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Abstract: When scheduling a directed acyclic graph (DAG) of tasks with computational
costs on computational platforms, a good trade-off between load balance and data locality
is necessary. List-based scheduling techniques are commonly used greedy approaches for
this problem. The downside of list-scheduling heuristics is that they are incapable of mak-
ing short-term sacrifices for the global efficiency of the schedule. In this work, we describe
new list-based scheduling heuristics based on clustering for homogeneous platforms, under
the realistic duplex single-port communication model. Our approach uses an acyclic parti-
tioner for DAGs for clustering. The clustering enhances the data locality of the scheduler
with a global view of the graph. Furthermore, since the partition is acyclic, we can schedule
each part completely once its input tasks are ready to be executed. We present an exten-
sive experimental evaluation showing the trade-offs between the granularity of clustering
and the parallelism, and how this affects the scheduling. Furthermore, we compare our
heuristics to the best state-of-the-art list-scheduling and clustering heuristics, and obtain
more than three times better makespan in cases with many communications.

Key-words: List scheduling, clustering, partitioning, directed acyclic graphs, data lo-
cality, concurrency.



Un ordonnanceur de liste basé sur le partitionnement
de DAGs pour des processeurs homogènes

Résumé : Lors de l’ordonnancement d’un graphe dirigé acyclique (DAG) de
tâches sur une plate-forme, un bon compromis entre équilibrage de charge et
localité des données est nécessaire. Les techniques d’ordonnancement de liste
sont des approches gloutonnes communément utilisées pour ce problème. Les
inconvénients de telles heuristiques de liste sont qu’elles sont incapables de faire
des sacrifices à court terme pour que l’ordonnancement global soit plus efficace.
Dans ces travaux, nous décrivons de nouvelles heuristiques d’ordonnancement
de liste pour des plates-formes homogènes, avec un modèle de communications
duplexe un-port réaliste. Notre approche se base sur un partitionnement acy-
clique du DAG, car les parties ainsi formées permettent d’avoir une bonne
localité des données tout en conservant une vue générale du graphe. De plus,
étant donné que la partition est acyclique, nous pouvons ordonnancer chaque
partie entièrement une fois que ses tâches d’entrée sont prêtes à être exécutées.
Nous présentons une évaluation expérimentale des algorithmes pour montrer
les compromis entre la granularité des partitions et le parallélisme, et comment
cela affecte l’ordonnancement. De plus, nous comparons nos heuristiques aux
meilleurs compétiteurs de la littérature, et nous obtenons un temps d’exécution
total plus de trois fois meilleur dans des cas avec de nombreuses communica-
tions.

Mots-clés : ordonnancement de liste, clustering, partitionnement, graphes
dirigés acycliques, localité des données, concurrence.
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1 Introduction

Scheduling is one of the most studied areas of computer science. A large body of research deals
with scheduling applications/workflows modeled as Directed Acyclic Graphs (DAGs), where ver-
tices represent atomic tasks, and edges represent dependencies [17] with associated communication
costs [17, 23]. The classical objective function is to minimize the total execution time, or makespan,
and this problem is denoted as P |prec, ci,j |Cmax in the scheduling literature. Among others, list-
based scheduling techniques are the most widely studied and used techniques, mainly due to the ease
of implementation and explanation of the progression of the heuristics [1, 12, 18, 20, 22, 25, 26, 27].
In list-based scheduling techniques, tasks are ordered based on some predetermined priority, and
then are mapped and scheduled onto processors. Another widely used approach is clustering-based
scheduling [14, 15, 21, 26, 27, 28], where tasks are grouped into clusters and then scheduled onto
processors.

Almost all of the existing clustering-based scheduling techniques are based on bottom-up clus-
tering approaches, where clusters are constructively built from the composition of atomic tasks
and existing clusters. We argue that such decisions are local, and hence cannot take into account
the global structure of the graph. Recently, we have developed one of the first multi-level acyclic
DAG partitioners [11]. The partitioner itself also uses bottom-up clustering in its coarsening phase.
However, it uses multiple levels of coarsening, and then it partitions the graph into two parts by
minimizing the edge cut between the two parts. Then, in the uncoarsening phase, it refines the par-
titioning while it projects the solution found in the coarsened graph to finer graphs until it reaches
to the original graph. This process can be iterated multiple times, using a constraint coarsening
(where only vertices that were assigned to same part can be clustered), in order to further improve
the partitioning. We hypothesize that clusters found using such a DAG partitioner are much more
successful in putting together the tasks with complex dependencies, and hence in minimizing the
overall inter-processor communication, and we confirm this hypothesis in our experiments.

In this work, we use the realistic duplex single-port communication model, where at any point
in time, each processor can, in parallel, execute a task, send one data, and receive another data.
Because concurrent communications are limited within a processor, minimizing the communication
volume is crucial to minimizing the total execution time, or makespan.

We propose several DAG partitioning-assisted list-based scheduling heuristics for homogeneous
platforms, aiming at minimizing the makespan when the DAG is executed on a parallel platform.
In our proposed schedulers, when scheduling to a system with p processing units (or processors),
the original task graph is first partitioned into K parts (clusters), where K ≥ p. Then, a list-based
scheduler is used to assign tasks (not the clusters). Our scheduler hence uses list-based scheduler,
but with one major constraint: all the tasks of a cluster will be executed by same processor. This
is not the same as scheduling the graph of clusters, as the decision to schedule a task can be made
before scheduling all tasks in a predecessor cluster. Our intuition is that, since the partition is
done beforehand, the scheduler “sees” the global structure of the graph, and it uses this to “guide”
the scheduling decisions. Since all the tasks in a cluster will be executed on the same processor,
the execution time for the cluster can be approximated by simply the sum of the individual tasks’
weights (actual execution time can be larger due to dependencies to tasks that might be assigned to
other processors). Here, we heuristically decide that having balanced clusters helps the scheduler
to achieve load-balanced execution. The choice of the number of parts K is a trade-off between
data locality vs. concurrency. Large K values may yield higher concurrency, but would potentially
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incur more inter-processor communication. At the extreme, each task is a cluster, where we have
the maximum potential concurrency. However, in this case, one has to rely on list-based scheduler’s
local decisions to improve data locality, and hence reduce inter-processor communication.

Our main contribution is to develop three different variants (meta-heuristics) of partitioning-
assisted list-based scheduler, taking different decisions about how to schedule tasks within a part.
These variants run on top of two classical list-based schedulers: (1) bl-est chooses the task with
largest bottom-level first (bl), and assigns the task on the processor with the earliest start time
(est), while (2) etf tries all ready tasks on all processors and picks the combination with the
earliest EST first (hence with a higher complexity). The proposed meta-heuristics can be used
with any other list scheduler and DAG partitioner, hence they provide a flexible solution to DAG
scheduling. Also, we experimentally evaluate the new algorithms against the two baseline list-
based schedulers (bl-est and etf) and one baseline cluster-based scheduler (dsc-glb-etf), since
etf and dsc-glb-etf are the winners of the recent comparison done by Wang and Sinnen [26].
However, unlike [26], we follow the realistic duplex single-port communication model. We show
significant savings in terms of makespan, in particular when the communication-to-computation
ratio (CCR) is large, i.e., when communications matter a lot, hence demonstrating the need for a
partitioning-assisted scheduling technique.

In other words, we propose a novel algorithmic framework for DAG scheduling, building upon
a multi-level acyclic DAG partitioner for the clustering phase. Furthermore, we consider a realistic
communication model, contrarily to most theoretical work on scheduling. Thus, our algorithms
lend themselves as efficient heuristics with no lower bounds or performance guarantees. However,
as demonstrated in the results section, they drastically outperform state-of-the-art schedulers un-
der more realistic scenarios, such as single-port communication model and when communications
are more costly than computations. For example, one of the datasets we experimented includes
several DAGs corresponding to high-performance computing (HPC) applications that use Open
Community Runtime (OCR) framework [29], on which we achieve more than three times better
makespan than the state-of-the-art heuristic with large CCRs.

The rest of the paper is organized as follows. First, we discuss related work in Section 2. Next,
we introduce the model and formalize the optimization problem in Section 3. The proposed schedul-
ing heuristics are described in Section 4, and they are evaluated through extensive simulations in
Section 5. Finally, we conclude and give directions for future work in Section 6.

2 Related work

Task graph scheduling has been the subject of a wide literature, ranging from theoretical studies
to practical ones. Kwok and Ahmad [17] give an excellent survey and taxonomy of task scheduling
methods and some benchmarking techniques to compare these methods [16].

On the theoretical side, a related problem of minimizing the makespan of a DAG on identical
processors without communication costs (P |prec|Cmax) has been extensively studied. Graham’s
seminal list-scheduling algorithm [9] has been known for a long time to be a (2− 1

p)-approximation
algorithm, where p is the number of processors. It has then been shown that it is NP-hard to improve
upon this approximation ratio, assuming a new variant of the unique games conjecture [24]. Several
works further focus on unit execution times to derive theoretical results (lower bounds, complexity
results), see for instance [13].

On the practical side, communication costs cannot be neglected, and it becomes much harder
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to derive theoretical guarantees. Even the problem with unit execution time and unit communi-
cation time (UET-UCT) is NP-hard [19]. Hence, the P |prec, ci,j |Cmax problem is usually tackled
through heuristics. For coarse-grain graphs, a guaranteed heuristic based on a linear programming
formulation of the problem was proposed [10], and it was proven that there always exists a linear
optimal clustering [7].

DAG scheduling heuristics can be divided into two groups with respect to whether they allow
task duplication or not [2]. Those that allow task duplication do so to avoid communication. The
focus of this work is non-duplication based scheduling. There are two main approaches taken by
the non-duplication based heuristics: list scheduling and cluster-based scheduling. A recent com-
parative study [26] gives a catalog of list-scheduling and cluster-scheduling heuristics and compares
their performance. These algorithms take the entire task graph as input, similar to our approach.

In the list-based scheduling approach [1, 12, 18, 20, 22, 25, 27], each task in the DAG is
first assigned a priority. Then, the tasks are sorted in descending order of priorities, thereby
resulting in a priority list. Finally, the tasks are scheduled in topological order, with the highest
priorities first. There are also two variants of list-scheduling based on how priorities are computed:
static and dynamic. In the static list-scheduling, priorities are pre-computed and do not change
during the algorithm. In the dynamic list-scheduling, task priorities are updated as the predecessor
tasks are scheduled. The list-scheduling based heuristics usually have low complexity and are
easy to implement and understand. In general, the static list-scheduling algorithms also have low
computational complexity, whereas dynamic list-scheduling algorithms have higher complexity, due
to priority updates.

In the cluster-based scheduling approach [14, 15, 21, 26, 27, 28], the tasks are first divided
into clusters, each to be scheduled on the same processor. The clusters usually consist of highly
communicating tasks. Then, the clusters are scheduled onto an unlimited number of processors,
which are finally combined to yield the available number of processors.

Our approach is close to cluster-based scheduling in the sense that we first partition tasks into
K ≥ p clusters, where p is the number of available processors. At this step, we enforce somewhat
balanced clusters. In the next step, we schedule tasks as in the list-scheduling approach, not the
clusters, since there is a degree of freedom in scheduling a task of a cluster. Hence, our approach can
also be conceived as a hybrid list and cluster scheduling, where the decisions of the list-scheduling
part are constrained by the cluster-scheduling decisions.

We consider homogeneous computing platforms, where the processing units are identical and
communicate through a homogeneous network. Task graphs and scheduling approaches can also
be used to model and execute workflows on grids and heterogeneous platforms [5, 8]; HEFT [25] is
a common approach for this purpose. Assessing the performance of our new scheduling strategies
on heterogeneous platforms will be considered in future work.

3 Model

Let G = (V,E) be a directed acyclic graph (DAG), where the vertices in the set V represent tasks,
and the edges in the set E represent the precedence constraints between those tasks. Let n = |V |
be the total number of tasks. We use Pred[vi] = {vj | (vj , vi) ∈ E} to represent the (immediate)
predecessors of a vertex vi ∈ V , and Succ[vi] = {vj | (vi, vj) ∈ E} to represent the (immediate)
successors of vi in G. Vertices without any predecessors are called source nodes, and the ones
without any successors are called target nodes. Every vertex vi ∈ V has a weight, denoted by wi,
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Figure 1 – Example of a small DAG with seven vertices executed on a homogeneous platform with
two processors.

and every edge (vi, vj) ∈ E has a cost, denoted by ci,j .
The computing platform is a homogeneous cluster consisting of p identical processing units,

called processors, and denoted P1, . . . , Pp, communicating through a fully-connected homogenous
network. Each task needs to be scheduled onto a processor respecting the precedence constraints,
and tasks are non-preemptive and atomic: a processor executes a single task at a time. For a given
mapping of the tasks onto the computing platform, let µ(i) be the index of the processor on which
task vi is mapped, i.e., vi is executed on the processor Pµ(i). For every vertex vi ∈ V , its weight
wi represents the time required to execute the task vi on any processor. Furthermore, if there is
a precedence constraint between two tasks mapped onto two different processors, i.e., (vi, vj) ∈ E
and µ(i) 6= µ(j), then some data must be sent from Pµ(i) to Pµ(j), and this takes a time represented
by the edge cost ci,j .

We enforce the realistic duplex single-port communication model, where at any point in time,
each processor can, in parallel, execute a task, send one data, and receive another data. Consider
the DAG example in Figure 1, where all execution times are unitary, and communication times
are depicted on the edges. The computing platform in the example of Figure 1 has two identical
processors. There is no communication cost to pay when two tasks are executed on the same
processor, since the output can be directly accessed in the processor memory by the next task. For
the proposed schedule, P1 is already performing a send operation when v5 would like to initiate a
communication, and hence this communication is delayed by 0.5 time unit, since it can start only
after P1 has completed the previous send from v1 to v2. However, P1 can receive data from v2 to v3
in parallel to sending data from v5 to v6. In this example, the total execution time, or makespan,
is 6.

Formally, a schedule of graph G consists of an assignment of tasks to processors (already defined
as µ(i), for 1 ≤ i ≤ n), and a start time for each task, st(i), for 1 ≤ i ≤ n. Furthermore, for each
precedence constraint (vi, vj) ∈ E such that µ(i) 6= µ(j), we must specify the start time of the
communication, com(i, j). Several constraints must be met to have a valid schedule, in particular
with respect to communications:

RR n° 9185
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• (atomicity) For each processor Pk, for all tasks vi such that µ(i) = k, the intervals [st(i), st(i)+
wi[ are disjoint.

• (precedence constraints, same processor) For each (vi, vj) ∈ E with µ(i) = µ(j), st(i)+wi ≤
st(j).

• (precedence constraints, different processors) For each (vi, vj) ∈ E with µ(i) 6= µ(j), st(i) +
wi ≤ com(i, j) and com(i, j) + ci,j ≤ st(j).

• (one-port, sending) For each Pk, for all (vi, vj) ∈ E such that µ(i) = k and µ(j) 6= k, the
intervals [com(i, j), com(i, j) + ci,j [ are disjoint.

• (one-port, receiving) For each Pk, for all (vi, vj) ∈ E such that µ(i) 6= k and µ(j) = k, the
intervals [com(i, j), com(i, j) + ci,j [ are disjoint.

The goal is then to minimize the makespan, that is the maximum execution time:

M = max
1≤i≤n

{st(i) + wi} . (1)

We are now ready to formalize the MinMakespan optimization problem: Given a weighted
DAG G = (V,E) and p identical processors, the MinMakespan optimization problem consists in
defining µ (task mapping), st (task starting times) and com (communication starting times) so that
the makespan M defined in Equation (1) is minimized.

Note that this classical scheduling problem is NP-complete, even without communications, since
the problem with n weighted independent tasks and p = 2 processors is equivalent to the 2-partition
problem [6].

4 Algorithms

We propose novel heuristic approaches to solve the MinMakespan problem, using a recent directed
graph partitioner [11]. We compare the results with classical list-based and clustering heuristics,
that we first describe and adapt for the duplex single-port communication model (Section 4.1).
Next, we introduce three variants of partition-assisted list-based scheduling heuristics in Section 4.2.

For convenience, Table 1 summarizes acronyms used in the paper, in particular in the heuristic
names, and Table 2 summarizes the main features of all considered approaches.

Notation Meaning
DAG Directed Acyclic Graph
CCR Communication-to-Computation Ratio
BL Bottom-Level
TL Top-Level
EST Earliest Start Time
ETF Earliest EST First
DSC Dominant Sequence Clustering
GLB Guided Load Balancing

Table 1 – Acronyms.

RR n° 9185
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(Cluster-based only) task priority type (partition priority) placementclustering approach load balancing produced clusters task priority

List-based bl-est static BL EST-processor
etf dynamic EST

Clustering-based dsc-glb-etf
cyclic cluster graph Guided Cyclic, dynamic TL+BL EST task within
limited refinement Load Balancing non-convex graph cluster (processor)

Proposed *-Part acyclic cluster graph Directed Acyclic priority type priority EST-Processor

Partitioning-based *-Busy better refinement Graph of * of * EST-idle Processor
*-Macro (static or dynamic) (BL or EST) Earliest (Part) Finish Time-Processor

Table 2 – Heuristic approaches to solve MinMakespan.

4.1 State-of-the-art scheduling heuristics

We first consider the best alternatives from the list-based and cluster-based scheduling heuristics
presented by Wang and Sinnen [26]. We consider one static list-scheduling heuristic (bl-est), the
best dynamic priority list-based scheduling heuristic for real application graphs (etf), and the best
cluster-based scheduling heuristic (dsc-glb-etf).

bl-est. This simple heuristic maintains an ordered list of ready tasks, i.e., tasks that can
be executed since all their predecessors have already been executed. Let Ex be the set of tasks
that have already been executed, and let Ready be the set of ready tasks. Initially, Ex = ∅, and
Ready = {vi ∈ V | Pred[vi] = ∅}. Once a task has been executed, new tasks may become ready.
At any time, we have:

Ready ={vi ∈ V \ Ex | Pred[vi] = ∅ or ∀(vj , vi)∈ E, vj∈ Ex}. (2)

In the first phase, tasks are assigned a priority, which is designated to be its bottom level
(hence the name bl). The bottom level bl(i) of a task vi ∈ V is defined as the largest weight of
a path from vi to a target node (vertex without successors), including the weight wi of vi, and all
communication costs. Formally,

bl(i) = wi +

0 if Succ[vi] = ∅;
max

vj∈Succ[vi]
ci,j + bl(j) otherwise. (3)

In the second phase, tasks are assigned to processors. At each iteration, the task of the Ready
set with the highest priority is selected and scheduled on the processor that would result in the
earliest start time of that task. The start time depends on the time when that processor becomes
available, the communication costs of its input edges, and the finish time of its predecessors. We
keep track of the finish time of each processor Pk (compk), as well as the finish time of sending
(sendk) and receiving (recvk) operations. When we tentatively schedule a task on a processor, if
several communications are needed (meaning that at least two predecessors of the task are mapped
on other processors), they cannot be performed at the same time with the duplex single-port
communication model. The communications from the predecessors are, then, performed as soon
as possible (respecting the finish time of the predecessor and the available time of the sending and
receiving ports) in the order of the finish time of the predecessors.

This heuristic is called bl-est, for Bottom-Level Earliest-Start-Time, and is described in Algo-
rithm 1. The Ready set is stored in a max-heap structure for efficiently retrieving the tasks with
the highest priority, and it is initialized at lines 1-5. The computation of the bottom levels for all
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tasks (line 1) can easily be performed in a single traversal of the graph in O(|V |+ |E|) time, see for
instance [17]. The main loop traverses the DAG and tentatively schedules a task with the largest
bottom level on each processor in the loop lines 11-20. The processor with the earliest start time
is then saved, and all variables are updated on lines 24-29. When updating com(j, i), if vi and its
predecessor vj are mapped on the same processor, communication start time is artificially set to
st(j) + wj − cj,i in line 25, so that st(i) can be computed correctly in line 29. Finally, the list of
ready tasks is updated line 31, i.e., Ex← Ex∪{vi}, and new ready tasks according to Equation (2)
are inserted into the max-heap.

The total complexity of Algorithm 1 is hence O(p2|V |+ |V | log |V |+p|E|): p2|V | for lines 11-13,
|V | log |V | for the heap operations (we perform |V | times the extraction of the maximum, and the
insertion of new ready tasks into the heap), and p|E| for lines 15-20. The bl-est heuristic will be
used as a comparison basis in the rest of this paper. The space complexity is O(p + |V | + |E|).

etf. We also consider a dynamic priority list scheduler, etf. For each ready task, this algorithm
computes the earliest start time (EST) of the task. Then, it schedules the ready task with the
earliest EST, hence the name etf, for Earliest EST First. Since we tentatively schedule each
ready task, the time complexity of etf is higher than bl-est; it becomes O(p2|V |2 + p|V ||E|).
The space complexity is the same as bl-est, i.e., O(p+ |V |+ |E|).

dsc-glb-etf. The clustering scheduling algorithm used as a basis for comparison is one of
the best ones identified by Wang and Sinnen [26], namely, the dsc-glb-etf algorithm. It uses
dominant sequence clustering (dsc), then merges clusters with guided load balancing (glb), and
finally orders tasks using earliest EST first (etf). We refer the reader to [26] for more details about
this algorithm.

RR n° 9185
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Algorithm 1: bl-est algorithm
Data: Directed graph G = (V,E), number of processors p
Result: For each task vi ∈ V , allocation µ(i) and start time st(i); For each (vi, vj) ∈ E, start

time com(i, j)
1 bl← ComputeBottomLevels(G)
2 Ready← EmptyHeap
3 for vi ∈ V do
4 if Pred[vi] = ∅ then
5 Insert vi in Ready with key bl(i)

6 for k = 1 to p do
7 compk ← 0; sendk ← 0; recvk ← 0;

8 while Ready 6= EmptyHeap do
9 vi ← extractMax(Ready)

10 Sort Pred[vi] in a non-decreasing order of the finish times
11 for k = 1 to p do
12 for m = 1 to p do
13 send′m ← sendm; recv′m ← recvm

14 begink ← compk
15 for vj ∈ Pred[vi] do
16 if µ(j) = k then t← st(j) + wj
17 else
18 t← cj,i +max{st(j) + wj , send

′
µ(j), recv

′
k}

19 send′µ(j) ← recv′k ← t

20 begink ← max{begink, t}

21 k∗ ← argmink{begink} // Best Processor
22 µ(i)← k∗

23 st(i)← compk∗
24 for vj ∈ Pred[vi] do
25 if µ(j) = k∗ then com(j, i)← st(j) + wj − cj,i
26 else
27 com(j, i)← max{st(j) + wj , sendµ(j), recvk∗}
28 sendµ(j) ← recvk∗ ← com(j, i) + cj,i

29 st(i)← max{st(i), com(j, i) + cj,i}
30 compk∗ ← st(i) + wi
31 Insert new ready tasks into Ready

RR n° 9185



Partitioning-assisted list scheduler 12

4.2 Partition-based heuristics

The partition-based heuristics start by computing an acyclic partition of the DAG, using a recent
DAG partitioner [11]. This acyclic DAG partitioner takes a DAG with vertex and edge weights,
a number of parts K, and an allowable imbalance parameter ε as input. Its output is a partition
of the vertices of G into K nonempty pairwise disjoint and collectively exhaustive parts satisfying
three conditions: (i) the weight of the parts are balanced, i.e., each part has a total vertex weight of

at most (1 + ε)

∑
vi∈V wi

K ; (ii) the edge cut is minimized; (iii) the partition is acyclic; in other words
the inter-part edges between the vertices from different parts should preserve an acyclic dependency
structure among the parts. We use this tool to partition the task graph into K = α × p parts,
hence α ≥ 1 can be interpreted as the average number of clusters per processor. We choose an
imbalance parameter of ε = 1.1 to have relatively balanced clusters; other values of ε led to similar
results. In this paper, we use the recommended version of the approach in [11], namely CoHyb_CIP.
It may not always be possible to find a feasible partition with the given constraints, especially for
small graphs and large α and K values. However, since our main goal is to achieve good clustering,
not perfect balance, we will continue with whatever partitioning found by our tool, even if it is not
balanced (which only happened very rarely in our experiments).

Given K parts V1, . . . , VK forming a partition of the DAG, we propose three variants of schedul-
ing heuristics. Note that the variants are designed on top of bl-est and etf, but they can easily
be adapted to any other list-based scheduling algorithm since, in essence, these heuristics are cap-
turing a hybrid approach between cluster-based and list-based scheduling algorithms using DAG
partitioning.

*-Part. The first variant, denoted *-Part, is used in this paper on top of bl-est or etf. The
bl-est-Part heuristic (resp. etf-Part) performs a list scheduling heuristic similar to bl-est
described in Algorithm 1 (resp. similar to etf), but with the additional constraint that two tasks
that belong to the same part must be mapped on the same processor. This means that once a task
of a part has been mapped, we enforce that other tasks of the same part share the same processor,
and hence do not incur any communication cost among the tasks of the same part. algorithm. This
variant is denoted *-Part (bl-est-Part or etf-Part depending on the corresponding baseline
algorithm) and has the same complexity as the corresponding baseline The pseudo-code of *-
Part can be found in Algorithm 2. An instantiation of this algorithm, bl-est-Part algorithm is
described in Algorithm 3.

*-Busy. One drawback of the *-Part heuristics is that it may happen that the next ready
task is in a part that we are just starting (say V`), while some other parts have not been entirely
scheduled. For instance, if processor Pj has already started processing a part V`′ but has not
scheduled all of the tasks of V`′ yet, *-Part may decide to schedule the new task from V` onto the
same processor if it will start at the earliest time. This may overload the processor and delay other
tasks from both V`′ and V`.

The second variant, *-Busy, checks whether a processor is already busy with an on-going part,
and it does not allocate a ready task from another part to a busy processor, unless all processors
are busy. In this latter case, *-Busy behaves similarly to *-Part. This algorithm is described in
Algorithm 4, and the complexity of this variant is the same as the list scheduling heuristic on top
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Algorithm 2: *-Part algorithm
Data: Directed graph G = (V,E), number of processors p, acyclic partition of G: V1, . . . , VK , a task

priority algorithm TP
Result: For each task vi ∈ V , allocation µ(i) and start time st(i); For each (vi, vj) ∈ E, start

time com(i, j)
1 Initialize Ready with all vi without any predecessors
2 Initialize mapPart array of size K to Null

3 while Ready is not empty do
4 vi ← TP (Ready)

// TP() returns highest priority task from the Ready list.
5 `← part id of vi
6 if mapPart[`] = Null then
7 Sort Pred[vi] in a non-decreasing order of the finish times
8 for k = 1 to p do
9 begink ← compk

10 for vj ∈ Pred[vi] do
11 Update earliest possible begin time begink with the latest finishing predecessor

communication

12 k∗ ← argmink{begink} // Best Processor

13 else
14 k∗ ← mapPart[`]

15 µ(i)← k∗

16 mapPart[`]← k∗

17 Assign communication times (in Pred[vi] order) and update computation times
18 Insert new ready tasks into Ready

of which the the variant is run, in our case bl-est or etf. The bl-est-Busy algorithm, as an
instantiation of *-Busy, is described in Algorithm 5.

*-Macro. The last variant, *-Macro, further focuses on the parts, and schedules a whole part
before moving to the next one, so as to avoid problems discussed earlier. This heuristic strongly
relies on the fact that the partitioning is acyclic, and hence it is possible to process parts one after
another in a topological order.

We extend the definition of ready tasks to parts. A part is ready if all its predecessor parts
have already been processed. Hence, when a part is ready, all predecessors of tasks from that part
have already been scheduled. We also extend the definition of bottom level to parts, by taking the
maximum bottom level of tasks in the part.
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Algorithm 3: bl-est-Part algorithm
Data: Directed graph G = (V,E), number of processors p, acyclic partition of G: V1, . . . , VK
Result: For each task vi ∈ V , allocation µ(i) and start time st(i); For each (vi, vj) ∈ E, start

time com(i, j)
1 bl← ComputeBottomLevels(G)
2 Ready← EmptyHeap
3 for vi ∈ V do
4 if Pred[vi] = ∅ then
5 Insert vi in Ready with key bl(i)

6 for k = 1 to p do
7 compk ← 0; sendk ← 0; recvk ← 0;

8 for k = 1 to K do
9 mapPartk ← 0;

10 while Ready 6= EmptyHeap do
11 vi ← extractMax(Ready)
12 `← index of the part of vi
13 Sort Pred[vi] in a non-decreasing order of the finish times
14 if mapPart` 6= 0 then k∗ ← mapPart`
15 else
16 for k = 1 to p do
17 for m = 1 to p do
18 send′m ← sendm; recv′m ← recvm;

19 begink ← compk
20 for vj ∈ Pred[vi] do
21 if µ(j) = k then t← st(j) + wj
22 else
23 t← cj,i +max{st(j) + wj , send

′
µ(j), recv

′
k}

24 send′µ(j) ← recv′k ← t

25 begink ← max{begink, t}

26 k∗ ← argmink{begink} // Best Processor

27 µ(i)← k∗

28 mapPart` ← k∗

29 st(i)← compk∗
30 for vj ∈ Pred[vi] do
31 if µ(j) = k∗ then com(j, i)← st(j) + wj
32 else
33 com(j, i)← max{st(j) + wj , sendµ(j), recvk∗}
34 sendµ(j) ← recvk∗ ← com(j, i) + cj,i

35 st(i)← max{st(i), com(j, i) + cj,i}
36 compk∗ ← st(i) + wi
37 Insert new ready tasks into Ready
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The generic *-Macro is detailed in Algorithm 6. The algorithm relies on two priority algo-
rithms, one for selecting parts, and one for selecting tasks. These priorities can be static, such as
bl (selects parts or tasks with maximum bottom level), or dynamic, such as earliest start time
as in etf. Once a part has been selected, the algorithm tentatively schedules the whole part on
each processor (lines 4-14). Tasks within the part are selected with the second priority algorithm.
Incoming communications are scheduled at that time to ensure the single-port model, and outgoing
communications are left for later. The processor that minimizes the finish time is selected, and the
part is assigned to this processor, since we aim at finishing a part as soon as possible to minimize
the makespan. The finish times for computation, sending, and receiving are updated. Once a part
has been scheduled entirely, the list of ready parts is updated, and the next ready part with highest
priority is selected.

In etf-Macro, similarly to heuristic etf, we tentatively schedule each ready part, and then
each task, and at each step, we keep the best schedule. The time complexity of these variants are
slightly different than the list scheduling heuristics on top of which the variant is run, because of
part-by-part scheduling. For etf-Macro, the complexity is O(p4 + p3|V |+ p2|V |2 + p|V ||E|).

bl-Macro is detailed in Algorithm 7. The algorithm selects the ready part with the maximum
bottom level (using a max-heap for ready parts, ReadyParts), and tentatively schedules the whole
part on each processor (lines 15-26). Tasks within the part are scheduled by non-increasing bl(i)’s,
hence respecting dependencies. Incoming communications are scheduled at that time to ensure the
single-port model, and outgoing communications are left for later. The processor that minimizes the
finish time is selected, and the part is assigned to this processor. The finish times for computation,
sending, and receiving are updated. Once a part has been scheduled entirely, the list of ready parts
is updated, and the next ready part with the largest bottom level is selected. This heuristic has
the same complexity as Algorithm 1.
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Algorithm 4: *-Busy algorithm
Data: Directed graph G = (V,E), number of processors p, acyclic partition of G: V1, . . . , VK , a task

priority algorithm TP
Result: For each task vi ∈ V , allocation µ(i) and start time st(i); For each (vi, vj) ∈ E, start

time com(i, j)
1 Initialize Ready with all vi without any predecessors
2 Initialize mapPart array of size K to Null

3 Initialize busy array of size K to zero
4 while Ready is not empty do
5 vi ← TP (Ready)

// TP() returns highest priority task from the Ready list.
6 `← part id of vi
7 if mapPart[`] = Null then
8 allBusy ← whether all processors are busy or not
9 Sort Pred[vi] in a non-decreasing order of the finish times

10 for k = 1 to p do
11 if busyk > 0 and allBusy = False then continue;
12 begink ← compk
13 for vj ∈ Pred[vi] do
14 Update earliest possible begin time begink with the latest finishing predecessor

communication.

15 k∗ ← argmink{begink} // Best Processor

16 else
17 k∗ ← mapPart[`]

18 µ(i)← k∗

19 if mapPart` = Null then busyk∗ ← busyk∗ + |V`|
20 mapPart[`]← k∗

21 busyk∗ ← busyk∗ − 1
22 st(i)← compk∗
23 Assign communication times (in Pred[vi] order) and update computation times
24 Insert new ready tasks into Ready
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Algorithm 5: bl-est-Busy algorithm
Data: Directed graph G = (V,E), number of processors p, acyclic partition of G: V1, . . . , VK
Result: For each task vi ∈ V , allocation µ(i) and start time st(i); For each (vi, vj) ∈ E, start

time com(i, j)
1 bl← ComputeBottomLevels(G)
2 Ready← EmptyHeap
3 for vi ∈ V do
4 if Pred[vi] = ∅ then
5 Insert vi in Ready with key bl(i)

6 for k = 1 to p do
7 compk ← 0; sendk ← 0; recvk ← 0; busyk ← 0;

8 for k = 1 to K do
9 mapPartk ← 0;

10 while Ready 6= EmptyHeap do
11 vi ← extractMax(Ready)
12 `← index of the part of vi
13 Sort Pred[vi] in a non-decreasing order of the finish times
14 if mapPart` 6= 0 then k∗ ← mapPart`
15 else
16 allBusy ← True
17 for k = 1 to p do
18 if busyk = 0 then allBusy ← False

19 for k = 1 to p do
20 if busyk > 0 and allBusy = False then continue
21 for m = 1 to p do
22 send′m ← sendm; recv′m ← recvm;

23 begink ← compk
24 for vj ∈ Pred[vi] do
25 if µ(j) = k then t← st(j) + wj
26 else
27 t← cj,i +max{st(j) + wj , send

′
µ(j), recv

′
k}

28 send′µ(j) ← recv′k ← t

29 begink ← max{begink, t}

30 k∗ ← argmink{begink} // Best Processor

31 µ(i)← k∗

32 if mapPart` = 0 then busyk∗ ← busyk∗ + |V`|
33 busyk∗ ← busyk∗ − 1
34 mapPart` ← k∗

35 st(i)← compk∗
36 for vj ∈ Pred[vi] do
37 if µ(j) = k∗ then com(j, i)← st(j) + wj
38 else
39 com(j, i)← max{st(j) + wj , sendµ(j), recvk∗}
40 sendµ(j) ← recvk∗ ← com(j, i) + cj,i

41 st(i)← max{st(i), com(j, i) + cj,i}
42 compk∗ ← st(i) + wi
43 Insert new ready tasks into Ready
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Algorithm 6: *-Macro algorithm
Data: Directed graph G = (V,E), number of processors p, acyclic partition of G: V1, . . . , VK , a

partition priority algorithm PP , a task priority algorithm TP
Result: For each task vi ∈ V , allocation µ(i) and start time st(i); For each (vi, vj) ∈ E, start

time com(i, j)
1 Initialize ReadyParts with all Vi without any predecessors
2 while ReadyParts is not empty do
3 Vi ← PP (ReadyParts)

// PP() returns highest priority part from the ReadyParts list.
4 for k = 1 to p do
5 endk ← compk
6 Initialize Ready with all tasks from Vi with no unscheduled predecessors
7 while Ready is not empty do
8 vx ← TP (Ready)

// TP() returns highest priority task from the Ready list.
9 Sort Pred[vx] in a non-decreasing order of the finish times

10 Assign communication times (in Pred[vx] order) and update computation times
11 µ(i)← k
12 Update st(x), com and comp

13 Update endk with the latest finishing task
14 Insert new ready tasks from same part into Ready

15 k∗ ← argmink{endk} // Best Processor
16 Schedule part Vi to processor k∗ (with the same procedure as in lines 6-14)
17 Insert new ready parts into ReadyParts
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Algorithm 7: bl-Macro algorithm
Data: Directed graph G = (V,E), number of processors p, acyclic partition of G: V1, . . . , VK
Result: For each task vi ∈ V , allocation µ(i) and start time st(i); For each (vi, vj) ∈ E, start

time com(i, j)
1 bl← ComputeBottomLevels(G)
2 for ` = 1 to K do
3 blPart` ← max{bl(i) | vi ∈ V`};
4 ReadyParts← EmptyHeap
5 for ` = 1 to K do
6 Sort V` in non-decreasing order of bl
7 if ∀vi ∈ V`, Pred[vi]\V` = ∅ then
8 Insert V` in ReadyParts with key blPart`

9 for k = 1 to p do
10 compk ← 0; sendk ← 0; recvk ← 0;

11 while ReadyParts 6= EmptyHeap do
12 V` ← extractMax(ReadyParts)
13 for vi ∈ V` do
14 Sort Pred[vi] in non-decreasing order of finish times

15 for k = 1 to p do
16 for m = 1 to p do
17 send′m ← sendm; recv′m ← recvm; comp′m ← compm;

18 for vi ∈ V` in non-increasing bl(i) order do
19 begink ← comp′k
20 for vj ∈ Pred[vi] do
21 if µ(j) = k then t← st(j) + wj
22 else
23 t← cj,i +max{st(j) + wj , send

′
µ(j), recv

′
k}

24 send′µ(j) ← recv′k ← t

25 begink ← max{begink, t}
26 comp′k ← begink + wi

27 k∗ ← argmink{comp′k}
28 for vi ∈ V` in non-increasing bl(i) order do
29 µ(i)← k∗

30 st(i)← compk∗
31 for vj ∈ Pred[vi] do
32 if µ(j) = k∗ then com(j, i)← st(j) + wj
33 else
34 com(j, i)← max{st(j) + wj , sendµ(j), recvk∗}
35 sendµ(j) ← recvk∗ ← com(j, i) + cj,i

36 st(i)← max{st(i), com(j, i) + cj,i}
37 compk∗ ← st(i) + wi

38 Insert new ready parts into ReadyParts
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5 Simulation results

We first describe the simulation setup in Section 5.1, in particular, the different instances that we
use in the simulations. Next, we compare the baseline algorithms under different communication
models (communication-delay model vs. realistic model) in Section 5.2. Section 5.3 shows the
impact of the number of parts used by the partitioner, the communication-to-computation ratio
(CCR), the number of processors, and the edge cut. Finally, we present detailed simulation results
in Section 5.4 and summarize these results in Section 5.5.

5.1 Simulation setup

The experiments were conducted on a computer equipped with dual 2.1 GHz Xeon E5-2683 proces-
sors and 512GB memory. We have performed an extensive evaluation of the proposed cluster-based
scheduling heuristics on instances coming from three sources.

The first set of instances is from Wang and Sinnen’s work [26]. This set contains roughly 1600
instances of graphs, each having 50 to 1151 nodes. All graphs have three versions for CCRs 0.1, 1,
and 10. The dataset includes a wide range of real world, regular structure, and random structure
graphs; more details about them are available in the original paper [26]. Since the graphs are up
to 1151 nodes, we refer to this dataset as the small dataset.

The second set of instances is obtained from the matrices available in the SuiteSparse Matrix
Collection (formerly known as the University of Florida Sparse Matrix Collection) [3]. From this
collection, we picked ten matrices satisfying the following properties: listed as binary, square, and
has at least 100000 rows and at most 226 nonzeros. For each such matrix, we took the strict upper
triangular part as the associated DAG instance, whenever this part has more nonzeros than the
lower triangular part; otherwise we took the lower triangular part. The ten graphs from the UFL
dataset and their characteristics are listed in Table 3.

The third set of instances is from the Open Community Runtime (OCR), an open source
asynchronous many-task runtime that supports point-to-point synchronization and disjoint data
blocks [29]. We use seven benchmarks from the OCR repository1. These benchmarks are either sci-
entific computing programs or mini-apps from real-world applications whose graphs’ characteristics

1https://xstack.exascale-tech.com/git/public/apps.git

Degree
Graph |V | |E| max. avg. #source #target
598a 110,971 741,934 26 13.38 6,485 8,344
caidaRouterLev. 192,244 609,066 1,071 6.34 7,791 87,577
delaunay-n17 131,072 393,176 17 6.00 17,111 10,082
email-EuAll 265,214 305,539 7,630 2.30 260,513 56,419
fe-ocean 143,437 409,593 6 5.78 40 861
ford2 100,196 222,246 29 4.44 6,276 7,822
luxembourg-osm 114,599 119,666 6 4.16 3,721 9,171
rgg-n-2-17-s0 131,072 728,753 28 5.56 598 615
usroads 129,164 165,435 7 2.56 6,173 6,040
vsp-mod2-pgp2. 101,364 389,368 1,901 7.68 21,748 44,896

Table 3 – Instances from the UFL Collection [3].
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Degree
Graph |V | |E| max. avg. #source #target
cholesky 1,030,204 1,206,952 5,051 2.34 333,302 505,003
fibonacci 1,258,198 1,865,158 206 3.96 2 296,742
quicksort 1,970,281 2,758,390 5 2.80 197,030 3
RSBench 766,520 1,502,976 3,074 3.96 4 5
Smith-water. 58,406 83,842 7 2.88 164 6,885
UTS 781,831 2,061,099 9,727 5.28 2 25
XSBench 898,843 1,760,829 6,801 3.92 5 5

Table 4 – Instances from OCR [29].

are listed in Table 4.
To cover a variety of applications, we consider UFL and OCR instances with random edge costs

and random vertex weights, using different communication-to-computation ratios (CCRs). For a
graph G = (V,E), the CCR is formally defined as

CCR =

∑
(vi,vj)∈E ci,j∑
vi∈V wi

.

In order to create instances with a target CCR, we proceed in two steps: (i) we first randomly
assign costs and weights between 1 and 10 to each edge and vertex, and then (ii) we scale the edge
costs appropriately to yield the desired CCR.

Since the etf algorithms have a complexity in O(p2|V |2 + p|V ||E|), they are not suited to
million-node graphs that are included in the OCR and UFL datasets. Hence, we have selected a
subset of OCR and UFL graphs, namely, graphs with 10k to 150k nodes, denoted as the medium
dataset. The big dataset contains all graphs from Tables 3 and 4.

5.2 Communication-delay model vs. realistic model

Our goal is to compare the new heuristics with the best competitors from the literature [26].
We call them the baseline heuristics, as they represent the current state-of-the-art. We have
access to executables of the original implementation [26]. However, these heuristics assume a pure
communication delay model, where communications can all happen at the same time, given that
the task initiating the communications has finished its computation. Hence, there is no need to
schedule the communications in this model.

In our work, we have assumed a more realistic, duplex single-port communication model. Thus,
we cannot directly compare the new heuristics with the executables of the baseline heuristics. We
have, therefore, implemented our own version of the baseline algorithms (bl-est, etf as best list-
based and dsc-glb-etf as best cluster-based scheduler) with the communication delay model, and
compared the resulting makespans with those of Wang and Sinnen’s implementation, denoted as
“ETF [W&S]”, in an attempt to validate our implementations. We show the performance profiles in
Figure 2 for this comparison. In the performance profiles, we plot the percentages of the instances
in which a scheduling heuristic obtains a makespan on an instance that is no larger than θ times
the best makespan found by any heuristic for that instance [4]. Therefore, the higher a profile at
a given θ, the better a heuristic is. Results on Figure 2 confirm those presented by Wang and
Sinnen: with low CCR (CCR=0.1 or CCR=1), dsc-glb-etf is worse than etf (the higher the
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Figure 2 – Performance profiles comparing our implementation of baseline heuristics with Wang
and Sinnen’s implementation of etf, on the small data set, with the communication-delay model.
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Figure 3 – Performance profiles comparing baselines on the small dataset, with the duplex single-
port communication model.

better). However, when the CCR increases, the performance of dsc-glb-etf also increases, and
it surpasses etf for CCR=10 at the end [26].

Figure 2 also shows that our implementation of etf performs better than ETF [W&S]. This
may be due to tie-breaking in case of equal ordering condition, that we could not verify in detail
since we had only the executables. Our implementation etf is, thus, a fair competitor since it
turns out to be better than the existing implementation.

Next, we converted our implementation of these algorithms into duplex single-port model,
as explained in Section 4, in order to establish the baseline to compare the proposed heuristics.
Figure 3 shows the performance profiles of our three baseline heuristics on the small dataset. From
these results, we see that dsc-glb-etf is not well suited for the realistic communication model,
since it performs pretty badly in comparison to etf. bl-est is also slightly worse than etf, but
it has a lower theoretical complexity.

5.3 Impact of number of parts, processors, CCR, and edge cut

In this section, we evaluate the impact of number of parts in the partitioning phase, number of
processors, and CCR of datasets, and edge cut of the partitioner on the quality of the proposed
heuristics.

Figure 4 depicts the relative performance of bl-est-Part, bl-est-Busy, and bl-Macro
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Figure 4 – Relative makespan compared to bl-est on the big dataset, as a function of the number
of parts, with CCR=10 and with 2 (top left), 4 (top right), 8 (middle left), 16 (middle right), and
32 (bottom left) processors.

compared to bl-est on the big dataset as a function of α for different number of processors,
p = {2, 4, 8, 16, 32}, and CCR=10. We set the number of parts K = α × p and we have α =
{1, 2, 3, 4, 6, 8, 10, 12, 14, 16}. As seen in the figure, except bl-Macro on p = 32 processors, the
new algorithms perform better than the baseline bl-est for all values of α that we tested. Even
for the worst case, that is, on 32 processors, bl-Macro performs better or comparable to bl-est,
when α ≤ 4. Therefore, we recommend to select α ≤ 4.

As shown in the previous studies (e.g., [26]), performance of the scheduling algorithms vary
significantly with different CCRs, and in particular, clustering-based schedulers perform better for
high CCRs, i.e., when communications are more costly than computations. Figure 5 shows the
performance of the heuristics on the big dataset with varying CCR, i.e., for CCR={1, 5, 10, 20} and
for p = {2, 4, 8, 16, 32}. The results are the average of all input instances using the best α value,
for α={1, 2, 3, 4}, for that instance.

As expected, similar to existing clustering-based schedulers, the proposed heuristics give signif-
icantly better results than the bl-est baseline. For instance, when CCR=20, for all numbers of
processors in the figure, all partitioning-based heuristics give at least 50% better makespans.

Comparing the relative performance of bl-est-Part and bl-est-Busy across the sub-figures,
one observes that bl-est-Part and bl-est-Busy have more or less stable performance with the
increasing number of processors. Note that the performance of bl-est-Part and bl-est-Busy
mostly depends on the value of CCR, but remains the same when the number of processors varies.
bl-Macro performs worse than the other two heuristics for small values of CCR with an increasing
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Figure 5 – Relative makespan compared to bl-est on the big dataset, as a function of the CCR,
with 2 (top left), 4 (top right), 8 (middle left), 16 (middle right), and 32 (bottom left) processors.

number of processors. However, for tested values of p, the performance of bl-Macro improves
as the CCR increases, and finally it outperforms all other heuristics on average when the CCR is
large enough.

We have carried out thorough experiments to see the effects of the edge cut of DAG partitioning
in the final makespan. We observed that having a smaller edge cut in DAG partitioning yields a
better makespan more than 82% of the time for all proposed heuristics, when the communication-
to-computation ratio (CCR) is 10. Indeed, on the small dataset, we counted the instances where
a better edge cut in partitioning gave a better makespan. Out of 9045 instances, there were 7494
such instances for *-Macro, 7519 for *-Part, and 7477 for *-Busy, hence ranging between 82.6%
and 83.1%.

5.4 Runtime comparison and performance results

We present the results on the small, medium and big datasets. We focus only on the bl-est
algorithm for the big dataset, since etf does not scale well (due to quadratic time complexity on
the number of vertices), and dsc-glb-etf shows poor results with the realistic communication
model and smaller datasets. Let us consider XSBench graph as an example of how long it takes
to run etf on one of the big graphs. When we schedule this graph on two processors, the DAG
partitioning algorithm runs in 9.5 seconds on average, and bl-est-Part, bl-est-Busy, and bl-
Macro heuristics run under half a second to totalize approximately 10 seconds. However, etf
algorithm takes 4759 seconds. On four processors, it goes up to 7507 seconds.
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Figure 6 – Performance profiles comparing all the algorithms on the small dataset with duplex
single-port model.

Small dataset. Figure 6 shows the comparison of all heuristics on the small dataset for
CCR={0.1, 1, 10}. While etf remains the best with a small CCR=0.1, etf-Part becomes bet-
ter as soon as CCR=1. Finally, the performance of bl-Macro and etf-Macro is striking for
CCR=10, where the *-Macro variant clearly outperforms all other heuristics.

As seen before, dsc-glb-etf performs poorly in this case, since it is not designed for realistic
duplex single-port communication model.

Medium dataset. Figure 7 shows the performance profiles on themedium dataset for CCR={1, 5, 10, 20}.
As expected, dynamic scheduling technique etf and our etf-based heuristics perform better than
their bl-est counterparts, as for the small dataset. Note that our heuristics perform better than
the original versions they are built upon, except for CCR=1.

etf and etf-based algorithms’ quality comes with a downside of high theoretical complexity
and consequently, slower algorithms due to their dynamic nature. Figure 8 shows runtime per-
formance profiles. It is therefore the fraction of instances in which an algorithm gave a runtime
no worse than the fastest algorithm, hence the higher the better. As expected, the static bl-est
approach runs much faster than dynamic approaches. DAG-partitioning introduces an overhead
to proposed heuristics, but this is still negligible compared to the theoretical complexity of the
algorithms. bl-est-Part, bl-est-Busy, and bl-Macro heuristics also perform comparably fast
even with partitioning time overhead. etf and etf-based heuristics run two to three orders of
magnitude slower, making them infeasible to run them on bigger graphs.

Big dataset. Table 5 displays the detailed results on the big dataset, with two processors, for
CCR in {1, 5, 10, 20}. On average, bl-est-Busy provides slightly better results than bl-est-Part.
When CCR=1, the heuristics often return a makespan that is slightly larger than the one from bl-
est, on average by 13%, 11%, and 2%, respectively. When CCR=5, bl-est-Part, bl-est-Busy,
and bl-Macro provide 20%, 22%, and 29% improvement compared to bl-est, on average on the
whole big dataset when considering an architecture with two processors. When CCR = 10, these
values become respectively 42%, 44%, and 49% (1.7, 1.8, and 2 times smaller, respectively). For
CCR=20, bl-est-Part and bl-est-Busy obtain a makespan 2.8 times smaller than the baseline,
and it goes up to 3.1 times smaller for bl-Macro.

Figure 9 shows the performance profile of these four algorithms for CCR={1, 5, 10, 20}. When
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Figure 7 – Performance profiles on medium dataset, with CCR={1, 5, 10, 20}.

CCR=1, bl-est performs best but bl-est-Busy performs very close to it. However, when the
value of CCR is increasing, it is more and more important to handle communications correctly. We
observe that the proposed three heuristics outperform the baseline (bl-est) as the CCR increases.
When CCR=5, in about 90% of all cases bl-est-Busy’s makespan is within 1.5× of the best result,
whereas this fraction is only 40% for bl-est. Starting with CCR=10, the proposed heuristics
completely dominate bl-est algorithm. For all values of CCRs, bl-est-Busy outperforms bl-
est-Part. bl-Macro, on the other hand, performs worse than bl-est-Part and bl-est-Busy
when CCR=1, and gradually outperforms the other two as the CCR increases.

To understand the nature of datasets where the proposed heuristics and the baseline behave
differently, we divided the big dataset into two subsets, the graphs consisting of more than 10% of
the nodes as sources, and the ones with less than 10%. Figures 10 and 11 show how the algorithms’
quality differ for these subsets. With a lot of sources (Figure 11), bl-est baseline performs badly
while bl-Macro performs better than with fewer sources. This is due to the inherent nature of
DAG-partitioning followed by cluster-by-cluster scheduling. Consider a DAG of clusters with one
source cluster. bl-Macro would need to schedule all of the nodes in this cluster in one processor
to start utilizing any other processor available. When the number of source clusters is high, this
heuristic can start efficiently using more processors right from the start.
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Figure 8 – Performance profiles of the runtime on medium dataset, with CCR=10.

In all simulations, the running times of bl-est, bl-est-Part, bl-est-Busy, and bl-Macro
are equivalent and negligible compared to the running time of the partitioning algorithm, which is
in the order of seconds.

5.5 Summary

Overall, the proposed meta-heuristics significantly improve the makespan found by the baseline
heuristics they are applied on, as empirically shown with a wide range of graph instances. The
results confirm the correlation between the edge cut found during the partitioning phase and the
makespan at the end. The benefit of a good partitioning with minimum edge cut objective shows
itself clearly, especially when the CCR is high.

The results show that *-Part and *-Busy behave consistently, and that they provide a steady
improvement over the baselines. Furthermore, their relative performance (compared to the baseline)
does not depend on the number of processors, which means that these heuristics scale well. They
perform even better when the ratio between communication and computation is large.

The *-Macro’s performance has a higher variance. This meta-heuristic tries to have more of
a “global" view during scheduling, by tentatively scheduling whole parts instead of deciding the
mapping when it is only at the first node of the part and dictating the rest (as done by *-Part
and *-Busy). It seems to not scale when the number of processors increases. Nevertheless, when
the ratio between communication and computation is large, it usually outperforms all the other
heuristics. Also, the experiments show that when the input instance to be scheduled has higher
percentage of sources (source parts), *-Macro is even more likely to outperform other heuristics.
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CCR=1 CCR=5
Graph bl-est bl-est-Part bl-est-Busy bl-Macro bl-est bl-est-Part bl-est-Busy bl-Macro
598a 3058476 1.14 1.14 1.04 5857127 0.62 0.62 0.57
caidaRouterLevel 5337718 1.02 1.02 1.00 8937548 0.95 0.95 0.80
delaunay-n17 3606092 1.02 1.03 1.00 5431960 0.69 0.69 0.67
email-EuAll 7711619 1.00 1.00 0.98 18123055 0.44 0.44 0.44
fe-ocean 3949464 1.12 1.12 1.02 5185419 0.86 0.86 0.78
ford2 2781775 1.03 1.03 0.99 4024990 0.70 0.70 0.69
luxembourg-osm 3152973 1.01 1.01 1.00 3506686 0.90 0.90 0.90
rgg-n-2-17-s0 3601079 1.23 1.23 1.06 4585262 0.91 0.91 0.83
usroads 3550396 1.02 1.02 1.02 4097201 0.97 0.91 0.88
vsp-mod2-pgp2-slptsk 2794636 1.04 1.04 1.00 5509790 0.67 0.67 0.64
cholesky 30603433 1.28 1.03 0.95 49102625 0.82 0.65 0.60
fibonacci 34601228 1.11 1.10 1.03 44109081 0.89 0.89 0.81
quicksort 54162227 1.01 1.01 1.00 71605033 0.76 0.76 0.76
RSBench 26941941 1.38 1.25 0.88 45191117 0.84 0.78 0.53
Smith-waterman 1661676 1.46 1.41 1.02 2196692 1.11 1.02 0.78
UTS 31904401 1.34 1.34 1.34 51957000 0.83 0.83 0.83
XSBench 41794985 1.15 1.15 1.02 49993817 0.97 0.97 0.87
Geomean 1.00 1.13 1.11 1.02 1.00 0.80 0.78 0.71

CCR=10 CCR=20
Graph bl-est bl-est-Part bl-est-Busy bl-Macro bl-est bl-est-Part bl-est-Busy bl-Macro
598a 9669102 0.38 0.38 0.38 17038485 0.22 0.22 0.22
caidaRouterLevel 14638583 0.85 0.85 0.58 26745328 0.56 0.56 0.35
delaunay-n17 9216833 0.40 0.40 0.39 17567627 0.22 0.22 0.21
email-EuAll 32997285 0.34 0.34 0.34 67066585 0.19 0.19 0.19
fe-ocean 7202636 0.62 0.62 0.56 11573357 0.39 0.39 0.35
ford2 6068545 0.47 0.47 0.45 10538479 0.27 0.27 0.26
luxembourg-osm 3941446 0.81 0.81 0.80 4801062 0.66 0.66 0.66
rgg-n-2-17-s0 5892674 0.73 0.73 0.66 9094485 0.48 0.48 0.43
usroads 5327111 0.67 0.67 0.67 8428888 0.43 0.43 0.42
vsp-mod2-pgp2-slptsk 9460442 0.59 0.49 0.45 19887584 0.28 0.46 0.23
cholesky 75676369 0.53 0.49 0.39 130153391 0.31 0.24 0.23
fibonacci 64454756 0.61 0.61 0.55 110167490 0.36 0.35 0.32
quicksort 104478680 0.52 0.52 0.52 173055640 0.32 0.32 0.31
RSBench 67674107 0.59 0.47 0.36 109245784 0.38 0.30 0.24
Smith-waterman 3408415 0.79 0.71 0.50 5694549 0.53 0.44 0.33
UTS 74335883 0.58 0.58 0.58 117598932 0.40 0.41 0.37
XSBench 59646365 0.83 0.82 0.75 77257208 0.64 0.63 0.60
Geomean 1.00 0.58 0.56 0.51 1.00 0.36 0.36 0.32

Table 5 – The makespan of bl-est in absolute numbers, and those of bl-est-Part, bl-est-Busy,
and bl-Macro relative to bl-est on big dataset, when the number of processors p is 2, and for
CCR in {1, 5, 10, 20}.
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Figure 9 – Performance profiles on big dataset, with CCR={1, 5, 10, 20}.
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Figure 10 – Performance profiles on big dataset when less than 10% of nodes are sources,
with CCR={1, 5, 10, 20}.
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Figure 11 – Performance profiles on big dataset when more than 10% of nodes are sources,
with CCR={1, 5, 10, 20}.
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6 Conclusion

We proposed three new partitioning-assisted list-based scheduling techniques (or meta-heuristics)
based on an acyclic partition of the DAGs: *-Part, *-Busy, and *-Macro. The acyclicity of the
partition ensures that we can schedule a part of the partition in its entirety as soon as its input
nodes are available. Hence, we have been able to design specific list-based scheduling techniques
that would not have been possible without an acyclic partition of the DAG.

To the best of our knowledge, this is the first partitioning-assisted list-scheduler using a multi-
level directed DAG partitioner for the clustering phase. The acyclicity is well suited to identify data
locality in the DAG, and it allows the design of specific allocation strategies, such as *-Macro.
The proposed meta-heuristics are generic and can be combined with any classical list-scheduling
heuristic, and used with any acyclic partitioner.

We compared our scheduling techniques with the widely used bl-est, etf, and dsc-glb-
etf heuristics, adapted to the realistic duplex single-port communication model. The results are
striking, with the new heuristics consistently improving the makespan. Even though *-Macro
does not seem to scale well with the number of processors, it delivers the best results in several
cases, while *-Part and *-Busy are consistently good. For instance, the proposed *-Part (resp.
*-Busy and *-Macro) algorithms achieve a makespan 2.6 (resp. 3.1 and 3.3) times smaller than
bl-est when considering the big dataset with CCR = 20, averaging over all processor numbers.
Furthermore, if we pick the best of the three heuristics for each instance, it is four times better.

Our experiments suggest that the relative performance of bl-est-Part and bl-est-Busy (etf-
Part and etf-Busy) compared to the baseline bl-est (etf) does not depend on the number of
processors, which means that these heuristics scale well. They provide a steady improvement
over the classic bl-est (etf) heuristic and they perform even better when the ratio between
communication and computation is large. bl-Macro seems to not scale when the number of
processors increases. Nevertheless, when the ratio between communication and computation is
large, it usually outperforms all the other heuristics.

As future work, we plan to consider convex partitioning instead of acyclic partitioning, which
we believe will enable more parallelism. The existing clustering techniques in the scheduling area
can also be viewed as local algorithms for convex partitioning. To the best of our knowledge,
there is no top-down convex partitioning technique available, which we plan to investigate. Also,
an adaptation of the proposed heuristics to heterogeneous processing systems would be needed. A
difficulty arises in addressing the communication cost, which also requires updating the partitioner.
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