.e., if C; is available,
the client is served by it, otherwise if C is available the client is served by it,
and so on. This queue behavior is not monotonic, so, as far as we can ascertain,
there is no product-form solution for this model. The basic technique to model
this queue is to consider each server as a two-state automaton (states idle and
busy). The arrival in each server is expressed by a local event (called L;) with a

functional rate that is nonzero and equal to A, if all preceding servers are busy,
and zero otherwise. At a given moment, only one server, the first available, has
a nonzero arrival rate. The end of service at each server is simply a local event
(D;) with constant rate p;.

The same model can also be expressed as a SAN without functions. In this
case, each function is replaced by a synchronizing event that synchronizes the au-
tomaton representing the server accepting a client with all previous automata in
the busy state. The PEPS 2003 textual formats for the original (with functions)
and this alternative model are as follows:

//================== FSA model // FSA alternative model =======
// (with functions) C=4 // (with synchronizing events) C=4
// //
identifiers identifiers
lambda = 5; lambda = 5;
mul = 6; mul = 6;
f1 = lambda; mu2 = 5;
mu2 =5; mu3 = 4;
£2 = (st C1 == busy) * lambda; mu4 = 3;
mu3 = 4; events
£3 = (nb[C1..C2] busy == 2) * lambda; loc L1 (lambda) C1
mu4 = 3; loc D1 (mul) Cc1
f4 = (nb[C1..C3] busy == 3) * lambda; syn L2 (lambda) C1 C2
events loc D2 (mu2) C1
loc L1 (f1) C1 syn L3 (lambda) C1 C2 C3
loc D1 (mul) C1 loc D3 (mu3) Cc3
loc L2 (f2) C2 syn L4 (lambda) C1 C2 C3 C4
loc D2 (mu2) C2 loc D4 (mu4) c4
loc L3 (£3) C3
loc D3 (mu3) C3 reachability = 1;
loc L4 (f4) C4
loc D4 (mu4) C4 network fsa2 (continuous)
aut Cl1 stt idle to(busy) L1
reachability = 1; stt busy to(idle) D1
to(busy) L2 L3 L4
network fsa (continuous) aut C2 stt idle to(busy) L2
aut Cl1 stt idle to(busy) L1 stt busy to(idle) D2
stt busy to(idle) D1 to(busy) L3 L4
aut C2 stt idle to(busy) L2 aut C3 stt idle to(busy) L3
stt busy to(idle) D2 stt busy to(idle) D3
aut C3 stt idle to(busy) L3 to(busy) L4
stt busy to(idle) D3 aut C4 stt idle to(busy) L4
aut C4 stt idle to(busy) L4 stt busy to(idle) D4
stt busy to(idle) D4
results results
full = nb busy == C; full = nb busy == C;
empty = nb busy == 0; empty = nb busy == 0;
usel = st P1 == busy; usel = st P1 == busy;
average = nb busy; average = nb busy;

4.3 Example: A Mixed Queueing Network

The final example is a mixed queueing network (Fig. 5) in which customers
of class 1 arrive to and eventually depart (i.e., open) and customers of class
2 circulate forever in the network, (i.e., closed). This quite complex example is
presented to stress the power of description of PEPS 2003 , and to provide a really
large SAN model. Due to its size, the equivalent SAN model is not presented
as a figure. However, the construction technique does not differ significantly
from the technique employed with the previous models. In this model, each

queue visited by only the first class of customer (Queues 2 and 3) is represented
by one automaton each (A(zl) and AGY, respectively). Queues visited by two
classes of customers are represented by two automata (one for each class) and the
total number of customers in a queue is the sum of customers (of both classes)
represented in each automaton. The size of this model depends on the maximum
capacity of each queue, denoted K; for queue i. For the second class of customer
(closed system) it is also necessary to define the number of customers in the
system (N2). In this example, all queues block when the destination queue is
full, even though other behavior, e.g., loss, could be easily modeled with the
SAN formalism.

m _MO —= —
—< _O ? 3
‘h’ A\ 5
1 N e
! o N\ —_— E—
| —————- -—- - -
! 4 5 w

Fig. 5. Mixed queueing network

The equivalent SAN model for this example has eight automata (A(ll), A(12),
ACH | ABH AN A4 4G AG) representing each possible pair (customer,
queue). The model has two local events (arrival and departure of class 1 cus-
tomers), and nine synchronizing events (the routing paths for customers from
both classes). Functional transitions are used to represent the capacity restric-
tion of admission in queues accepting both classes of customer. The reachability
function of the SAN model representing this queueing network must take into
account both the unreachable states due to the use of two automata to represent
a queue accepting two classes of customer and the fixed number of customers of
class 2.

Assuming queue capacities K; = 10, K, =5, K3 =5, K4 =8, K5 = 8, and a
total population of class 2 customers, N>, equal to 10, the reachability function
for this model is:

reachability = 315(.,4(1)+ t(.A(1) <10] and
st(A®)) + st(A®))) < 8| and
st(AGD) + st(AC))) < 8| and
st(ADD) 4+ st(A®)) 4 st(AC >)) —= 10]

The equivalent SAN model has a product state space containing 28,579, 716
states of which only 402,732 are reachable. The complete description and .san
file for this model can be obtained from the PEPS web page [15].

5 Numerical results

Table 1 shows some numerical results obtained by PEpPs 2003. The different
columns indicates the model, its product state space and reachable state space
sizes, the time for a single vector-descriptor multiplication with PEPS 2000 and
with PEPS 2003 with the extended and the fully reduced shuffle algorithms.

Table 1. PEpS 2003 numerical results

Models PSS T8S8 1 iteration time ‘
PEPS2000 | PEPS2003 - E-Sh | PEPS2003 - FR-Sh ‘
RS with functions
N=20, R=1 1,048,576 21 23.1 14.5 1.5
RS with functions
N=20, R=5 1,048,576 21,700 23.1 14.5 2.0
RS with functions
N=20, R=10 1,048,576 616,666 23.1 14.5 15.8
RS with functions
N=20, R=15 1,048,576 | 1,042,380 23.2 14.6 28.0
RS with functions
N=20, R=19 1,048,576 | 1,048,575 23.2 14.6 29.2
RS with functions
N=20, R=20 1,048,576 | 1,048,576 1.0 1.1 17.7
RS with synch. events
N=20, R=1 2,097,152 21 4.8 7.7 4.6
RS with synch. events
N=20, R=5 6,291,456 21,700 22.2 22.8 7.1
RS with synch. events
N=20, R=10 11,534,336 | 616,666 43.3 41.0 28.8
RS with synch. events
N=20, R=15 16,777,216 | 1,042,380 61.1 60.7 52.9
RS with synch. events
N=20, R=19 20.971.520 | 1,048,575 76.0 74.7 59.3
RS with synch. events
N=20, R=20 22.020.096 | 1,048,576 774 76.7 59.6
FSA with functions
C=25 33,554,432 | 33,554,432 245.2 154.9 -
FSA with synch. events
C=25 33,554,432 | 33,554,432 339.1 328.4 -
Mixed Queueing Network | 28,579,716 402,732 79.1 52.8 714 ‘

Examining the results of the “resource sharing” model with functions?, the
values obtained for PEPS 2000 show that the cost of function evaluation is high
(when N = R PEPS automatically removes the functions). The small variations
come from the fact that the number of function evaluations changes according
to R. This cost is decreased by a factor of 2/3 when using compiled functions in
PEPs 2003. The use of the FR-Sh algorithm gives better times when the size of
the reachable state space is less than 50% of the product state space. The curve
plotted in the first graphic of Fig. 6 shows this more clearly.

The results of the resource sharing model with synchronizing events display
similar results for PEpPs 2000 and PEPS 2003, as there are no functions in the

7 No distinctions between the RS1 model with the same or different rates is made
since their numerical results are identical.

Mutex N=20 - Time Mutex with synch. events N=20 - Time

" PEPSZ000 —r— " PEPSZ000 ——
PEPS2003 - £-Sh - PEPS2003 - £-Sh -
PEPS2003 - FRSh - x PEPS2003 - FRSh =

_—

Tim
*

ime
&

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Resources # Resources
Model with functions Model with synchronizing events

Fig. 6. Computational time for RS models

model. On the other hand, the use of the FR-Sh algorithm is beneficial when
the ratio between the reachable state space and the product state space is high
as demonstrated by the curve in the second graphic of Fig. 6.

For the “first available server” example, the reachable state space is equal
to the product state space, so the FR-Sh algorithm does not bring any benefit.
The model with functions has better times in PEPS 2000 than the model with-
out functions, because, even with the same state spaces, the descriptor is more
complex with synchronizing events than with functions. Moreover, in the model
with function, PEPS 2003 provides better performance. This is a case in which
the benefits of using functional rates is clear.

For the “mixed queueing network” example, a curious phenomenon appears.
The rather good ratio (less than 2%) between product and reachable state space
should suggest a much better performance of the sparse vector techniques. How-
ever, the complexity of the SAN Markovian descriptor of this model seems to
be unsuitable. In this model almost all the transition rates are associated with
synchronizing events and very few are associated with local events. The FR-Sh
algorithm includes an overhead for descriptor parts that refer to synchronizing
events, because intermediate computation vectors may leave the reachable state
space. In any case, a more complete study on the benefits, and possibly some
improvements, of FR-Sh sparse vectors algorithms applied to such models is a
natural for future work. This is now facilitated by the availability of PEPs 2003.

A natural extension of this work includes studies aimed at finding the best
techniques for each class of problem modeled by SAN. Also, the evolution of
interest in structural representations and the rapid evolution of numerically ef-
ficient methods also suggest further versions of PEPS. The authors current work
will provide, in the near future, a new version of PEPS which will include new
algorithms to perform automatic lumping of models with replicas and which will
offer simulation algorithms to solve SAN models.

References

1.

2.

3.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M.Ajmone-Marsan, G.Balbo, G.Conte, S.Donatelli, G.Franceschinis. Modelling
with Generalized Stochastic Petri Nets. John-Wiley, 1995.

K. Atif and B. Plateau. Stochatic Automata Networks for Modeling Parallel Sys-
tems. IEEE Transactions on Software Engineering, v.17, n.10, pp.1093-1108, 1991.
A. Benoit, B. Plateau and W.J. Stewart. Memory-efficient Kronecker algorithms
with applications to the modelling of parallel systems. To appear in PMEOQO-
PDS’03, 2003.

G.F.Ciardo, A.S.Miner. A Data Structure for the Efficient Kronecker Solution of
GSPNs. In: Proc. 8th International Workshop on Petri Nets and Performance
Ewvaluation, 1999.

S.Donnatelli. Superposed Stochastic Automata: a Class of Stochastic Petri Nets
with Parallel Solution and Distributed State Space. Performance Evaluation, v.18,
pp.21-36, 1993.

P.Fernandes. Méthodes Numériques pour la Solution de Systémes Markoviens a
Grand Espace d’FEtats. These de doctorat, Institut National Polytechnique de
Grenoble, France, 1998.

P.Fernandes, B.Plateau and W.J.Stewart. Efficient Descriptor-Vector Multiplica-
tion in Stochastic Automata Networks. Journal of the ACM, v.45, n.3, pp.381-414,
1998.

J.Fourneau, B.Plateau. A Methodology for Solving Markov Models of Parallel
Systems. Journal of Parallel and Distributed Computing, v.12, pp.370-387, 1991.
E.Gelenbe, G.Pujolle. Introduction to Queueing Networks. John Wiley, 1997.

. J.Hillston. A Compositional Approach for Performance Modelling. Ph.D. Thesis,

University of Edinburg, United Kingdom, 1994.

J.K.Muppala, G.F.Ciardo, K.S.Trivedi. Stochastic Reward Nets for Reliability
Prediction. Communications in Reliability, Maintainability and Serviceability, v.1,
n.2, pp.9-20, 1994.

B.Plateau. De I’Evaluation du Parellélisme et de la Synchronisation. Thése de
Doctorat d’Etat, Paris-Sud, Orsay, France, 1984.

B.Plateau. On the Stochastic Structure of Parallelism and Synchronization Models
for Distributed Algorithms. In: Proc. ACM Sigmetrics Conference on Measurement
and Modeling of Computer Systems, Austin, Texas, 1985.

B.Plateau, J.M.Fourneau, K.Lee. PEPS: A Package for Solving Complex Markov
Models of Parallel Systems. In: R.Puigjaner, D.Potier, eds. Modelling Techniques
and Tools for Computer Performance Evaluation, 1988.

PeEPs team. PEPs 2003 Software Tool. On-line document available at
http://www-apache.imag.fr/software/peps, visited Feb. 14th, 2003.

Y.Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company,
1995.

W.H.Sanders, J.F.Meyer. An Unified Approach for Specifying Measures of Per-
formance, Dependability, and Performability. Dependable Computing for Critical
Applications, v.4, pp-215-238, 1991.

W.J.Stewart. MARCA: Markov Chain Analyzer. IEEE Computer Repository No.
R76 232, 1976.

W.J.Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

Sun Microsystems The JIT Compiler Interface Specification. On-line document
available at http://java.sun.com/docs/jit_interface.html, visited Feb. 14th,
2003.

