Allocation of Clients to Multiple Servers on Large Scale Heterogeneous Platforms

Olivier Beaumont, Lionel Eyraud-Dubois, Christopher Thaves-Caro

Laboratoire Bordelais de Recherche en Informatique Équipe CEPAGE (INRIA)

> Scheduling in Knoxville 14 May 2009

Outline

- Introduction
- 2 Independent tasks distribution
- Online considerations
- 4 Conclusions

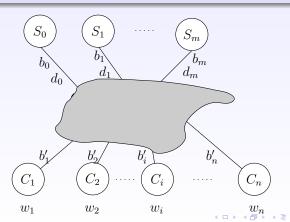
Introduction

Divisible Task Scheduling

- Master dispatches tasks to Workers
- Tasks can be arbitrarily divided
- Standard communication model: One Port

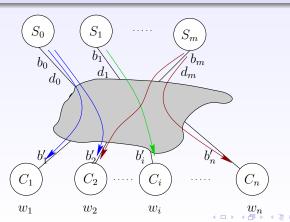
Explore the Bounded Multi Port model

- Simultaneous communications, with a per-node bandwidth bound
- Internet-like: no contention inside the network
- Steady-state approach
- Keep things reasonable: degree constraint



Explore the Bounded Multi Port model

- Simultaneous communications, with a per-node bandwidth bound
- Internet-like: no contention inside the network
- Steady-state approach
- Keep things reasonable: degree constraint



Precise model

An instance

- ullet m servers, with bandwidth b_i and maximal out-degree d_i
- n clients, with capacity w_i

A solution

- An assignment w_i^i of bandwidth from server i to client j
- $\forall j, \quad \sum_i w_i^j \leq b_j$

(capacity constraint at server j)

• $\forall j$, $\mathsf{Card}\{i, \ w_i^i > 0\} \le d_j$

(degree constraint at server j)

• $\forall i, \quad \sum_{j} w_i^j \leq w_i$

(capacity constraint at client i)

• Maximise $T = \sum_{i,j} w_j^i$

Outline

- Introduction
- 2 Independent tasks distribution
 - Complexity
 - Algorithm SEQ
 - Practical comparisons with heuristics
- Online considerations
- 4 Conclusions

Complexity

- NP-Hard: reduction from 3-Partition
 - ightharpoonup n servers with bandwidth B and degree 3
 - ▶ 3n clients with capacity a_i , $\sum a_i = nB$
 - ▶ Throughput *nB* reachable iff 3-Partition has a solution
- Easy to solve without the degree constraint
 - solve max-flow on the complete bipartite graph
- \rightarrow Loosen the degree constraint

Algorithm SEQ

- Resource augmentation: allowed one more connection per server
- Order clients by capacity
- For each server, bandwidth b and out-degree d:
 - **1** Find a consecutive sublist of length d+1 such that:
 - ★ total capacity is at least b
 - \star capacity of the first d clients is less than b
 - 2 Assign these clients, perhaps split the last one
 - Update the client list
- Choice of a subset does not matter
- Order of servers does not matter

$$d_3 = 1$$
$$b_3 = 68$$

$$d_2 = 5$$
$$b_2 = 30$$

$$d_1 = 2$$

$$b_1 = 48$$

17
$$w_4 = 24$$

31

$$d_3 = 1$$
 $b_3 = 68$

$$d_2 = 5$$
 $b_2 = 30$

$$d_1 = 2$$
$$b_1 = 48$$

10 12 17
$$w_4 = 24$$

$$d_3 = 1$$
$$b_3 = 68$$

$$d_2 = 5$$
$$b_2 = 30$$

$$d_1 = 2$$
$$b_1 = 48$$

17
$$w_4 = 24$$

$$d_3 = 1$$
 $b_3 = 68$

$$d_2 = 5$$
 $b_2 = 30$

$$d_1 = 2$$
 $C(3,5) = 72$

$$b_1 = 48$$

$$C(3,4) = 41$$

$$d_3 = 1$$
$$b_3 = 68$$

$$d_2 = 5$$
$$b_2 = 30$$

10 12 24

47

 $d_1 = 2$ $b_1 = 48$

$$d_3 = 1$$
$$b_3 = 68$$

$$d_2 = 5$$
$$b_2 = 30$$

10 12 24

47

$$d_1 = 2$$

$$b_1 = 48$$

$$d_3 = 1$$
$$b_3 = 68$$

$$d_2 = 5$$

$$C(1,3) = 46$$

$$b_2 = 30$$

$$d_3 = 1$$
$$b_3 = 68$$

16 47

$$d_2 = 5$$

$$b_2 = 30$$

$$d_1 = 2$$

$$b_1 = 48$$

$$d_3 = 1$$
$$b_3 = 68$$

16 47

$$d_2 = 5$$

$$b_2 = 30$$

$$d_1 = 2$$

$$b_1 = 48$$

$$d_3 = 1$$

$$C(1,2) = 63$$

$$b_3 = 68$$

$$d_2 = 5$$

$$b_2 = 30$$

$$d_1 = 2$$

$$b_1 = 48$$

■ 5 Remaining server

$$d_3 = 1$$
$$b_3 = 63$$

$$d_2 = 5$$
$$b_2 = 30$$

$$d_1 = 2$$

$$b_1 = 48$$

Why does it work?

Inuitively, more disparate client lists are "easier" to allocate

Central Lemma

Define
$$\mathcal{C} \preceq \mathcal{D}$$
 iff $\forall k, \sum_{i=1}^k C_i \leq \sum_{i=1}^k D_i$
$$\begin{array}{ccc} \mathcal{C} & \xrightarrow{\operatorname{SEQ}(d+1,b)} & \mathcal{C}' \\ \preceq & & \operatorname{then} \ \mathcal{C}' \preceq \mathcal{D}' \\ \mathcal{D} & \xrightarrow{\operatorname{valid}(d,b)} & \mathcal{D}' \end{array}$$

- Recursively, $\mathcal{C}^{(m)} \preceq \mathcal{D}^{(m)}$, thus $\sum C_i^{(m)} \leq \sum D_i^{(m)}$
- ullet Remaining client capacity is lower with SeQ than with any *valid* allocation

Remarks

Valid approximation algorithm

- At the end, remove the smallest client at each server
- $\forall j, T'_j \geq \frac{d_j}{d_j+1}T_j$
- $T' \ge \frac{d_{\min}}{d_{\min}+1}T \ge \frac{d_{\min}}{d_{\min}+1}T^*$

Dual problem

- \bullet Given a throughput K, minimise the maximal degree d^{\ast} needed to reach K
- SEQ with dichotomy achieves $d^* + 1$

Simple heuristics

Largest Client Largest Server

Order clients and servers by capacities, and assign the currently largest client to the currently largest server. Split and reinsert the client if necessary.

Largest Client Best Connection

Same as before, but sort servers by $\frac{b_j}{d_j}$ (average available bandwidth).

Online Best Connection

Same as LCBC, but without sorting clients first. Use the server with the closest average available bandwidth to the considered client

Experimental setting

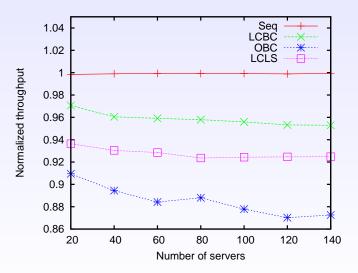
Random instance generation

- ullet m servers, 10m clients
- Capacities generated with power law distributions
- Server degrees nearly proportional to capacities

Natural upper bounds

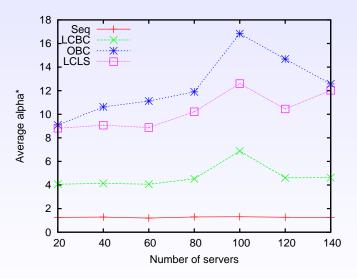
- $T \leq \sum_{j} b_{j}$
- $T \leq \sum_{i} w_i$
- Instances scaled so that both are roughly equal

Results



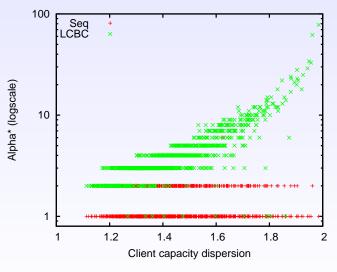
Average normalized throughput (over 250 instances) when m varies

Results



Average α^* when m varies

Results



 α^* values against dispersion for m=80

Outline

- Introduction
- 2 Independent tasks distribution
- Online considerations
- 4 Conclusions

Can we do it online?

When clients come and go

- Disallow any change in the previous choices
- Count the number of changes for various algorithms

In this section

- Fully online is impossible
- Online SEQ achieves a low number of changes

Fully online is impossible

There is no fully online algorithm with resource augmentation factor α and approximation ratio $\frac{1}{k}$.

- 1 server with bandwidth $b = k \times 2^{\alpha k + 1}$ and degree k
- ullet αk groups of clients, group i having capacity 2^i
- ullet one client of capacity b
- ullet A must connect at least one client from each group.
- > No more connection available for the last client.

Online SEQ

Add some "locality" in SEQ

- Always choose the "rightmost" sublist of clients
- \Rightarrow Ensures that the splitted client is reinserted at the same place

Local transformations of client lists

- C is increased to C^+ by
 - \triangleright insertion of a new client at position p
 - ightharpoonup capacity increase of \mathcal{C}_{p+1}
- ullet Similarly, $\mathcal C$ is decreased to $\mathcal C^-$ by
 - ightharpoonup deletion of a client at position p
 - ightharpoonup capacity decrease of \mathcal{C}_{p+1}

Online SEQ

Lemma

$$\begin{array}{cccc} \mathcal{C} & \xrightarrow{\operatorname{SEQ}(d+1,b)} & \mathcal{C}' \\ \downarrow & & \text{then } \mathcal{C}' \xrightarrow{+} \mathcal{D}' \\ \mathcal{C}^+ = \mathcal{D} & \xrightarrow{\operatorname{SEQ}(d+1,b)} & \mathcal{D}' \end{array}$$

Furthermore, the allocations differ by at most 4 changes.

Recursively, for a given set of servers \mathcal{S} , $\operatorname{SEQ}(\mathcal{C} \cup C_{\mathrm{new}})$ and $\operatorname{SEQ}(\mathcal{C})$ differ by at most 4 changes per server.

A comparison

Aggressive Best Connection

- On client arrival, connect with Best Connection. If no room, remove the client that yields the largest gain.
- On client departure, use the newly available bandwidth to reduce the indegree of other clients. If there are unconnected clients left, act like on client arrival.

On 80-server instances, with 500 events

- On average, throughput lower by 6%, can be as low as 75%
- Maximal number of changes for one event can reach 130 for one server
- \bullet Average number of maximal changes is 3.5 for ${\rm SEQ},~1.6$ for ABC

Outline

- Introduction
- 2 Independent tasks distribution
- Online considerations
- 4 Conclusions

Summary

- Divisible Tasks, Multi-Port version
- Propose SEQ, a guaranteed approximation algorithm
- Analysed an online setting

Future Works

- Broadcast Streaming problem in the same model
- "P2P" setting: allow clients to forward messages
- Online algorithm with fewer total number of changes