
ELSEVIER

DISCRETE
APPLIED
MATHEMATICS

Discrete Applied Mathematics 59 (1995) 225-235

On the k-coloring of intervals

Martin C. Carlisle”, Errol L. Lloydb3*”

“Computer Science Department, Princeton University, Princeton, NJ 08544, USA
bComputer and Information Sciences, University of Delaware, 103 Smith Hall, Newark, DE 19716-2586, USA

Received 20 December 1991; revised 4 October 1993

Abstract

The problem of coloring a set of n intervals (from the real line) with a set of k colors is studied.
In such a coloring, two intersecting intervals must receive distinct colors. Our main result is an
O(k + n) algorithm for k-coloring a maximum cardinality subset of the intervals, assuming that
the endpoints of the intervals are presorted. Previous methods are linear only in n, and assume
that k is a fixed constant. In addition to the main result, we provide an O(kS(n)) algorithm for
k-coloring a set of weighted intervals of maximum total weight. Here, S(n) is the running time of
any algorithm for finding shortest paths in graphs with O(n) edges. The best previous algorithm
for this problem required time O(nS(n)). Since in most applications, k is substantially smaller
than n, the saving is significant.

1. Introduction

Over the past decade or so, a great deal of research attention has been paid to the
tractability of various algorithmic problems concerning graphs. A particularly popu-
lar topic has been graph coloring, where two related problems have been considered:
(1) Given a graph G, what is the chromatic number of G? (or, stated as a decision
problem: Given k colors, is G k-colorable?); and (2) Given a graph G and k colors, find
a maximum k-colorable subgraph of G. Unfortunately, these problems are NP-
complete [7] for arbitrary graphs. Thus, attention has turned to identifying classes of
graphs for which these problems are solvable in polynomial time. Interval graphs are
one such class [S]. These are graphs for which there exists a set of n finite open
intervals on the real line, such that the following two conditions hold:
(1) there is a 1: 1 correspondence between the intervals and the vertices of the graph, and
(2) two intervals intersect if and only if there is an edge between the vertices corres-

ponding to those two intervals.

*Corresponding author.

‘Partially supported by the National Science Foundation under

elloyd@cis.udel.edu.

0166-218X/95/$09.50 0 1995-Elsevier Science B.V. All rights reserved

SSDI 0166-218X(93)E0174-W

grant CCR-9120731. E-mail:

226 M.C. Carlisle, E.L. Lloyd / Discreie Applied Mathematics 59 (1995) 225-235

In this context, there are O(n + e) time algorithms (n and e are the number of vertices
and edges, respectively, of G) both for determining the chromatic number of an
interval graph, and for the maximum k-coloring of an interval graph [12]. These
algorithms depend on the fact that interval graphs are perfect, and that, as a conse-
quence, the size of a largest clique is equal to the number of colors in a minimum
coloring. Thus, a subgraph of an interval graph is k-colorable if and only if it contains
no clique of size greater than k.

While the existing algorithms (mentioned above) are asymptotically optimal for
interval graphs as such, they may be quite unsatisfactory for applications involving
“interval graphs”. In most of these applications (some are discussed in Section 4), the
problem is not presented in the form of an interval graph, but simply as the underlying
set of n intervals. In this context, the actual problem is to determine the chromatic
number of, or a maximum k-coloring of, the set of intervals. In such colorings,
intersecting intervals must receive distinct colors, and a set of intervals is k-colorable if
and only if not more than k of those intervals intersect at any single point. In this
context, there is often no need to explicitly construct the interoal graph associated with
the set of intervals. This is important since the number of edges in the interval graph
may be quadratic in the number of intervals (consider n mutually intersecting
intervals). It is well known, for example, that the chromatic number of a set of sorted
intervals (i.e. the interval endpoints are sorted) can be determined directly in time O(n),
without making an explicit conversion to the interval graph representation.

In the next section, we give an O(k + n) algorithm for the maximum k-coloring of
a set of n sorted intervals (the 2n endpoints of the intervals are sorted). Previous
algorithms for finding maximum k-colorings considered only the case where the
problem is presented using an interval graph. In that context, and assuming that k is
constant, an O(n + e) algorithm was given in [12]. A natural extension of the ideas
used there to our situation yields an algorithm running in time O(n log k). Thus, our
algorithm (recall, its running time is O(k + n)) is an improvement over that extension
of [12] by a factor of log k. In Section 3, we consider a weighted version of the
problem. Here, a positive weight is associated with each interval, and the goal is to find
a k-colorable set of intervals of maximum total weight. We give an O(kS(n)) algorithm
for finding such a coloring. Here, S(n) is the running time of any algorithm for finding
shortest paths in graphs having O(n) edges. Previous results include an integer
programming based solution [12], and an O(nS(n)) time algorithm [l]. In Section 4
we discuss several applications involving k-colorings of interval graphs. Finally, in
Section 5, we present some conclusions and discussion.

2. A linear time algorithm for maximum (cardinality) k-coloring

In this section we present an O(k + n) algorithm for the maximum k-coloring of
a set of n intervals. As noted above, we assume that the 2n endpoints of the intervals
have been sorted. Thus, we denote the intervals by I 1, Zz, . . . , I,, and assume that the

M.C. Carlisle, E.L. Lloyd 1 Discrete Applied Mathematics 59 (1995) 225-235 221

intervals are ordered by increasing value of their right endpoint. For interval Ii, we
refer to i as the index of the interval. Since the ordering of indices corresponds to the
ordering by right endpoints, we will often find it convenient to refer to indices in
discussing the left to right ordering of intervals by right endpoint.

As noted in the introduction, the algorithm that we give here, and in the next
section, will not explicitly construct the associated interval graph. Nonetheless, in
explaining the motivation for, and the correctness of, these methods, we will sometimes
find it convenient to refer to that associated interval graph. This should present no
problem, since the relationship between the intervals and the interval graph is clear.

2.1. The algorithm

The intuitive idea behind our algorithm for maximum k-coloring is to use a greedy
approach. Intervals are considered for coloring (processed) in order of increasing right
endpoint. As the algorithm proceeds, it maintains a k-colorable subgraph of G. This
subgraph is maximal relative to the intervals processed to that point. Each interval
Ii when processed, is either:
(1) discarded, if there is no available color (that is, the inclusion of that interval in the

colored subgraph would produce a (k + 1)-clique), or
(2) is assigned a color using a “best fit” principle.
To decide which color constitutes the “best fit” (if any), we consider for each color, the
interval of largest index that has already been assigned that color. Such an interval is
the leader for that color. The right endpoint of this interval is, in a certain sense, the
right endpoint of that color. The interval being processed, Ii, is assigned the color of
the best@ leader. That is, the leader with greatest right endpoint no greater than the
left endpoint of Ii. Note however that there is some difficulty in finding this best fit
leader, since examining all of the colors would take time O(log k) per interval,
assuming the use of a heap or similar structure to store the leaders for each color,
whereas, in an amortized sense, our algorithm requires the use of time O(1) per
interval. Thus, we use the following .method to determine the best fit leader without
explicitly considering all k colors.

We begin by defining adjacent(Zi) to be the interval of greatest index that lies strictly
to the left of Ii. That is, the right endpoint of adjacent(Z,) is no greater than the left
endpoint of Ii. Clearly, as the algorithm executes, the best fit leader for Ii will be
adjacent(Zi), if adjacent(Zi) is in fact a leader. In such a case, Ii will be assigned the
same color as adjacent(Zi). But what if adjacent(Zi) is either not colored, or colored,
but not a leader? In this case, how can we locate the best fit leader? We find this
interval, or determine that there is no such interval, using the well-known union/Jind
operations on disjoint sets [lo].

Here, each interval .is initially in a singleton set. Always, the name of the set is the
interval in the set of least index (more to the point, this is also the interval in this set
having the smallest right endpoint, and further, as we will show, is a leader). As the
algorithm proceeds, these sets will of course grow, and will represent equivalence

228 M.C. Carlisle, E.L. Lloyd 1 Discrete Applied Mathematics 59 (1995) 225-235

classes of intervals with respect to “best fits” (note that these are NOT sets of intervals
of a given color). In particular, if an interval, Zj, is discarded, or is colored, but not
a leader (an interval with right endpoint larger than that of Zj is assigned the same
color as Zj), then the set containing Zj is unioned with the set containing the interval,
Zj_ 1. This is done to indicate that no interval Ii having adjacent(Zi) = Zj can be
assigned the same color as Zj, and that the name of the set containing Zj is the new
“best fit” for Ii. Thus, at any point in the algorithm, a set, except for the name, consists
of discarded intervals, and intervals no longer at the right endpoint of the color to
which they are assigned. The name of the set is either an interval that is a leader, or an
interval that has not yet been processed (the latter is true only if the set is a singleton).

The complete algorithm for the maximum k-coloring of a set of intervals is
described in Fig. 1.

Algorithm 1. Maximum cardinality k-coloring of a set of intervals

Input: An integer k, and a set of n intervals II, I,, . , I., sorted by right and left endpoints. The intervals

are indexed in order of increasing right endpoint, and it is assumed that all endpoints are positive integers.

Output: A k-coloring of the intervals that maximizes the number of colored intervals. Each interval is

assigned a value from 0 to k, where 1,2, . . . , k represent colors, and 0 represents no coloring.

Definitions:

left(1,) and right(li): the left and right endpoints, respectively, of Ii.

color(li): the color assigned to Ii. If Ii is not colored, then this is 0.

Lt,I_ Ir+ 1, . . . , lo: these are dummy intervals that serve as the initial right endpoints of the colors

(including the 0 “no color” color).

adjacent(lJ: the interval whose right endpoint is the largest less than left(l,).

find(li): returns the name of the set containing Ii.
union(li,lj): merges the sets with names Ii and Ij. The name of the combined set will be Ij. The original

sets no longer exist after this operation.

Method:

fori+-Otokdo (* setup & color the dummy intervals *)

right(l_i) + - i;

left(l_Jt - i - I;

color(lLi)t k - i;

create a singleton set containing I _ i;

for i + I to n do
adjacent(li) + max{j: right(lj) < left(l!)};

create a singleton set containing Ii;

for i + I to n do

Zj + find(adjacent(li));
ifj= -k

then
color(1,) + 0;

union(l(, find(l,_ ,));

else
color(lJ + color(Zj); *
union(lj, find(lj_ 1));

(* setup adjacent, and the sets *)

(* we let Ii also be the name of this set *)

(* the main loop *)

(* this is Ii’s “best fit” *)

(* do not color Ii *)
(* Ii denotes the singleton set containing Ii *)

Fig. 1. An algorithm for maximum k-coloring.

M.C. Carlisle, E.L. Lloyd / Discrete Applied Mathematics 59 (1995) 225-235 229

2.2. The proofs of correctness and running time

In this section we prove the correctness of the algorithm and establish that it can be
implemented in linear time.

We begin by defining, for each processed interval Ii, the r-closest leader to Ii to be
Zj, the leader of greatest index, with j < i (equivalently, right (Zj) < right (Z,)). Since the
r-closest leader to Ii may change as the algorithm proceeds, we have the following
claim.

Lemma 1. As the algorithm proceeds, for each processed interval Ii, the name of the set
containing Ii is the r-closest leader to Ii (at that point in the algorithm).

Proof. Since the lemma is trivially true prior to the execution of the main loop, we
proceed inductively to the end of the ith iteration of the main loop. We consider how
the sets may have changed since the end of the (i - 1)st iteration. There are two
possibilities:

Case 1: Ii was discarded (assigned “color” 0). In this case, the only change to the sets
in the ith iteration is that Ii is included in the set containing Ii- 1. By the induction
hypothesis, after the (i - 1)st iteration, the name of that set is some Zh, the r-closest
leader to Ii_ 1. After the ith iteration, Ii has been added to that set, and Zh is still the
name of that set. Further, I,, is still a leader, and Ii is not a leader, since it did not get
a real color. Thus, it follows from I,, being the r-closest leader to Ii- 1 that I,, is also the
r-closest leader to Ii.

Case 2: color(Zi) was assigned color(Zj). In this case, the only change to the sets is
that Zj is included in the set with I,_,. Let I, be the name of the set containing
Zj_ i after the (i - 1)st iteration. By the induction hypothesis, I,, is the r-closest leader
to Zj_ i. After the ith iteration, Zj is in that set, and I,, is still the name of that set.
Further, Zj is not a leader since Ii is colored the same as Zj and Zj lies strictly to the left
of Ii. Also, since h #j, and the only coloring change was to let color(Zi) = color(Zj), it
follows that I,, is still a leader. Thus, it follows from I,, being the r-closest leader to
Zj_ i, that I,, is the r-closest leader to Zj. 0

Lemma 2. Interval Zj as found in the ith iteration of the algorithm is the best jit leader
for Ii.

Proof. By definition, adjacent(Zi) is the interval of largest index strictly to the left Of Ii.
By Lemma 1, Zj as found in the ith iteration of the algorithm, is the r-closest leader to
adjacent(Zi). That is, Zj is the leader with greatest right endpoint no greater than
right(adjacent(Zi)). It follows that Zj is also the best fit leader for Ii. Cl

Lemma 3. As the algorithm proceeds, if interval Ii intersects with g leaders, then the
coloring of Ii produces a (g + 1)-clique of colored intervals.

230 M.C. Carlisle, E.L. Lloyd / Discrete Applied Mathematics 59 (1995) 225-235

Proof. Of the g leaders that intersect with Ii, let IL be the leader of least index. We
claim that g - 1 other colored intervals (one for each of the other g - 1 leaders),
intersect at p, the right endpoint of IL. Since Ii also intersects with IL at p, the lemma
will follow once we establish this claim. Thus, assume the claim is false and consider
one of the other g - 1 leaders, say of color 1, such that no interval of color 1 intersects
with IL at p. Let Zb and I, be the intervals of color 1 such that right(Z,) < p and
left (I,) > p, and there is no interval of color 1 that lies between Zb and I,. Now, note
that when I, was processed, Zb was the leader of color 1, and by Lemma 2, was the best
fit leader for I,. But this is a contradiction, since I,_ was also a leader when I, was
processed, and right(Z,) < left(Z,), and right(Z,) > right(Z,). Thus, IL should have
been the best fit leader for I,. Thus, the claim and the lemma are established. 0

Theorem 1. Algorithm 1 creates a maximum k-coloring.

Proof. We begin with some notation and a definition. First, for i < j, let Ii-j represent
intervals Z i, . . . , Zj, and let M be the set of all optimal colorings of Ii+, Also, for
a coloring C in M, a subcoloring of C on II+ is a coloring of Zi,i such that every
interval has the same color as in C, or has no color if it is not colored in C. We claim
that for each i, the coloring Ci created after the ith iteration of the main loop in
Algorithm 1 is a subcoloring of some element of M on Ii-i. Once this is established,
the theorem follows when i = n.

Thus, we inductively assume that Ci- 1 is a subcoloring of some coloring in M for
I1 +i_ 1, and consider Ci. There are three possibilities.

Case 1: Ii is not colored in Ci. From Lemma 2 it follows that the best fit leader for
Ii is Z_k, and, since this interval has the least right endpoint among all of the leaders, it
must be that all of the other leaders intersect with Ii. From Lemma 3, the coloring of
Ii would form a (k + 1)-clique of colored intervals. Thus, since Ci _ 1 was a subcoloring
of some C* in M on Ii+_. 1 then Ci must also be a subcoloring of C* on Zi,i since C*
cannot have colored Zi without also having created a (k + 1)-clique of colored
intervals.

Case 2: There is a C * in M such that C’_ 1 is a subcoloring of C* on II-i_ l and Ii is
assigned di,fferent colors in C* and Ci. We will construct a C’ in M such that Ci is
a subcoloring of C’ on I, +i . We begin by assuming that color(Zi) = 2 in C* and
COlOr(Zi) = 1 in Ci. Let I, be the leftmost interval (i.e. interval of least index) of color
1 in C* that is not colored in Ci_ 1 (note that m > i). If no such I, exists, then C’ is
identical to C* except that color(Zi) = 1. Otherwise, C’ is identical to C* except that:
I,, and all intervals of color 1 in C* that follow I,, are assigned color 2; and all
intervals of color 2 in C* having a right endpoint of right(Zi) or greater are assigned
color 1. This is possible as by the “best fit” rule, the leader of color 2 in Ci _ 1 must have
an index no greater than that of the leader of color 1, otherwise Ii would have been
given color 2 by Algorithm 1. Since left(Z,) is larger than the right endpoint of color
1 (at the start of the ith iteration of the main loop) I, can be assigned color 2, which
had a smaller or equal right endpoint. Thus, Ci is a subcoloring of C’ on I, +i. Further

M.C. Carlisle, E.L. Lloyd / Discrete Applied Mathematics 59 (1995) 225-235 231

C’ is an optimal coloring since it colors the same number of intervals as C* which
is in M.

Case 3: There is a C* in M such that Ci- 1 is a subcoloring of C* on II -+- 1, and Ii is
not colored in C*. Again we construct a C’ in M such that Ci is a subcoloring of C’ on
Zr+. Without loss of generality, let color(Zi) = 1 in Ci. NOW, let I, be the leftmost
interval colored 1 in C* that is not in Ci- 1 (such an I, must exist, otherwise we can
add Ii to C*, an optimal coloring - a contradiction). Note that as Algorithm 1 colors
intervals in order of increasing right endpoint, I, has a larger right endpoint than Ii.
Thus C’ is identical to C*, except that I, is not colored, and color(Zi) = 1, Thus C’ is
an optimal legal coloring, andCi is a subcoloring of C’ on Ii+.

Thus, Algorithm 1 produces an optimal coloring. 0

Next we consider the running time of Algorithm 1.

Theorem 2. The running time of algorithm 1 is O(k + n).

Proof. The algorithm consists of three loops, the first of which is trivially seen to
require time O(k). The second computes adjacent(Zi) for 1 < i < n. Since the end-
points are sorted, this takes constant time per Ii, hence O(n) time for the entire loop.

For the third loop (the “main” loop), the operations of the loop, excluding the
union/find operations, clearly require but constant time per iteration. Since that loop
is executed n times, the running time, except for union/find operations, is O(n).

To implement the union/find operations in a total time of O(n), we utilize a method
[6] for performing union/find operations on sets where the possible unions are known
in advance. Here, the possible unions form a union graph that has the individual
(initial) sets as vertices, and directed edges between those sets that may be merged. It is
shown in [6] that if this graph is in fact a union tree, then O(n) union/find operations
can be performed in O(n) time in the worst case.

Note that in Algorithm 1, each set is merged only with the set containing the
interval with the next smallest right endpoint. Therefore, the union graph is simply
a path from the interval with the largest right endpoint to that with the smallest. Since
this is clearly a tree, the result of [6] is applicable, and Algorithm 1 can be imple-
mented in time O(k + n). 0

3. An improved algorithm for weighted k-coloring

We now turn to the problem of finding a k-coloring of maximum total weight.
Recall that each interval has a positive weight associated with it, and that the goal is to
find a k-coloring of the intervals of maximum total weight (that is, to maximize the
sum of the weights of all of the colored intervals). Note that since interval graphs are
perfect, such a k-coloring may be found by locating a maximum weight induced
subgraph among all subgraphs having no clique of size greater than k. Using this

232 M.C. Carlisle, E.L. Lloyd / Discrete Applied Mathematics 59 (1995) 225-235

approach, Yannakakis and Gavril [12] gave a linear programming based solution to
the problem we consider. Later, an 0(&(n)) algorithm that uses shortest paths to
create a maximum weight k-colorable subgraph was given in [l]. In this section, we
describe a solution that is based on a reduction to a certain network flow problem. As
it turns out, a solution to that network flow problem depends on shortest paths. Our
method has a worst-case running time of O(kS(n)), thereby improving on prior results
by a factor of nJk.

Our approach is to construct a network for which a minimum cost flow of size k will
provide a solution to weighted k-coloring of intervals. We begin with a brief descrip-
tion of that flow problem (see [l l] for details).

In the minimum costjlow ofsize k problem, we are given an integer k and a directed
graph (a network) G = (V, E, cost, cap), where V/is a set of vertices, E is a set of directed
edges, and associated with each edge e is a nonnegative cost cost(e) and a positive
capacity cap(e). Also, there are designated vertices s and t. A flow from s to t is
a mappingf: E + R such that the following conditions hold:
(1) for each vertex u, except s and t, the flow into u is equal to the flow out of u, and
(2) for each edge e, 0 <f(e) 6 cap(e).
The size of flow f is the net flow into t. The cost of flow f is ‘&f(e)*cost(e). The
objective in the minimum cost flow of size k problem is to find a flow of size k from s to
t that is of minimum cost among all such flows. A polynomial time algorithm for
finding such a flow is given in [3,11]. It is also shown in [11) that:

If G is acyclic, and has only integer capacities, then a minimum cost flow of size
k can be found in time O(e + kS(n)), even if negative costs are permitted.

Note that if e = O(n), then the running time of that algorithm is O(kS(n)). Note also
that in the presence of integer capacities, the flow across each edge of G will also be
integral.

So, consider a set of weighted intervals, Ii, . . . , I,. As before, we assume that the
endpoints of the intervals are sorted. Let xi < x2 < ..a < x, be the unique set of values
of right and left endpoints of these intervals. We construct a network G with nodes
s=uo ,..., ~,+~=t,andedges:

For 1 < i < r + 1, a clique-edge (Vi- 1, Vi) of cost zero, and capacity k.
For 1 < i < n, an interval-edge (uj, u,,) where Uj = left(li) and t+, = right(Zi). This
edge has a cost equal to the negative of the weight of Ii, and has a capacity of 1.

Lemma 4. The cost of a minimum costjlow of size k in G is equal to the negative of the

weight of a maximum weight k-coloring of the n intervals.

Proof. Consider a flow of size k and cost c in G. Since the flow across each edge is
integral, we can assume that each unit of flow follows a single path. Thus, consider any
single unit of flow and let p be the path followed by that unit. Now, since all of the edges
in G are directed from vertices of lower index to vertices of higher index, it follows that
the intervals corresponding to the interval-edges in p do not overlap. Thus, all of those

M.C. Carlisle, E.L. Lloyd / Discrete Applied Mathematics 59 (1995) 225-235 233

intervals may be assigned the same color in a k-coloring. Hence, corresponding to
a flow of size k and cost c in G, there is a k-coloring of the n intervals that has weight
- c. In a similar fashion, it can be shown that if there is a k-coloring of the n intervals

of weight c, then there is a flow of size k in G of cost - c. The lemma follows from
these two observations. 0

Corollary 1. Given a minimum costJlow of size k in G, the intervals corresponding to the

interval-edges ofjow 1 are exactly the intervals in some maximum weight k-coloring of

the n intervals.

Thus, our algorithm for finding a maximum weight k-coloring of a set of weighted
intervals consists of first using the above method to locate the intervals in some
maximum weight k-coloring (i.e. the intervals corresponding to the interval-edges of
flow l), and then actually coloring those intervals by using Algorithm 1. The correct-
ness of the method follows from the earlier discussion as does the following theorem.

Theorem 3. A maximum weight k-coloring of a set of n weighted intervals can befound in

time O(kS(n)).

4. Improved results for applications

In this section we briefly describe three applications involving sets of intervals, In
each application, the problem translates directly to a problem of finding a maximum
(weighted or unweighted) k-coloring of a set of intervals. Thus, the results given here
apply directly, and provide solutions for these applications and that are more efficient
than those previously known.

Job scheduling [l]: We are given a set of n tasks to be executed on a set of
k identical processors. Associated with each task is a start time and an end time,

indicating that if the task is executed, then it must start precisely at the start time, and
complete precisely at the end time. Further, each task has an associated value. Since,
due to their fixed start and end times, it may not be possible to schedule all n of the
tasks, the goal is to schedule a set of tasks of maximum total value. It is easy to see that
this is equivalent to finding a maximum weight k-coloring of a set of intervals with
weights. This is the problem considered in [l], where an O(nS(n)) algorithm was
given. Our results improves the time to O(kS(n)).

Routing of two point nets [9]: Here we are given a channel lying on a VLSI chip (say
between two components on that chip). That channel consists of k horizontal tracks.
We are also given a set of n two-point nets, where the terminals of the nets lie at fixed
positions along the top or bottom sides of the channel. These nets are to be routed in
the channel using two vertical wire segments and one horizontal wire segment, such
that similarly oriented wires do not intersect. Since it is assumed that but one wire

234 M.C. Carlisle, E.L. Lloyd / Discrete Applied Mathematics 59 (1995) 225-235

connects to each terminal, this intersection condition is not a constraint on the
vertical wires. Thus, we are only concerned with the routing of the horizontal
segments, and the goal is to rout a maximum number of nets (given the fixed number
of horizontal tracks). Since this is precisely the problem of maximum k-coloring a set
of intervals, we provide an O(k + n) solution.

Register allocation: We consider a problem of allocating a set of k registers to
straight-line code within a single basic block (local register allocation). Here, each
operand must reside in a register when the relevant operator is applied, and when
values are assigned they are always stored through to main memory. Thus, the goal of
local register allocation is to avoid the loading of values from main memory into
registers (i.e. to minimize the number of loads). By carefully modeling variable uses as
intervals, this problem becomes that of finding a maximum k-coloring of a set of
intervals. Intuitively, each uncolored interval represents a load. Thus, we provide an
O(k + n) algorithm for load minimization in local register allocation.

We conclude this section by noting that in all three applications, the notion of an
interval arises naturally, and there is no need to ever explicitly construct an interval

graph.

5. Conclusions

In this paper we have provided improved algorithms for the k-coloring of a set of
intervals in both the weighted and unweighted cases. For the weighted version, our
algorithm improves over the best previous result [l] by a factor of n/k. Since n is likely
to be much larger than k in practice, this is a considerable saving. For this algorithm,
the running time becomes O(kS(n) + e) if an interval graph is given, instead of the
actual set of intervals. The extra O(e) term arises from the need to convert the interval
graph into such a set of intervals [2]. Note that even for interval graphs, our algorithm
is an improvement over the O(nS(n)) algorithm, provided that S(n) is not O(n). Also,
recall that the current best practical algorithm for finding shortest paths is an
implementation of Dijkstra’s algorithm using Fibonacci heaps [4] that takes time
O(n log n + e) for general graphs, and O(n log n) if the number of edges is O(n) (as in
our application). Thus the explicit running time for our algorithm becomes
O(kn log n). The current best theoretical algorithm for finding shortest paths is the
O(n log n/log log n) algorithm of [S].

For the unweighted version, our algorithm improves over the best previous algo-
rithm [12] by a factor of log k. Further, the algorithm that we give is linear in both
n and k, in contrast to existing methods, which are linear in n, but assume that k is
a constant. Finally, we note that if an interval graph is given, then there is
no asymptotic improvement over previous methods, since simply the time to input
that graph (namely, O(n + e)) dominates the running time of the entire
algorithm.

M.C. Carlisle, E.L. Lloyd / Discrete Applied Mathematics 59 (1995) 225-235 235

Acknowledgement

We thank the referees for their comments on an earlier version of this paper. Those
comments provided for a considerable simplification of the results of Section 3, and an
overall improved presentation.

References

[l] E.M. Arkin and E.B. Silverberg, Scheduling jobs with fixed start and end times, Discrete Appl. Math.

18 (1987) l-8.

[2] K.S. Booth and G.S. Leuker, Testing for the consecutive ones property, interval graphs, and graph

planarity using PQ-tree algorithms, J. Comput. System Sci. 13 (1976) 335-379.

[3] J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic efficiency for network flow

problems, J. ACM 19 (1972) 248-264.

[4] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization

algorithms, J. ACM 34 (1987) 596615.

[S] M.L. Fredman and D.E. Willard, Trans-dichotomous algorithms for minimum spanning trees, in:

Proceedings of the 31st IEEE FOCS (1990) 719-725.

[6] H.N. Gabow and R.E. Tarjan, A linear-time algorithm for a special case of disjoint set union, J.

Comput. System Sci. 30 (1985) 209-211.

[7] M. Carey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness

(Freeman, New York, 1979).

[S] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980).

[9] A. Hashimoto and J. Stevens, Wire routing by optimizing channel assignment within large apertures,

in: Proceedings of the 8th IEEE Design Automation Workshop (1971) 155-169.

[lo] R.E. Tarjan, Efficiency of a good but not linear set union algorithm, J. ACM 22 (1975) 215-225.

[l l] R.E. Tarjan, Data Structures and Network Algorithms (SIAM, Philadelphia, PA, 1983).

[12] M. Yannakakis and F. Gavril, The maximum k-colorable subgraph problem for chordal graphs,

Inform. Process. Lett. 24 (1987) 133-137.

