
HAL Id: hal-01955859
https://hal.inria.fr/hal-01955859

Submitted on 14 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Checkpointing and Replication for Reliable
Execution of Linear Workflows with Fail-Stop and Silent

Errors
Anne Benoit, Aurélien Cavelan, Florina Ciorba, Valentin Le Fèvre, Yves

Robert

To cite this version:
Anne Benoit, Aurélien Cavelan, Florina Ciorba, Valentin Le Fèvre, Yves Robert. Combining Check-
pointing and Replication for Reliable Execution of Linear Workflows with Fail-Stop and Silent Errors.
[Research Report] ROMA (INRIA Rhône-Alpes / LIP Laboratoire de l’Informatique du Parallélisme);
LIP - Laboratoire de l’Informatique du Parallélisme. 2018. <hal-01955859>

https://hal.inria.fr/hal-01955859
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
92

35
--

FR
+E

N
G

RESEARCH
REPORT
N° 9235
December 2018

Project-Team ROMA

Combining
Checkpointing and
Replication for Reliable
Execution of Linear
Workflows with Fail-Stop
and Silent Errors
Anne Benoit, Aurelien Cavelan, Florina Ciorba, Valentin Le Fèvre,
Yves Robert

0



0



RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Combining Checkpointing and Replication for
Reliable Execution of Linear Workflows with

Fail-Stop and Silent Errors

Anne Benoit∗†, Aurelien Cavelan‡, Florina Ciorba‡, Valentin Le
Fèvre∗, Yves Robert∗§

Project-Team ROMA

Research Report n° 9235 — December 2018 — 32 pages

Abstract: Large-scale platforms currently experience errors from two different sources,
namely fail-stop errors (which interrupt the execution) and silent errors (which strike
unnoticed and corrupt data). This work combines checkpointing and replication for the
reliable execution of linear workflows on platforms subject to these two error types. While
checkpointing and replication have been studied separately, their combination has not yet
been investigated despite its promising potential to minimize the execution time of linear
workflows in error-prone environments. Moreover, combined checkpointing and replication
has not yet been studied in the presence of both fail-stop and silent errors. The combina-
tion raises new problems: for each task, we have to decide whether to checkpoint and/or
replicate it to ensure its reliable execution. We provide an optimal dynamic programming
algorithm of quadratic complexity to solve both problems. This dynamic programming
algorithm has been validated through extensive simulations that reveal the conditions in
which checkpointing only, replication only, or the combination of both techniques, lead to
improved performance.

Key-words: checkpoint, replication, HPC, fail-stop error, silent error, linear workflow

∗ LIP, École Normale Supérieure de Lyon, CNRS & Inria, France
† Georgia Institute of Technology, Atlanta, GA, USA
‡ University of Basel, Switzerland
§ University Tennessee Knoxville, USA

1



Combinaison des techniques de checkpoint et de réplication
pour l’exécution efficace de châınes de tâches avec erreurs

fatales et silencieuses

Résumé : Les plateformes à grande échelle subissent des erreurs de deux sources différentes,
à savoir les erreurs fatales (qui interrompent l’exécution de l’application) et les erreurs silen-
cieuses (qui ne sont pas détectées lorsqu’elles arrivent et corrompent les données). Ce rap-
port étudie la combinaison des techniques de checkpoint et de réplication pour l’exécution
efficace et sûre de châınes de tâches sur des plates-formes à grande échelle en présence
d’erreurs fatales. . Ces deux techniques ont été étudiées séparément mais leur combinaison
ouvre de nouvelles perspectives pour la minimisation du temps d’exécution dans des envi-
ronnements sujets aux fautes. De plus, la combinaison des checkpoints et de la réplication
n’a jamais été étudiée avec la présence de fautes fatales et silencieuses à la fois. Pour chaque
tâche, on doit décider s’il faut la checkpointer et /ou s’il faut la répliquer. Nous proposons
un algorithme de programmation dynamique de complexité quadratique en le nombre de
tâches pour résoudre le problème, et montrons expérimentalement, via un jeu complet de
simulations, dans quelles conditions les deux techniques, prises séparément ou combinées,
peuvent améliorer les performances.

Mots-clés : checkpoint, réplication, HPC, erreur fatale, erreur silencieuse, châıne de
tâches

2



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors3

1 Introduction

Several high-performance computing (HPC) applications are designed as a succession of
(typically large) tightly-coupled computational kernels, or tasks, that should be executed
in sequence [9, 15, 26]. These parallel tasks are executed on the entire platform, and they
exchange data at the end of their execution. In other words, the task graph is a linear
chain, and each task (except maybe the first one and the last one) reads data from its
predecessor and produces data for its successor. Such linear chains of tasks also appear in
image processing applications [30], and are usually called linear workflows [41].

The first objective when considering linear workflows is to ensure their efficient execu-
tion, which amounts to minimizing the total parallel execution time, or makespan. However,
a reliable execution is also critical to performance. Indeed, large-scale platforms are increas-
ingly subject to errors [10, 11]. Scale is the enemy here: even if each computing resource
is very reliable, with, say, a Mean Time Between Errors (MTBE) of ten years, meaning
that each resource will experience an error only every 10 years on average, a platform com-
posed of 100, 000 of such resources will experience an error every fifty minutes [25]. Hence,
fault-tolerance techniques to mitigate the impact of errors are required to ensure a correct
and uninterrupted execution of the application [28]. To further complicate matters, several
types of errors need to be considered when computing at scale. In addition to the classical
fail-stop errors (such as hardware failures or crashes), silent errors (also known as silent data
corruptions) constitute another threat that can no longer be ignored [33, 53, 51, 52, 31].
There are several causes of silent errors, such as cosmic radiation, packaging pollution,
among others. Silent errors can strike the cache and memory (bit flips) components as
well as the CPU operations; in the latter case they resemble floating-point errors due to
improper rounding, but have a dramatically larger impact because any bit of the result, not
only low-order mantissa bits, can be corrupted.

The standard approach to cope with fail-stop errors is checkpoint with rollback and
recovery [13, 19]: in the context of linear workflow applications, each task can decide to
take a checkpoint after it has correctly executed. A checkpoint is simply a file including
all intermediate results and associated data that is saved on a storage medium resilient to
errors; it can be either the memory of another processor, a local disk, or a remote disk.
This file can be recovered if a successor task experiences an error later in the execution. If
there is an error while some task is executing, the application has to roll back to the last
checkpointed task (or to start recomputing again from scratch if no checkpoint was taken).
Then the checkpoint is read from the storage medium (recovery phase), and execution
resumes from that task onward. If the checkpoint was taken many tasks before an error
strikes, there is a lot of re-execution involved, which calls for more frequent checkpoints.
However, checkpointing incurs a significant overhead, and is a mere waste of resources if no
error strikes. Altogether, there is a trade-off to be found, and one may want to checkpoint
only carefully selected tasks.

While checkpoint/restart [13, 19, 20] is the de-facto recovery technique for addressing
fail-stop errors, there is no widely adopted general-purpose technique to cope with silent
errors. The challenge with silent errors is detection latency : contrarily to a fail-stop error
whose detection is immediate, a silent error is identified only when the corrupted data
is activated and/or leads to an unusual application behavior. However, checkpoint and
rollback recovery assumes instantaneous error detection, and this raises a new difficulty:
if the error stroke before the last checkpoint, and is detected after that checkpoint, then
the checkpoint is corrupted and cannot be used to restore the application. To address the

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors4

problem of silent errors, many application-specific detectors, or verification mechanisms,
have been proposed. We apply such a verification mechanism after each task in this paper.
Our approach is agnostic of the nature of the verification mechanism (checksum, error
correcting code, coherence test, etc.). In this context, if the verification succeeds, then the
output of the task is correct, and one can safely either proceed to the next task directly,
or save the result beforehand by taking a checkpoint. Otherwise, if verification fails we
have to rollback to the last saved checkpoint and re-execute the work since that point on.
However, and contrarily to fail-stop errors, silent errors do not cause the loss of the entire
memory content of the affected processor. To account for this difference, we use a two-level
checkpointing scheme: the checkpoint file is saved in the main memory of the processor
before being transferred to some storage (disk) that is resilient to fail-stop errors. This
allows for recovering faster after a silent error than after a fail-stop error.

Replication is a well-known, but costly, method to deal with both, fail-stop errors [22,
23, 12, 36, 49, 21, 18, 38] and silent errors [32, 3]. While both checkpointing and replication
have been extensively studied separately, their combination has not yet been investigated
in the context of linear workflows, despite its promising potential to minimize the execution
time in error-prone environments. The contributions of this work are the following:

• We provide a detailed model for the reliable execution of linear workflows, where each
task can be replicated or not, and with a two-level checkpoint/recovery mechanism
whose cost depends both on the number of processors executing the task, and on
whether the task is replicated or not.

• We address both fail-stop and silent errors. We perform a verification after each task
to detect silent errors and recover from the last in-memory checkpoint after detecting
one. We recover from the last disk checkpoint after a fail-stop error. If a task is
replicated, we do not need to roll back and we can directly proceed to the next task,
unless both replicas have been affected (by either error type).

• We design an optimal dynamic programming algorithm that minimizes the makespan
of a linear workflow with n tasks, with a quadratic complexity, in the presence of
fail-stop and silent errors.

• We conduct extensive experiments to evaluate the impact of using both replication
and checkpointing during execution, and compare them to an execution without repli-
cation.

• We provide guidelines about when it is beneficial to employ checkpointing only, repli-
cation only, or to combine both techniques together.

The paper is organized as follows. Section 2 details the model and formalizes the objec-
tive function and the optimization problem. Section 3 presents a preliminary result for the
dynamic programming algorithm: we explain how to compute the expected time needed
to execute a single task (replicated or not), assuming that its predecessor has been check-
pointed. The proposed optimal dynamic programming algorithm is outlined in Section 4.
The experimental validation is provided in Section 5. Finally, related work is discussed in
Section 6, and the work is concluded in Section 7.

2 Model and objective

This section details the framework of this study. We start with the application and platform
models, then we detail the verification, checkpointing and replication, and finally we state
the optimization problem.

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors5

2.1 Application model

We target applications whose workflows represent linear chains of parallel tasks. More
precisely, for one application, consider a chain T1 → T2 → · · · → Tn of n parallel tasks Ti,
1 ≤ i ≤ n. Hence, T1 must be completed before executing T2, and so on.

Here, each Ti is a parallel task whose speedup profile obeys Amdahl’s law [1]: the total
work, wi, consists of a sequential fraction αiwi, 0 ≤ αi ≤ 1, and the remaining fraction
(1−αi)wi perfectly parallel. The (error-free) execution time, Ti, using qi processors is thus

wi

(
αi + 1−αi

qi

)
. Without loss of generality, we assume that processors execute the tasks

at unit speed, and we use time units and work units interchangeably. While our study is
agnostic of task granularity, it applies primarily to frameworks where tasks represent large
computational entities whose execution takes from a few minutes up to tens of minutes. In
such frameworks, it may be worthwhile to replicate or to checkpoint tasks to mitigate the
impact of errors.

2.2 Execution platform

We target a homogeneous platform with p processors Pi, 1 ≤ i ≤ p. We assume that the
platform is subject to fail-stop and silent errors whose inter-arrival times follow an Expo-
nential distribution. More precisely, let λFind be the fail-stop error rate of each individual
processor Pi: the probability of having a fail-stop error striking Pi within T time-units is
P(X ≤ T ) = 1 − e−λ

F
indT . Similarly, let λSind be the silent error rate of each individual

processor Pi: the probability of having a silent error striking Pi within T time-units is
P(Y ≤ T ) = 1− e−λSindT . Then, a computation on q ≤ p processors has an error rate qλFind
for fail-stop errors, and qλSind for silent errors. The probability of having a fail-stop error

within T time-units and with q processors becomes 1−e−qλFindT (and 1−e−qλSindT for a silent
error) [25].

2.3 Verification

To detect silent errors, we add a verification mechanism at the end of each task. This
ensures that the error will be detected as soon as possible. The verification following task
Ti has a cost Vi. We assume that the verification mechanism has a perfect recall (it detects
all errors). This guarantees that all taken checkpoints are correct, because they are always
preceded by a verification. Similarly, we assume that no silent error can strike during the
verification.

The cost Vi depends upon the detector and can thereby take a wide range of values. In
this work, we adopt a quite general formula and use

Vi(qi) = ui +
vi
qi

(1)

to model the cost of verifying task Ti when executed with qi processors, where ui and vi
denote the sequential and parallel cost of the verification, respectively. In the experiments
(Section 5.2), we instantiate the model with two cases:

• We use ui = βwi and vi = 0, where β is a small parameter (around 1%). This means
that the cost of the verification is proportional to the sequential cost wi of Ti. It cor-
responds to the case of data-oriented kernels processing large files and checksumming
for verification in a centralized location (hence sequentially) [5].

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors6

• We use ui = 0 and vi = βwi. This means that the cost of the verification is propor-
tional to the parallel fraction of Ti. It corresponds to the same scenario as above, but
where checksumming is performed in parallel on all enrolled processors.

2.4 Checkpointing

The output of each task Ti can be checkpointed in time Ci. We use a two-level check-
point protocol where the checkpoint is first saved locally (memory checkpoint) before being
transferred to a slower but reliable storage like a filesystem (disk checkpoint). The memory
checkpoint will be lost when a fail-stop error strikes a processor (and its local data), whereas
the disk checkpoint will always remain available to restart the application.

When a fail-stop error strikes during the execution of Ti, we first incur a downtime D,
and then we must start the execution from the task following the last checkpoint. Hence, if
Tj is the last checkpointed task, the execution starts again at task Tj+1, and the recovery
cost is RDj+1, which amounts to reading the disk checkpoint of task Tj . When a silent error
is detected at the end of Ti by the verification mechanism, we also roll back to the last
checkpointed task Tj , but (i) we do not pay the downtime D; and (ii) the recovery cost is
RMj+1, which amounts to reading the memory checkpoint of task Tj (hence at a much smaller
cost than for a fail-stop error).

The checkpoint cost Ci, and both recovery costs RDj+1 and RMj+1 clearly depend upon
the checkpoint protocol and storage medium, as well as upon the number qi of enrolled
processors. In this work, we adopt a quite general formula for checkpoint times and use

Ci(qi) = ai +
bi
qi

+ ciqi (2)

to model the time to save a checkpoint after Ti executed with qi processors. Here, ai + bi
qi

represents the I/O overhead to write the task output file Mi to the storage medium. For
in-memory checkpointing [48], ai + bi

qi
is the communication time, in which ai denotes the

latency to access the storage system; then we have bi
qi

= Mi
τnetqi

, where τnet is the network

bandwidth (each processor stores Mi
qi

data items). For coordinated checkpointing to stable
storage, there are two cases: if the I/O bottleneck is the storage system’s bandwidth,
then ai = β + Mi

τio
and bi = 0, where β is a start-up time and τio is the I/O bandwidth;

otherwise, if the I/O bottleneck is the network latency, we retrieve the same formula as
for in-memory checkpointing. Finally, ciqi represents the message passing overhead that
grows linearly with the number of processors, in order for all processors to reach a global
consistent state [19, 50].

For the cost of recovery (from memory or from disk), we assume similar formulas:

RMi (qi) = aMi +
bMi
qi

+ cMi qi; RDi (qi) = aDi +
bDi
qi

+ cDi qi. (3)

The coefficients depend on the type of recovery: again, a memory recovery is much faster
than a disk recovery. If we further assume that reading and writing from/to the same
storage medium (memory or disk) have same cost, we have

Ci(qi) = RDi+1(qi) +RMi+1(qi)

since recovering for task Ti+1 amounts to reading the checkpoint from task Ti.

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors7

Finally, we assume that there is a fictitious task T0 of zero weight (w0 = 0) that is
always checkpointed, so that RD1 (q1) represents the time for I/O input from the external
world. Similarly, we systematically checkpoint the last task Tn, in order to account for the
I/O output time Cn(qn).

2.5 Replication

When executing a task, we envision two possibilities: either the task is not replicated, or it
is replicated. To explain the impact of replication, we momentarily assume that we consider
fail-stop errors only. Then we return to the scenario with both fail-stop and silent errors.

With fail-stop errors only, consider a task Ti, and assume for simplicity that the prede-
cessor Ti−1 of Ti has been checkpointed. If it is not the case, i.e., if the predecessor Ti−1
of Ti is not checkpointed, we have to roll back to the last checkpointed task, say Tk where
k < i − 1, whenever an error strikes, and re-execute the entire segment from Tk+1 to Ti
instead of just Ti.

Without replication, a single copy of Ti is executed on the entire platform, hence with
qi = p processors. Then we let Enorep(i) denote the expected execution time of Ti when

accounting for errors. We attempt a first execution, which takes T norep
i = wi

(
αi + 1−αi

p

)
if

no fail-stop error strikes. But if a fail-stop error does strike, we must account for the time
that has been lost (between the beginning of the execution and the fail-stop error), then
perform a downtime D, a recovery Ri(p) (since we use the entire platform for Ti), and then
re-execute Ti from scratch. Similarly, if we decide to checkpoint after Ti, we need Ci(p)
time units. We explain how to compute Enorep(i) in Section 3.

With replication, two copies of Ti are executed in parallel, each with qi = p
2 processors.

If no fail-stop error strikes, both copies finish execution in time T rep
i = wi

(
αi + 1−αi

p
2

)
,

since each copy uses p
2 processors. If a fail-stop error strikes one copy, we proceed as

before, account for the downtime D, recover (in time Ri(
p
2) now), and restart execution

with that copy. Then there are two cases: (i) if the second copy successfully completes its
first execution, the fail-stop error has no impact and the execution time remains the same
as the error-free execution time; (ii) however, if the second copy also fails to execute, we
resume its execution, and iterate until one copy successfully completes. Of course, case (ii)
is less likely to happen than case (i), which explains why replication can be useful. Finally,
if we decide to checkpoint after Ti, the first successful copy will take the checkpoint in time
Ci(

p
2).
Replication raises several complications in terms of checkpoint and recovery costs. When

a replicated task Ti is checkpointed, we can enforce that only one copy (the first one to
complete execution) would write the output data onto the storage medium, hence with a
cost Ci(

p
2), as stated above. Similarly, when a single copy of a replicated task Ti performs

a recovery after a fail-stop error, the cost would be Ri(
p
2). However, in the unlikely event

where both copies are struck by a fail-stop error at close time instances, their recoveries
would overlap, and the cost can vary anywhere between Ri(

p
2) and 2Ri(

p
2), depending upon

the amount of contention, the length of the overlap and where the I/O bottleneck lies. We
will experimentally evaluate the impact of the recovery cost with replication in Section 5.1.
For simplicity, in the rest of the paper, we use Crep

i for the checkpoint cost of Ti when it

is replicated, and Cnorep
i when it is not. Similarly, we use RDrep

i or RMrep
i for the recovery

costs (disk or memory) when Ti is replicated, and RDnorep
i or RMnorep

i when it is not. Note
that the recovery cost of Ti depends upon whether it is replicated or not, but does not

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors8

depend upon whether the checkpointed task Ti−1 was replicated or not, since we need to
read the same file from the storage medium in both cases. The values of Crep

i and Cnorep
i

can be instantiated from Equation (2) and those of RDrep
i , RDnorep

i , RMrep
i and RMnorep

i

can be instantiated from Equation (3). We let Erep(i) denote the expected execution time
of Ti with replication and when accounting for fail-stop errors, when Ti−1 is checkpointed.
The derivation of Erep(i) is significantly more complicated than for Enorep(i) and represents
a new contribution of this work, detailed in Section 3.2.

We now detail the impact of replication when both fail-stop and silent errors can strike.
First, we have to state how the verification cost Vi of task Ti depends upon whether Ti is
replicated or not. For the analysis, we keep a general model and let V rep

i be the cost when
Ti is replicated, and V norep

i when it is not. However, as explained later in the experimental
evaluation (Section 5.2), we use two different instantiations of Equation (1), which directly
give the two (possibly different) values of V rep

i and V norep
i as a function of parameter β.

Next, consider again a task Ti, and still assume for simplicity that the predecessor Ti−1
of Ti has been checkpointed. The impact of fail-stop errors is the same as before, and
depends upon how many replicas of Ti are executed. The only difference is that the fail-
stop error can now strike either during the execution of a replica or during its verification.
But if no fail-stop error strikes, we still have to perform the verification to detect a possible
silent error, whose probability depends upon the error-free execution time of that replica.
Recall that no silent error can strike during the verification (but a fail-stop can strike). If
a silent error is detected, we have to re-execute the task, in which case we recover from the
memory checkpoint instead of from the disk checkpoint.

Finally, we extend the definition of Enorep(i) and Erep(i) to account for both fail-stop
and silent errors, when Ti−1 is checkpointed. We explain how to compute both quantities
in Section 3.2.

2.6 Optimization problem

The objective of this work is to minimize the expected makespan of the linear workflow in
the presence of fail-stop and silent errors. For each task, we have four choices: either we
replicate the task or not, and either we checkpoint it or not. More formally, for each task Ti
we need to decide: (i) if it is checkpointed or not; and (ii) if it is replicated or not, (meaning
that there are 4n combinations for the whole workflow) with the objective to minimize the
total execution time of the workflow. We point out that none of these decisions can be
made locally. Instead, we need to account for previous decisions and optimize globally. Our
major contribution of this work is to provide an optimal dynamic programming algorithm
to solve this problem, which we denote as ChainsRepCkpt.

We point out that ChainsCkpt, the simpler problem without replication, i.e., optimally
placing checkpoints for a chain of tasks, has been extensively studied. The first dynamic
programming algorithm to solve ChainsCkpt appears in the pioneering paper of Toueg
and Babaoğlu [43] back in 1984, for the scenario with fail-stop errors only (see Section 6
on related work for further references). Adding replication significantly complicates the
solution. Here is an intuitive explanation: When the algorithm recursively considers a
segment of tasks from Ti to Tj , where Ti−1 and Tj are both checkpointed and no intermediate
task Tk, i ≤ k < j is checkpointed, there are many cases to consider to account for possible
different values in: (i) execution time, since some tasks in the segment may be replicated;
(ii) checkpoint, whose cost depends upon whether Tj is replicated or not; and (iii) recovery,
whose cost depends upon whether Ti is replicated or not. We provide all details in Section 4.

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors9

3 Computing Enorep(i) and Erep(i)

This section details how to compute the expected time needed to execute a task Ti, assuming
that the predecessor of Ti has been checkpointed. Hence, we need to re-execute only Ti
when an error strikes. We explain how to deal with the general case of re-executing a
segment of tasks, some of them replicated, in Section 4. Here, we start with the case where
Ti is not replicated. It is already known how to compute Enorep(i) [25, 6], but we present
this case to help the reader follow the derivation in Section 3.2 for the case where Ti is
replicated, which is new and much more involved.

3.1 Computing Enorep(i)

To compute Enorep(i), the average execution time of Ti with p processors without replication,
we conduct a case analysis:

• Either a fail-stop error strikes during the execution of the task and its verification
(lasting T norep

i + V norep
i ), and in this case we lose some work and need to re-execute

the task, recovering from a disk checkpoint;

• Either there is no fail-stop error, and in this case the verification indicates whether
there has been a silent error or not:

– If a silent error is detected, we need to re-execute the task right after the verifi-
cation, recovering from a memory checkpoint;

– Otherwise the execution has been successful.

This leads to the following recursive formula:

Enorep(i) = P(Xp ≤ T norep
i + V norep

i )
(
T norep
lost (T norep

i + V norep
i ) +D +RDnorep

i + Enorep(i)
)

+ (1− P(Xp ≤ T norep
i + V norep

i ))
(
T norep
i + V norep

i (4)

+ P(X
′
p ≤ T norep

i )(D +RMnorep
i + Enorep(i))

)
,

where P(Xp ≤ t) is the probability of having a fail-stop error on one of the p processors

before time t, i.e., P(Xp ≤ t) = 1 − e−λFindpt, and P(X
′
p ≤ t) is the probability of having

a silent error on one of the p processors before time t, i.e., P(X
′
p ≤ t) = 1 − e−λ

S
indpt.

The time lost when an error strikes is the expectation of the random variable Xp, knowing
that the error stroke before the end of the task and its verification. We compute it as follows:

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors10

T norep
lost (T norep

i + V norep
i ) =

+∞∫
0

xP(Xp = x|Xp ≤ T norep
i + V norep

i )dx

=
1

P(Xp ≤ T norep
i + V norep

i )

Tnorep
i +V norep

i∫
0

xP(Xp = x)dx

=
1

P(Xp ≤ T norep
i + V norep

i )

Tnorep
i +V norep

i∫
0

x
dP(Xp ≤ x)

dx
dx

After integration, we get the formula:

T norep
lost (T norep

i + V norep
i ) =

1

λFindp
− T norep

i + V norep
i

eλ
F
indp(T

norep
i +V norep

i ) − 1
. (5)

Replacing the left hand side term of Equation (5) in Equation (4) and solving, we derive:

Enorep(i) =

(
1

λFindp
+D +RDnorep

i

)
ep((λ

F
ind+λ

S
ind )T

norep
i +λFindV

norep
i ) (6)

−
(

1

λFindp
+ (RDnorep

i −RMnorep
i )

)
eλ

S
indpT

norep
i − (D +RMnorep

i ).

Recall that T norep
i = wi

(
αi + 1−αi

p

)
in Equation (6). Finally, if we decide to checkpoint Ti,

we simply add Cnorep
i to Enorep(i).

3.2 Computing Erep(i)

We now discuss the case where Ti is replicated; each copy executes with p
2 processors. To

compute Erep(i), the expected execution time of Ti with replication, we conduct a case
analysis similar to that of Section 3.1:

• Either two fail-stop errors strike before the end of the task and its verification (lasting
T rep
i +V rep

i ), with one fail-stop error striking each copy. Then we have lost some work
and need to re-execute the task from a disk checkpoint;

• Or at least one copy is not hit by any fail-stop error. Then we need to account for
two different cases in the analysis:

– Both copies have survived: then we need to re-execute the task (recovering from
a memory checkpoint) only if both copies are hit by a silent error.

– Only one replica survived: then we need to re-execute the task if this replica is
hit by a silent error.

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors11

This leads to the following formula:

Erep(i) = P(Yp ≤ T rep
i + V rep

i )2
(
T replost(T

rep
i + V rep

i ) +D +RDrep
i + Erep(i)

)
+ (1− P(Yp ≤ T rep

i + V rep
i )2)(T rep

i + V rep
i ) (7)

+
(

2(1− P(Yp ≤ T rep
i + V rep

i ))P(Yp ≤ T rep
i + V rep

i )P(Y
′
p ≤ T rep

i )

+ (1− P(Yp ≤ T rep
i + V rep

i ))2P(Y
′
p ≤ T rep

i )2
)

(D +RMrep
i + Erep(i)),

where P(Yp ≤ t) is the probability of having an error on one replica of p
2 processors before

time t, i.e., P(Yp ≤ t) = 1−e−
λFindp

2
t, and P(Y

′
p ≤ t) is the probability of having a silent error

on one replica of p
2 processors before time t, i.e., P(Y

′
p ≤ t) = 1− e−

λSindp

2
t. The first line of

Equation (7) corresponds to the case where both replicas are hit by a fail-stop error, the
second line accounts for the time spent in case at least one replica survives. The last two
lines correspond to the two cases when we need to re-execute the task after the detection
of a silent error (one replica alive for line 3, two replicas alive for line 4 of Equation (7)).

The time lost when both copies fail can be computed in a similar way as before:

T rep
lost(T

rep
i ) =

1

P(Yp ≤ T rep
i + V rep

i )

T rep
i +V rep

i∫
0

x
dP(Yp ≤ x)

dx
dx.

After computation and verification using a Maple sheet, we obtain the following result:

T rep
lost(T

rep
i + V rep

i ) =
(−2λFindp(T

rep
i +V rep

i )−4)e−
λFindp(T

rep
i

+V
rep
i

)

2 +(λFindp(T
rep
i +V rep

i )+1)e−λ
F
indp(T

rep
i

+V
rep
i

)+3

(e−
λF
ind

p(T
rep
i

+V
rep
i

)

2 −1)2λFindp
.

(8)
Replacing the left hand side term of Equation (8) in Equation (7) and solving, we get:

Erep(i) = − (4 + 2λFindp(R
Drep
i −RMrep

i ))ep(
λFind (T

rep
i

+V
rep
i

)

2
+λSindT

rep
i )

(2ep
λF
ind

(T
rep
i

+V
rep
i

)+λS
ind

T
rep
i

2 − 1) · λFindp
(9)

+
(1 + λFindp(R

Drep
i −RMrep

i ))eλ
S
indpT

rep
i

(2ep
λF
ind

(T
rep
i

+V
rep
i

)+λS
ind

T
rep
i

2 − 1) · λFindp

+
(3 + λFindp(D +RDrep

i ))ep(λ
F
ind (T

rep
i +V rep

i )+λSindT
rep
i )

(2ep
λF
ind

(T
rep
i

+V
rep
i

)+λS
ind

T
rep
i

2 − 1) · λFindp
− (D +RMrep

i )

Recall that T rep
i = wi

(
αi + 1−αi

p
2

)
in Equation (9). Finally, if we decide to checkpoint Ti,

we simply add Crep
i to Erep(i).

4 Optimal dynamic programming algorithm

In this section, we provide an optimal dynamic programming (DP) algorithm to solve the
ChainsRepCkpt problem for a linear chain of n tasks.

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors12

Theorem 1. The optimal solution to the ChainsRepCkpt problem can be obtained using
a dynamic programming algorithm in O(n2) time, where n is the number of tasks in the
chain.

Proof. The algorithm recursively computes the expectation of the optimal time required
to execute tasks T1 to Ti and then checkpoint Ti. As already mentioned, we need to
distinguish two cases, according to whether Ti is replicated or not, because the cost of the
final checkpoint depends upon this decision. Hence, we recursively compute two different
functions:

• T rep
opt (i), the expectation of the optimal time required to execute tasks T1 to Ti, knowing

that Ti is replicated;
• T norep

opt (i), the expectation of the optimal time required to execute tasks T1 to Ti,
knowing that Ti is not replicated.

Note that checkpoint time is not included in T rep
opt (i) nor T norep

opt (i). The solution to Chains-
RepCkpt will be given by

min
{
T rep
opt (n) + Crep

n , T norep
opt (n) + Cnorep

n

}
. (10)

We start with the computation of T rep
opt (j) for 1 ≤ j ≤ n, hence assuming that the last

task Tj is replicated. We express T rep
opt (j) recursively as follows:

T rep
opt (j)= min

1≤i<j



T rep
opt (i) + Crep

i + T rep,rep
NC (i+ 1, j),

T rep
opt (i) + Crep

i + T norep,rep
NC (i+ 1, j),

T norep
opt (i) + Cnorep

i + T rep,rep
NC (i+ 1, j),

T norep
opt (i)+Cnorep

i +T norep,rep
NC (i+ 1, j),

RDrep
1 + T rep,rep

NC (1, j),

RDnorep
1 + T norep,rep

NC (1, j)


(11)

In Equation (11), Ti corresponds to the last checkpointed task before Tj , and we try all
possible locations Ti for taking a checkpoint before Tj . The first four lines correspond to the
case where there is indeed an intermediate task Ti between T1 and Tj that is checkpointed,
while the last two lines correspond to the case where no checkpoint at all is taken until after
Tj .

The first two lines of Equation (11) apply to the case where Ti is replicated. Line 1 is for
the case when Ti+1 is replicated, and line 2 when it is not. In the first line of Equation (11),
T rep,rep
NC (i + 1, j) denotes the optimal time to execute tasks Ti+1 to Tj without any inter-

mediate checkpoint, knowing that Ti is checkpointed, and both Ti+1 and Tj are replicated.
If Ti+1 is not replicated, we use the second line of Equation (11), where T norep,rep

NC (i+ 1, j)
is the counterpart of T rep,rep

NC (i + 1, j), except that it assumes that Ti+1 is not replicated.
This information on Ti+1 (replicated or not) is needed to compute the recovery cost when
executing tasks Ti+1 to Tj and experiencing an error.

Lines 3 and 4 apply to the case where Ti is not replicated, with similar notation as
before. In the first four lines, no task between Ti+1 and Tj−1 is checkpointed, hence the
notation NC for no checkpoint.

If no checkpoint at all is taken before Tj (this corresponds to the case i = 0), we use the
last two lines of Equation (11): we include the cost to read the initial input, which depends
whether T1 is replicated (in line 5) or not (in line 6) of Equation (11).

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors13

We have a very similar equation to express T norep
opt (j) recursively, with intuitive notation:

T norep
opt (j) = min

1≤i<j



T rep
opt (i) + Crep

i + T rep,norep
NC (i+ 1, j),

T rep
opt (i) + Crep

i + T norep,norep
NC (i+ 1, j),

T norep
opt (i) + Cnorep

i + T rep,norep
NC (i+ 1, j),

T norep
opt (i)+Cnorep

i +T norep,norep
NC (i+ 1, j),

RDrep
1 + T rep,norep

NC (1, j),

RDnorep
1 + T norep,norep

NC (1, j)


(12)

To synthesize the notation, we have defined TA,BNC (i+ 1, j), with A,B ∈ {rep,norep}, as
the optimal time to execute tasks Ti+1 to Tj without any intermediate checkpoint, knowing
that Ti is checkpointed, Ti+1 is replicated if and only if A = rep, and Tj is replicated if and
only if B = rep. In a nutshell, we have to account for the possible replication of the first
task Ti+1 after the last checkpoint, and of the last task Tj , hence the four cases.

There remains to compute TA,BNC (i, j) for all 1 ≤ i, j ≤ n and A,B ∈ {rep,norep}.
This is still not easy, because there remains to decide which intermediate tasks should be
replicated. In addition to the status of Tj (replicated or not, according to the value of B),
the only thing we know so far is that the only checkpoint that we can recover from while
executing tasks Ti to Tj is the checkpoint taken after task Ti−1, hence we need to re-execute
from Ti whenever an error strikes. Furthermore, Ti is replicated if and only if A = rep,
hence we know the corresponding cost for recovery, RAi . Letting TA,BNC (i, j) = 0 whenever

i > j, we can express TA,BNC (i, j) for 1 ≤ i ≤ j ≤ n as follows:

TA,BNC (i, j) = min
{
TA,repNC (i, j − 1), TA,norepNC (i, j − 1)

}
+ TA,B(j | i).

Here the new (and final) notation TA,B(j | i) is simply the time needed to execute task
Tj , knowing that an error during Tj implies to recover from Ti. Indeed, to execute tasks Ti
to Tj , we account recursively for the time to execute Ti to Tj−1; Ti−1 is still checkpointed; Ti
is replicated if and only if A = rep, Tj is replicated if and only if B = rep, and we consider
both cases whether Tj−1 is replicated or not. The time lost in case of an error during Tj
depends whether Tj is replicated or not, and we need to restart from Ti in case of error,
hence the notation TA,B(j | i), representing the expected execution time for task Tj with
or without replication (depending on B), given that we need to restart from Ti if there is
an error (and Ti is replicated if and only if A = rep).

The last step is hence to express these execution times. We start with the case where
Tj is not replicated:

TA,norep(j | i) =
(

1− e−λFindp(T
norep
j +V norep

j )
)(

T norep
lost (T norep

j + V norep
j ) +D +RD

A
i

+ min
{
TA,repNC (i, j − 1), TA,norepNC (i, j − 1)

}
+ TA,norep(j | i)

)
+ e−λ

F
indp(T

norep
j +V norep

j )
(
T norep
j + V norep

j +
(

1− e−λSindpT
norep
j

)
(D +RM

A
i

+ min
{
TA,repNC (i, j − 1), TA,norepNC (i, j − 1)

}
+ TA,norep(j | i))

)
.

The term in e−λ
F
indp(T

norep
j +V norep

j ) represents the case without fail-stop error, where the
execution time is simply T norep

j + V norep
j . If a silent error is detected after the verification,

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors14

we pay a downtime and a memory recovery (with a cost depending on A). Next, we need
to re-execute all the tasks since the last checkpoint (Ti to Tj−1) and take the minimal
value obtained out of the execution where Tj−1 is replicated or not; finally, we execute Tj
again (with a time TA,norep(j | i)) from last checkpoint. When a fail-stop error strikes, we
account for T norep

lost (T norep
j + V norep

j ), the time lost within Tj , and whose value is given by
Equation (5). Then we pay a downtime and a disk recovery (with a cost depending on A).
Finally, we re-execute all the tasks from last checkpoint and that is similar to the previous
case.

The formula is similar with replication of Tj , where the probability of error accounts
for the fact that we need to recover only if both replicas fail for the fail-stop errors and
accounts for the number of living replicas in the case where a silent error is detected (see
Section 3.2 for the details):

TA,rep(j | i) =

(
1− e−

λFindp(T
rep
j

+V
rep
j

)

2

)2 (
T rep
lost(T

rep
j + V rep

j ) +D +RD
A
i

+ min
{
TA,repNC (i, j − 1), TA,norepNC (i, j − 1)

}
+ TA,rep(j | i)

)
+

1−
(

1− e−
λFindp(T

rep
j

+V
rep
j

)

2

)2
(T rep

j + V rep
j

)
+
(

(1− e−
λFindp(T

rep
j

+V
rep
j

)

2 )e−
λFindp(T

rep
j

+V
rep
j

)

2 (1− e−
λSindpT

rep
j

2 )

+e−λ
F
indp(T

rep
j +V rep

j )(1− e−
λSindpT

rep
j

2 )2
)(
D +RM

A
i

+ min
{
TA,repNC (i, j − 1), TA,norepNC (i, j − 1)

}
+ TA,rep(j | i)

)
.

Note that the value of T rep
lost(T

rep
j ) is given by Equation (8). Overall, we need to compute

the O(n2) intermediate values TA,B(j | i) and TA,BNC (i, j) for 1 ≤ i, j ≤ n and A,B ∈
{rep,norep}, and each of these take constant time. There are O(n) values TAopt(i), for
1 ≤ i ≤ n and A ∈ {rep,norep}, and these perform a minimum over at most 6n elements,
hence they can be computed in O(n). The overall complexity is therefore O(n2).

5 Experiments

In this section, we evaluate the advantages of adding replication to checkpointing in the
presence of both, fail-stop and silent errors. We point out that the simulator that imple-
ments the proposed DP algorithm is publicly available at http://graal.ens-lyon.fr/

~yrobert/chainsrep.zip so that interested readers can instantiate their preferred sce-
narios and repeat the same simulations for reproducibility purpose. The code is written
in-house in C++ and does not use any library other than the STL.

We start by assessing scenarios with fail-stop errors only in Section 5.1. We first describe
the evaluation framework in Section 5.1.1, then we compare checkpoint with replication to
checkpoint only in Section 5.1.2. In Section 5.1.3, we assess the impact of the different model
parameters on the performance of the optimal strategy. Finally, Section 5.1.4 compares the
performance of the optimal solution to alternative sub-optimal solutions.

Then we assess scenarios with both fail-stop and silent errors in Section 5.2. We first
describe the few modifications of the evaluation framework in Section 5.2.1, then we compare

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors15

checkpoint with replication to checkpoint only in Section 5.2.2. Finally, Section 5.2.3 assesses
the impact of the different model parameters on the performance of the optimal strategy.

5.1 Scenarios with fail-stop errors only

5.1.1 Experimental setup

We fix the total work in the chain to W = 10, 000 seconds. The choice of this value is less
important than the duration of the tasks compared to the error rate. For this reason, we
rely on five different work distributions, where all tasks are fully parallel (αi = 0):

• Uniform: every task i is of length wi = W
n , i.e., identical tasks.

• Increasing: the length of the tasks constantly increases, i.e., task Ti has length
wi = i 2W

n(n+1) .

• Decreasing: the length of the tasks constantly decreases, i.e., task Ti has length
wi = (n− i+ 1) 2W

n(n+1) .

• HighLow: the chain is formed by long tasks followed by short tasks. The long tasks
represent 60% of the total work and there are d n10e such tasks. Short tasks represent
the remaining 40% of the total work and consequently there are n−d n10e small tasks.

• Random: task lengths are uniformly chosen at random between W
2n and 3W

2n . If the
total work of the first i tasks reaches W , the weight of each task is multiplied by i

n
so that we can continue adding the remaining tasks.

Experiments with increasing sequential part (αi) for the tasks are available in the com-
panion research report [4]. Setting αi = 0 amounts to being in the worse possible case for
replication, since the tasks will fully benefit of having twice as much processors when not
replicated.

For simplicity, we assume that checkpointing costs are equal to the corresponding
recovery costs, assuming that read and write operations take approximately the same
amount of time, i.e., RDnorep

i+1 = Cnorep
i . For replicated tasks, we set Crep

i = αCnorep
i

and RDrep
i = αRDnorep

i , where 1 ≤ α ≤ 2, and we assess the impact of parameter α in
Section 5.2.3. In the following experiments, we measure the performance of a solution by
evaluating the associated normalized expected makespan, i.e., the expected execution time
needed to compute all the tasks in the chain, with respect to the execution time without
errors, checkpoints, or replicas.

5.1.2 Comparison to checkpoint only

We start with an analysis of the solutions obtained by running the optimal dynamic pro-
gramming (DP) algorithm ChainsRepCkpt on chains of 20 tasks for the five different
work distributions described in Section 5.1.1. We also run a variant of ChainsRepCkpt
that does not perform any replication, hence using a simplified DP algorithm, that is called
ChainsCkpt.

We vary the fail-stop error rate λFindp from 10−8 to 10−2. Note that when λFindp = 10−3,
we expect an average of 10 errors per execution of the entire chain (neglecting potential
errors during checkpoints and recoveries). The checkpoint cost Cnorep

i = ai is constant per

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors16

task (hence bi = ci = 0) and varies from 10−3T norep
i to 103T norep

i . For replicated tasks, we

set α = 1 in this experiment, i.e., Crep
i = Cnorep

i and RDrep
i = RDnorep

i .
Figure 1 presents the results of these experiments for the Uniform distribution. We

are interested in the number of checkpoints and replicas in the optimal solution. As the
optimal solution may or may not contain checkpoints and replicas, we distinguish 4 cases:
None means that no task is checkpointed nor replicated, Checkpointing Only means that
some tasks are checkpointed but no task is replicated, Replication Only means that some
tasks are replicated, but no task is checkpointed, and Checkpointing+Replication means
that some tasks are checkpointed and some tasks are replicated. First, we observe that
when the checkpointing cost is less than or equal to the length of a task (on the left of
the black line), the optimal solution does not use replication, except when the error rate
becomes very high. However, if the checkpointing cost exceeds the length of one task (on
the right of the black vertical bar), replication proves useful in some cases. In particular,
when the fails-stop error rate λFindp is medium to high (i.e., 10−6 to 10−4), we note that only
replication is used, meaning that no checkpoint is taken and that replication alone is a better
strategy to prevent any error from stopping the application. When the error rate is the
highest (i.e., 10−4 or higher), replication is added to the checkpointing strategy to ensure
maximum reliability. It may seem unusual to use replication alone when checkpointing
costs increase. This is because the recovery cost has to be taken into account as well, in
addition to re-executing the tasks that have failed. Replication is added to reduce this risk:
if successful, there is no recovery cost to pay for, nor any task to re-execute. Finally, note
that for low error rates and low checkpointing costs, only checkpoints are used, because their
cost is lower than the average re-execution time in case of error. We point out that similar
results are obtained when using other work distributions (see the extended version [4]).

In the next experiment, we focus on scenarios where both checkpointing and replica-
tion are useful, i.e., we set the checkpointing cost to be twice the length of a task (i.e.,
Cnorep
i = ai = 2T norep

i ), and we set the fail-stop error rate λFindp to 10−3, which corresponds
to the case highlighted by the red box in Figure 1. Figure 2 presents the optimal solutions
obtained with the ChainsCkpt and ChainsRepCkpt algorithms for the Uniform, In-
creasing, Decreasing, HighLow and Random work distributions, respectively. First,
for the Uniform work distribution, it is clear that the ChainsRepCkpt strategy leads to
a decrease in the number of checkpoints compared to the ChainsCkpt strategy. Under
the ChainsCkpt strategy, a checkpoint is taken every two tasks, while under the Chains-
RepCkpt strategy, a checkpoint is instead taken every three tasks, while two out of three
tasks are also replicated. Then, for the Increasing and Decreasing work distributions,
the results show that most tasks should be replicated, while only the longest tasks are also
checkpointed. A general rule of thumb is that replication only is preferred for short tasks
while checkpointing and replication is reserved for longer tasks, where the probability of
error and the re-execution cost are the highest. Finally, we observe a similar trend for the
HighLow work distribution, where two of the first four longer tasks are checkpointed and
replicated.

Figure 3 compares the performance of ChainsRepCkpt to the checkpoint-only strategy
ChainsCkpt. First, we observe that the expected normalized makespan of ChainsCkpt
remains almost constant at ≈ 4.5 for any number of tasks and for any work distribution.
Indeed, in our scenario, checkpoints are expensive and the number of checkpoints that can
be used is limited to ≈ 17 in the optimal solution, as shown in the middle plot. However, the
ChainsRepCkpt strategy can take advantage of the increasing number of shorter tasks by

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors17

1.0e
− 03
4.0e
− 03
1.6e
− 02
6.4e
− 02
2.6e
− 01
1.0e

+ 00
4.1e

+ 00
1.6e

+ 01
6.6e

+ 01
2.6e

+ 02
1.0e

+ 03

Checkpoint/Recovery cost over task length ratio

1.00e− 08

4.00e− 08

1.60e− 07

6.40e− 07

2.56e− 06

1.02e− 05

4.10e− 05

1.64e− 04

6.55e− 04

2.62e− 03

1.05e− 02

E
rr

or
R

at
e

None
Checkpointing Only
Replication Only
Checkpointing+Replication

Figure 1: Impact of checkpoint/recovery cost and error rate on the usage of checkpointing
and replication. Total work is fixed to 10, 000s and is distributed uniformly among n = 20
tasks (i.e., T1 = T2 = · · · = T20 = 500s). Each color shows the presence of checkpoints
and/or replicas in the optimal solution. Results corresponding to the case highlighted with
a red square are presented in Figure 2.

replicating them. In this scenario (high error rate and high checkpoint cost), this is clearly
a winning strategy. The normalized expected makespan decreases with increasing n, as the
corresponding number of tasks that are replicated increases almost linearly. The Chains-
RepCkpt strategy reaches a normalized makespan of ≈ 2.6 for n = 100, i.e., a reduction
of 35% compared to the normalized expected makespan of the ChainsCkpt strategy. This
is because replicated tasks tend to decrease the global probability of having an error, thus
reducing even more the number of checkpoints needed as seen previously. Regarding the
HighLow work distribution, we observe a higher optimal expected makespan for both the
ChainsCkpt and the ChainsRepCkpt strategies. Indeed, in this scenario, the first tasks
are very long (60% of the total work), which greatly increases the probability of error and
the associated re-execution cost.

5.1.3 Impact of error rate and checkpoint cost on the performance

Figure 4 shows the impact of three of the model parameters on the optimal expected nor-
malized makespan of both ChainsCkpt and ChainsRepCkpt. First, we show the impact
of the fail-stop error rate λFindp on the performance. The ChainsRepCkpt algorithm im-
proves the ChainsCkpt strategy for large values of λFindp: replication starts to be used for
λFindp > 2.6 × 10−4 and it reduces the makespan by ≈ 16% for λFindp = 10−3 and by up to
≈ 40% when λFindp = 10−2, where all tasks are checkpointed and replicated.

Then, we investigate the impact of the checkpointing cost with respect to the task length.
As shown in Figure 1, replication is not needed for low checkpointing costs, i.e., when the
checkpointing cost is between 0 and 0.8 times the cost of one task: in this scenario, all tasks
are checkpointed and both strategies lead to the same makespan. When the checkpointing

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors18

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(a) Uniform

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(b) Increasing

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(c) Decreasing

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(d) HighLow

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

None
Checkpointing Only
Replication Only
Checkpointing+Replication

(e) Random

Figure 2: Optimal solutions obtained with the ChainsCkpt algorithm (top) and the
ChainsRepCkpt algorithm (bottom) for the five work distributions.

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors19

20 40 60 80 100
Number of Tasks

0

2

4

6

8

10
N

or
m

al
iz

ed
M

ak
es

pa
n

CHAINSCKPT

CHAINSREPCKPT (Uniform)
CHAINSREPCKPT (Increasing)
CHAINSREPCKPT (Decreasing)
CHAINSREPCKPT (Highlow)
CHAINSREPCKPT (Random)

20 40 60 80 100
Number of Tasks

0

10

20

30

40

50

N
um

be
ro

fC
he

ck
po

in
ts

CHAINSCKPT

CHAINSREPCKPT (Uniform)
CHAINSREPCKPT (Increasing)
CHAINSREPCKPT (Decreasing)
CHAINSREPCKPT (Highlow)
CHAINSREPCKPT (Random)

20 40 60 80 100
Number of Tasks

0

20

40

60

80

100

N
um

be
ro

fR
ep

lic
as

CHAINSREPCKPT (Uniform)
CHAINSREPCKPT (Increasing)
CHAINSREPCKPT (Decreasing)
CHAINSREPCKPT (Highlow)
CHAINSREPCKPT (Random)

Uniform, Increasing, Decreasing, HighLow, Random distributions

Figure 3: Comparison of the ChainsCkpt and ChainsRepCkpt strategies for different
numbers of tasks: impact on the makespan (left), number of checkpoints (middle) and
number of replicas (right) with a fail-stop error rate of λFindp = 10−3 and a constant chek-
pointing/recovery cost Cnorep

i = Crep
i = 1000s.

10−5 10−4 10−3 10−2

Error rate λindp

0

2

4

6

8

10

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT (C = R = 1000)
CHAINSCKPT (C = R = 1000)

0 1 2 3 4 5
Checkpoint/Recovery cost over task length ratio

0

2

4

6

8

10

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

0 20 40 60 80 100
Number of Tasks

0

1

2

3

4

5

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT (Crep = Cnorep)
CHAINSREPCKPT (Crep = 1.5 Cnorep)
CHAINSREPCKPT (Crep = 2 Cnorep)

Figure 4: Impact of fail-stop error rate λFindp (left), checkpoint cost (middle), and ratio α
between the checkpointing cost for replicated task Crep

i over non-replicated tasks Cnorep
i

(right).

cost is between 0.9 and 1.6 times the cost of one task, ChainsRepCkpt checkpoints and
replicates half of the tasks. Overall, the ChainsRepCkpt strategy improves the optimal
normalized expected makespan by ≈ 11% for a checkpointing cost ratio of 1.6, and by as
much as ≈ 36% when the checkpointing cost is five times the length of one task.

We now investigate the impact of the ratio between the checkpointing and recovery
cost for replicated tasks and non-replicated tasks α and we present the results for α = 1
(Crep

i = RDrep
i = Cnorep

i = RDnorep
i ), α = 1.5 (Crep

i = RDrep
i = 1.5Cnorep

i = 1.5RDnorep
i ) and

α = 2 (Crep
i = RDrep

i = 2Cnorep
i = 2RDnorep

i ). As expected, the makespan increases with
α, but it is interesting to note that the makespan converges towards a same lower-bound
as the number of (shorter) tasks increases. As shown previously, when tasks are smaller,
ChainsRepCkpt favors replication over checkpointing, especially when the checkpointing
cost is high, which means less checkpoints, recoveries and re-executions.

Finally, we evaluate the efficiency of both strategies when the number of processors
increases. For this experiment, we instantiate the model using variable checkpointing costs,
i.e., we do not use bi = ci = 0 anymore, so that the checkpointing/recovery cost depends
on the number of processors. We set n = 50, λFind = 10−7 and we make p vary from 10
to 10,000 (i.e., the global error rate varies between 10−6 and 10−3). Figure 5 presents the
results of the experiment using three different sets of values for ai, bi and ci. We see that
when bi increases while ci decreases, the replication becomes useless, even for the larger
error rate values. However, when the term cip becomes large in front of bi

p , we see that
ChainsRepCkpt is much better than ChainsCkpt, as the checkpointing costs tend to

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors20

0 2000 4000 6000 8000 10000
Number of Processors

0

1

2

3

4

5

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

(a) (100, 10000, 1)

0 2000 4000 6000 8000 10000
Number of Processors

0

1

2

3

4

5

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

(b) (100, 100000, 0.1)

0 2000 4000 6000 8000 10000
Number of Processors

0

1

2

3

4

5

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

(c) (100, 1000000, 0.01)

Figure 5: Comparison of the ChainsCkpt and ChainsRepCkpt strategies for different
numbers of processors, with different model parameter values for the checkpointing cost
(ai, bi, ci).

decrease, in addition to all the other advantages investigated in the previous sections. With
p = 10, 000, the three different experiments show an improvement of 80.5%, 40.7% and 0%
(from left to right, respectively).

5.1.4 Impact of the number of checkpoints and replicas

Figure 6 shows the impact of the number of checkpoints and replicas on the normalized
expected makespan for different checkpointing costs and fail-stop error rates λFindp under
the Uniform work distribution. We show that the optimal solution with ChainsRep-
Ckpt (highlighted by the green box) always matches the minimum value obtained in the
simulations, i.e., the optimal number of checkpoints, number of replicas, and expected
execution times are consistent. In addition, we show that in scenarios where both the
checkpointing cost and the error rate are high, even a small deviation from the optimal
solution can quickly lead to a large overhead.

5.2 Scenarios with both fail-stop and silent errors

In this section we evaluate the power of replication in addition to checkpointing on platforms
subject to both fail-stop and silent errors.

5.2.1 Experimental setup

All the model parameters are instantiated as before, with the following changes to account
for the presence of silent errors. Unless stated otherwise, the fail-stop error rate has been
set to 1.28e-3s−1 and the silent error rate has been set to 5.48e-3s−1. The silent error rate
has been computed from real measures [2]: we derived a non-corrected silent error rate per
core of 5.48e-9s−1. Similarly, the fail-stop error rate per core considered was 1.28e-9s−1,
which corresponds to a core lifetime of 25 years. Finally, we considered a platform of 1
million cores which tends to be the trend for current Top500 machines [42].

As for other parameters, we considered a verification cost of 1% of the corresponding task
length. The cost of memory recovery was set to 5% of that of a disk recovery, considering
an average between different measured values from [31].

For simplicity, we assume that checkpointing costs are equal to the sum of the cor-
responding recovery costs, assuming that read and write operations take approximately
the same amount of time, i.e., RDnorep

i+1 + RMnorep
i+1 = Cnorep

i . For replicated tasks, we set

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors21

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 4 5 10 20
#Checkpoints

0

2

4

5

10

20

#R
ep

lic
as

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Figure 6: Impact of the number of checkpoints and replicas on the normalized expected
makespan for fail-stop error rates of λFind = 10−4 (top), λ = 10−3 (middle) and λ = 10−2

(bottom) and for checkpointing costs of 0.5×T norep
i (left), 1×T norep

i (middle) and 2×T norep
i

(right), with Cnorep
i = Crep

i under Uniform work distribution. The optimal solution ob-
tained with ChainsRepCkpt always matches the minimum simulation value and is high-
lighted by the green box.

Crep
i = αCnorep

i , RDrep
i = αRDnorep

i and RMrep
i = αRMnorep

i , where 1 ≤ α ≤ 2, and we
assess the impact of parameter α in Section 5.2.3. As in the previous section, we measure
the performance of a solution by evaluating the associated normalized expected makespan,
i.e., the expected execution time needed to compute all the tasks in the chain, with respect
to the execution time without errors, checkpoints, or replicas.

5.2.2 Comparison to checkpoint only

We start with an analysis of the solutions obtained by running the optimal dynamic pro-
gramming (DP) algorithm ChainsRepCkpt on chains with 20 tasks for the five different
work distributions described in Section 5.1.1. We also run a variant of ChainsRepCkpt
that does not perform any replication, hence using a simplified DP algorithm, that is called
ChainsCkpt.

We vary the fail-stop error rate λFindp from 10−8 to 10−2, without changing the silent error
rate λSind . The disk checkpoint/recovery cost is constant per task and varies from 10−3T norep

i

to 103T norep
i (hence, the memory checkpoint/recovery cost varies from 5 × 10−5T norep

i to
50T norep

i ). Overall, all checkpoints have a cost from 1.05× 10−3T norep
i to 1.05× 103T norep

i

as we always perform both types of checkpoints. For replicated tasks, we set α = 1 in

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors22

this experiment, i.e., Crep
i = Cnorep

i , RDrep
i = RDnorep

i and RMrep
i = RMnorep

i . In another
experiment, we also make the silent error rate λSindp vary from 10−8 to 10−2 without changing
the fail-stop error rate of 1.28e-3, with the same range for the checkpoint cost.

s
1.0e
− 03
4.0e
− 03
1.6e
− 02
6.4e
− 02
2.6e
− 01
1.0e

+ 00
4.1e

+ 00
1.6e

+ 01
6.6e

+ 01
2.6e

+ 02
1.0e

+ 03

Checkpoint/Recovery cost over task length ratio

1.00e− 08

4.00e− 08

1.60e− 07

6.40e− 07

2.56e− 06

1.02e− 05

4.10e− 05

1.64e− 04

6.55e− 04

2.62e− 03

1.05e− 02

Fa
il-

st
op

E
rr

or
R

at
e

Checkpointing Only
Checkpointing+Replication

1.0e
− 03
4.0e
− 03
1.6e
− 02
6.4e
− 02
2.6e
− 01
1.0e

+ 00
4.1e

+ 00
1.6e

+ 01
6.6e

+ 01
2.6e

+ 02
1.0e

+ 03

Checkpoint/Recovery cost over task length ratio

1.00e− 08

4.00e− 08

1.60e− 07

6.40e− 07

2.56e− 06

1.02e− 05

4.10e− 05

1.64e− 04

6.55e− 04

2.62e− 03

1.05e− 02

S
ile

nt
E

rr
or

R
at

e

Checkpointing Only
Checkpointing+Replication

Figure 7: Impact of checkpoint/recovery cost and error rates on the usage of checkpointing
and replication. Total sequential work is fixed to 10, 000s and is distributed uniformly
among n = 20 tasks (i.e., T1 = T2 = · · · = T20 = 500s). Each color shows the presence of
checkpoints and/or replicas in the optimal solution.

Figure 7 presents the results of these experiments for the Uniform distribution. The
colors are the same as in Figure 1, with Checkpointing Only meaning that some tasks are
checkpointed but no task is replicated and Checkpointing+Replication meaning that some
tasks are checkpointed and some tasks are replicated. The left figure presents the results
when the silent error rate is fixed but the fail-stop error rate varies. The right figure presents
the results of the other experiment with a fixed fail-stop error rate and different silent error
rates.

First, we observe that with silent errors, checkpointing becomes mandatory. Too many
failures can strike during the execution, and checkpointing helps reducing the time spent on
rollbacks and re-executions. However, as soon as the cost of a checkpoint exceeds the length
of a task, replication becomes useful and this remains true even for low error rates. This
holds for both fail-stop errors (left) and silent errors (right). There is one exception: when
the fail-stop error rate is lower than 10−5 and the checkpointing cost is less than twice the
length of a task, checkpoints are sufficient and is replication is not needed. Replication is
overall not needed under good conditions, however for our real setup, indicated by the red
box, using both checkpointing and replication is a better solution. We point out that similar
results are obtained when using other work distributions (see the extended version [4]).

In the next experiment, we focus on scenarios where both checkpointing and replication
are useful, i.e., we set the checkpointing cost to be twice the length of a task (i.e., Cnorep

i =
ai = 2T norep

i ), keeping λFindp = 1.28e-3 and λSindp = 5.48e-3, for the fail-stop and silent error
rates, respectively, which corresponds to the case highlighted by the red box in Figure 7.
Figure 8 presents the optimal solutions obtained with the ChainsCkpt and ChainsRep-
Ckpt algorithms for the Uniform, Increasing, Decreasing, HighLow and Random
work distributions, respectively. With two sources of errors, the solution is straightforward:
almost every task must be checkpointed, with the exception of one (short) task for the
Decreasing and Increasing distributions. However almost every task is also replicated

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors23

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(a) Uniform

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(b) Increasing

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(c) Decreasing

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

(d) HighLow

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSCKPT (Checkpointing Only)

T2 T4 T6 T8 T10 T12 T14 T16 T18 T20

CHAINSREPCKPT (Checkpointing and Replication)

None
Checkpointing Only
Replication Only
Checkpointing+Replication

(e) Random

Figure 8: Optimal solutions obtained with the ChainsCkpt algorithm (top) and the
ChainsRepCkpt algorithm (bottom) for the five work distributions.

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors24

(20 tasks out of 20 for the Uniform distribution compared to only 13 in the experiments of
Section 5.1.2), showing once more that replication grants better protection to failures even
if it increases the failure-free execution time. Checkpoints are being taken the same way as
in our previous experiments: long tasks are systematically checkpointed while shorter tasks
are either unprotected or replicated, as can be seen with the first tasks of the Increasing
distribution and the last task of the Decreasing distributions.

20 40 60 80 100
Number of Tasks

0

10

20

30

40

50

60

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSCKPT

CHAINSREPCKPT (Uniform)
CHAINSREPCKPT (Increasing)
CHAINSREPCKPT (Decreasing)
CHAINSREPCKPT (Highlow)
CHAINSREPCKPT (Random)

20 40 60 80 100
Number of Tasks

0

20

40

60

80

100

N
um

be
ro

fC
he

ck
po

in
ts

CHAINSCKPT

CHAINSREPCKPT (Uniform)
CHAINSREPCKPT (Increasing)
CHAINSREPCKPT (Decreasing)
CHAINSREPCKPT (Highlow)
CHAINSREPCKPT (Random)

20 40 60 80 100
Number of Tasks

0

20

40

60

80

100

N
um

be
ro

fR
ep

lic
as

CHAINSREPCKPT (Uniform)
CHAINSREPCKPT (Increasing)
CHAINSREPCKPT (Decreasing)
CHAINSREPCKPT (Highlow)
CHAINSREPCKPT (Random)

Uniform, Increasing, Decreasing, HighLow, Random distributions

Figure 9: Comparison of the ChainsCkpt and ChainsRepCkpt strategies for different
numbers of tasks: impact on the makespan (left), number of checkpoints (middle) and
number of replicas (right) with a fail-stop error rate of λFindp = 1.28e-3, a silent error rate
of λSindp = 5.48e-3 and a constant chekpointing/recovery cost Cnorep

i = Crep
i = 1000s.

Figure 9 compares the performance of ChainsRepCkpt to the checkpoint-only strategy
ChainsCkpt with fail-stop and silent errors. First, we observe that long tasks, being more
likely to fail than shorter tasks, introduce a high overhead. As a consequence, with 20 tasks,
the normalized makespan is too high and the execution of such applications is not possible,
independently of the work distribution and the chosen checkpointing strategy. With more
tasks however, the ChainsRepCkpt strategy always yield a shorter makespan compared to
the ChainsCkpt strategy. For example, with 100 tasks, the normalized makespan obtained
with the ChainsRepCkpt strategy is as high as ≈ 8.5 (and much more for the HighLow
distribution), compared to ≈ 13 for ChainsCkpt. Indeed, with such high error rates, all
tasks are replicated under the ChainsRepCkpt strategy, as can be seen on the right plot,
but fewer tasks need to be be checkpointed (up to 50% fewer checkpoints with 100 tasks
and the Uniform distribution).

The improvement is comparable to the 35% improvement observed with only fail-stop
errors. Once again, replicated tasks tend to decrease the global probability of having an
error, thus slightly reducing the number of checkpoints needed, while reducing the re-
execution costs that can be very important with late-detected silent errors. Regarding the
HighLow work distribution, we again observe a higher optimal expected makespan for both
the ChainsCkpt and the ChainsRepCkpt strategies. Indeed, in this scenario, the first
tasks are very long (60% of the total work), which greatly increases the error probability
and the associated re-execution cost. Overall, for such applications on platforms subject to
both, fail-stop and silent errors, replication appears to be mandatory and allows a reduction
of the makespan of at least 30% if tasks are not too large (i.e. the probability of completing
the task is not close to 1).

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors25

10−5 10−4 10−3 10−2

Fail-stop error rate λFindp

0

5

10

15

20

25

30

35

40
N

or
m

al
iz

ed
M

ak
es

pa
n

CHAINSREPCKPT (C = R = 1000)
CHAINSCKPT (C = R = 1000)

10−5 10−4 10−3 10−2

Silent error rate λSindp

0

2

4

6

8

10

12

14

16

18

20

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT (C = R = 1000)
CHAINSCKPT (C = R = 1000)

0.0 1.05 2.1 3.15 4.2 5.25
Checkpoint/Recovery cost over task length ratio

0

10

20

30

40

50

60

70

80

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

0 20 40 60 80 100
Number of Tasks

0

1

2

3

4

5

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT (Crep = Cnorep)
CHAINSREPCKPT (Crep = 1.5 Cnorep)
CHAINSREPCKPT (Crep = 2 Cnorep)

Figure 10: Impact of fail-stop error rate λFindp (left), checkpoint cost (middle) and ratio
α between the checkpointing cost for replicated task Crep

i over non-replicated tasks Cnorep
i

(right) for the Uniform distribution.

0 500000 1000000 1500000 2000000
Number of Processors

0

10

20

30

40

50

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

(a) (105, 1050000, 0.0105)

0 500000 1000000 1500000 2000000
Number of Processors

0

5

10

15

20

25

30

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

(b) (105, 10500000, 0.00105)

0 500000 1000000 1500000 2000000
Number of Processors

0

2

4

6

8

10

12

14

N
or

m
al

iz
ed

M
ak

es
pa

n

CHAINSREPCKPT

CHAINSCKPT

(c) (105, 105000000, 0.000105)

Figure 11: Comparison of the ChainsCkpt and ChainsRepCkpt strategies for different
numbers of processors, with different model parameter values for the checkpointing cost
(ai, bi, ci).

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors26

5.2.3 Impact of error rate and checkpoint cost on the performance

Figure 10 shows the impact of four of the model parameters on the optimal expected
normalized makespan of both ChainsCkpt and ChainsRepCkpt, using the Uniform
distribution. First, we show the impact of the fail-stop error rate λFindp on the performance.
The ChainsRepCkpt strategy always yields shorter makespans compared to the Chains-
Ckpt strategy. All tasks are always replicated, reducing the probability of having an error
for each task, and each task is also checkpointed. The normalized makespan for Chains-
Ckpt is 19.5 for λFindp = 10−5, compared to 19.2 for ChainsRepCkpt, i.e. a reduction
of only 1.7%, but this goes up to 50.3 for λFindp = 1.14e-3 compared to 35.2 when using
replication, i.e. a reduction of 30%. The results are similar when we vary the silent error
rate: when λSindp = 10−5, ChainsRepCkpt results in a normalized makespan of 4.60
compared to 5.55 with ChainsCkpt, i.e. a reduction of 17%, and this goes up to more
than 30% when λSindp > 5× 10−3.

Then, we investigate the impact of the checkpointing cost with respect to the task
length. The results are slightly different now that we have silent errors: ChainsCkpt
and ChainsRepCkpt behave similarly only for small values of checkpoint cost. Chains-
RepCkpt becomes better than ChainsCkpt for C ≥ 0.525, thus reducing the makespan
obtained using only checkpoints. Both strategies yield a makespan that increases linearly
with the checkpointing cost, however the ChainsRepCkpt strategy needs less checkpoints,
and the makespan increases slower. This means that the costlier the checkpoints the better
the improvement thanks to replication. Overall, the execution under the ChainsRepCkpt
strategy is 1.17 times faster than ChainsCkpt for a checkpointing cost of 1.05T norep

i , 1.66
times faster for a checkpoint cost of 3.15T norep

i , and this goes up to 1.95 times faster when
the checkpointing cost is 5.25T norep

i .
We now investigate the impact of the ratio α between the checkpointing and recovery

cost for replicated tasks and non-replicated tasks and we present the results for α = 1,
α = 1.5 and α = 2. As expected, the makespan increases with α, but it is interesting to
note that the makespan converges towards a same lower-bound as the number of (shorter)
tasks increases. As shown previously, when tasks are smaller, ChainsRepCkpt favors
replication over checkpointing, especially when the checkpointing cost is high, which means
fewer checkpoints, recoveries and re-executions.

Finally, we evaluate the efficiency of both strategies when the number of processors
increases. For this experiment, we instantiate the model using variable checkpointing costs,
i.e., we do not use bi = ci = 0 anymore, so that the checkpointing/recovery cost depends
on the number of processors. We set n = 50, λFind = 1.28 × 10−9, λSind = 5.48 × 10−9 and
we make p vary from 1000 to 2,000,000 (i.e., the error rates vary between 10−6 and 10−2

approximately). Figure 11 presents the results of the experiment using three different sets
of values for ai, bi and ci. The trend is the same as previously with fail-stop errors: when bi
increases and ci decreases, the advantage of using replication becomes less clear. However,
on every plot, ChainsCkpt and ChainsRepCkpt grants the same makespan only when
using a few cores. Every plot shows that, with the increasing number of cores on nowadays
platforms, ChainsRepCkpt will behave better and better compared to ChainsCkpt. In
particular, the improvement for each set of parameters (from left to right) is 69%, 30% and
0% for p = 500000, and is 76%, 60% and 16% for p = 1500000.

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors27

6 Related work

In this section, we discuss the work related to checkpointing and replication. Each of these
mechanisms has been studied for coping with fail-stop errors and/or with silent errors. The
present work combines checkpointing and replication for linear workflows in the presence of
fail-stop and silent errors.

6.1 Checkpointing

The de-facto general-purpose recovery technique in high-performance computing is check-
pointing and rollback recovery [13, 20]. Checkpointing policies have been widely studied
and we refer to [25] for a survey of various protocols.

For divisible load applications where checkpoints can be inserted at any point in the
execution for a nominal cost C, there exist well-known formulas proposed by Young [46]
and Daly [16] to determine the optimal checkpointing period. For applications expressed
as linear workflows, such as considered in the present work, the problem of finding the
optimal checkpointing strategy, i.e., of determining which tasks to checkpoint, to minimize
the expected execution time, has been solved by Toueg and Babaoğlu [43].

Single-level checkpointing schemes suffer from the intrinsic limitation that the cost of
checkpointing and recovery grows with the error probability, and becomes unsustainable at
large scale [23, 8] (even with diskless or incremental checkpointing [34]). Recent advances
in decreasing the cost of checkpointing include multi-level checkpointing approaches, or the
use of SSD or NVRAM as secondary storage [11]. To reduce the I/O overhead, various two-
level checkpointing protocols have been studied. Vaidya [44] proposed a two-level recovery
scheme that tolerates a single node error using a local checkpoint stored on a partner node.
If more than one error occurs during any local checkpointing interval, the scheme resorts to
the global checkpoint. Silva and Silva [37] advocated for a similar scheme by using memory
protected by XOR encoding to store local checkpoints. Di et al. [17] analyzed a two-level
computational pattern, and proved that equal-length checkpointing segments constitute the
optimal solution. Benoit et al. [7] relied on disk checkpoints to cope with fail-stop errors and
used memory checkpoints coupled with error detectors to handle silent data corruptions.
They derived first-order approximation formulas for the optimal pattern length as well as the
number of memory checkpoints between two disk checkpoints. The present work employs
single-level checkpointing (in memory or on stable storage) for individual tasks in linear
workflows.

6.2 Replication

As mentioned earlier, this work only considers task duplication. Triplication [29] (three
replicas per task) is also possible yet only useful with extremely high error rates, which
are unlikely in HPC systems. The use of redundant MPI processes is analyzed in [12,
22, 23]. In particular, Ferreira et al. [23] studied the use of process replication for MPI
applications, using two replicas per MPI process. They provide a theoretical analysis of
parallel efficiency, an MPI implementation that supports transparent process replication
(including error detection, consistent message ordering among replicas, etc.), and a set of
experimental and simulation results. Thread-level replication has also been investigated [47,
14, 35]. The present work targets selective task replication as opposed to full task replication
in conjunction with selective task checkpointing to cope with fail-stop and silent errors and
minimize makespan.

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors28

Partial redundancy was also studied (in combination with coordinated checkpointing)
to decrease the overhead of full replication [18, 38, 39]. Adaptive redundancy is introduced
in [24], where a subset of processes is dynamically selected for replication. Earlier work [3]
considered replication in the context of divisible load applications. In the present work, task
replication (including work and data) is studied in the context of linear workflows, which
represent a harder case than that of divisible load applications as tasks cannot arbitrarily
be divided and are executed non-preemptively.

Ni et al. [32] introduce process duplication to cope both with fail-stop and silent er-
rors. Their pioneering paper contains many interesting results. It differs from this work
in that they only consider perfectly parallel applications while we investigate herein per
task speedup profiles that obey Amdahl’s law. More recently, Subasi et al. [40] proposed
a software-based selective replication of task-parallel applications with both, fail-stop and
silent errors. In contrast, the present work (i) considers dependent tasks such as found
in applications consisting of linear workflows; and (ii) proposes an optimal dynamic pro-
gramming algorithm to solve the combined selective replication and checkpointing problem.
Combining replication with checkpointing has also been proposed in [36, 49, 21] for HPC
platforms, and in [27, 45] for grid computing.

7 Conclusion

In this work, we studied the combination of checkpointing and replication to minimize the
execution time of linear workflows in environments prone to both fail-stop and silent errors.
We introduced a sophisticated dynamic programming algorithm that solves the combined
problem optimally, by determining which tasks to checkpoint and which tasks to replicate,
in order to minimize the total execution time. This dynamic programming algorithm was
validated through extensive simulations that reveal the conditions in which checkpointing,
replication, or both lead to improved performance. We have observed that the gain over
the checkpoint-only approach is quite significant, in particular when checkpointing is costly
and error rates are high.

Future work will address workflows whose dependence graphs are more complex than
linear chains of tasks. Although an optimal solution seems hard to reach, the design of
efficient heuristics that decide where to locate checkpoints and when to use replication,
would prove highly beneficial for the efficient and reliable execution of HPC applications on
current and future large-scale platforms.

Acknowledgement

This work has been partially supported by the Swiss Platform for Advanced Scientific
Computing (PASC) project SPH-EXA.

References

[1] G. Amdahl. The validity of the single processor approach to achieving large scale
computing capabilities. In AFIPS Conference Proceedings, volume 30, pages 483–485.
AFIPS Press, 1967.

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors29

[2] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith. Unpro-
tected computing: A large-scale study of dram raw error rate on a supercomputer.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’16, pages 55:1–55:11, Piscataway, NJ, USA,
2016. IEEE Press.

[3] A. Benoit, F. Cappello, A. Cavelan, P. Raghavan, Y. Robert, and H. Sun. Identifying
the right replication level to detect and correct silent errors at scale. In FTXS’2017,
the Workshop on Fault-Tolerance for HPC at Extreme Scale, in conjunction with
HPDC’2017. IEEE Computer Society Press, 2017.

[4] A. Benoit, A. Cavelan, F. Ciorba, V. L. Fèvre, and Y. Robert. Combining checkpointing
and replication for reliable execution of linear workflows. Research report RR-9152,
INRIA, 2018.

[5] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Assessing general-purpose algorithms
to cope with fail-stop and silent errors. ACM Trans. Parallel Comput., 3(2):13:1–13:36,
July 2016.

[6] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Assessing general-purpose algorithms
to cope with fail-stop and silent errors. ACM Trans. Parallel Computing, 3(2), 2016.

[7] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Optimal resilience patterns to cope
with fail-stop and silent errors. In IPDPS. IEEE, 2016.

[8] G. Bosilca, A. Bouteiller, E. Brunet, F. Cappello, J. Dongarra, A. Guermouche, T. Her-
ault, Y. Robert, F. Vivien, and D. Zaidouni. Unified model for assessing checkpointing
protocols at extreme-scale. Concurrency and Computation: Practice and Experience,
2013.

[9] E. S. Buneci. Qualitative Performance Analysis for Large-Scale Scientific Workflows.
PhD thesis, Duke University, 2008.

[10] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward Exascale
Resilience. Int. J. High Performance Computing Applications, 23(4):374–388, 2009.

[11] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward Exascale
Resilience: 2014 update. Supercomputing frontiers and innovations, 1(1), 2014.

[12] H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni. On the impact of process replica-
tion on executions of large-scale parallel applications with coordinated checkpointing.
Future Gen. Comp. Syst., 51:7–19, 2015.

[13] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computer Systems, 3(1):63–75, 1985.

[14] S. P. Crago, D. I. Kang, M. Kang, R. Kost, K. Singh, J. Suh, and J. P. Walters.
Programming models and development software for a space-based many-core processor.
In 4th Int. Conf. onon Space Mission Challenges for Information Technology, pages 95–
102. IEEE, 2011.

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors30

[15] V. Cuevas-Vicentt́ın, S. C. Dey, S. Köhler, S. Riddle, and B. Ludäscher. Scientific work-
flows and provenance: Introduction and research opportunities. Datenbank-Spektrum,
12(3):193–203, 2012.

[16] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Generation Comp. Syst., 22(3):303–312, 2006.

[17] S. Di, Y. Robert, F. Vivien, and F. Cappello. Toward an optimal online checkpoint
solution under a two-level HPC checkpoint model. IEEE Trans. Parallel & Distributed
Systems, 2016.

[18] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann. Combining
partial redundancy and checkpointing for HPC. In ICDCS. IEEE, 2012.

[19] E. Elnozahy and J. Plank. Checkpointing for peta-scale systems: a look into the
future of practical rollback-recovery. IEEE Trans. Dependable and Secure Computing,
1(2):97–108, 2004.

[20] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Survey, 34:375–408,
2002.

[21] C. Engelmann, H. H. Ong, and S. L. Scorr. The case for modular redundancy in
large-scale high performance computing systems. In PDCN. IASTED, 2009.

[22] C. Engelmann and B. Swen. Redundant execution of HPC applications with MR-MPI.
In PDCN. IASTED, 2011.

[23] K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti, R. Brightwell, R. Riesen,
P. G. Bridges, and D. Arnold. Evaluating the viability of process replication reliability
for exascale systems. In SC’11. ACM, 2011.

[24] C. George and S. S. Vadhiyar. ADFT: An adaptive framework for fault tolerance on
large scale systems using application malleability. Procedia Computer Science, 9:166 –
175, 2012.

[25] T. Hérault and Y. Robert, editors. Fault-Tolerance Techniques for High-Performance
Computing, Computer Communications and Networks. Springer Verlag, 2015.

[26] G. Kandaswamy, A. Mandal, and D. A. Reed. Fault tolerance and recovery of scientific
workflows on computational grids. In Proc. of CCGrid’2008, pages 777–782, 2008.

[27] T. Leblanc, R. Anand, E. Gabriel, and J. Subhlok. VolpexMPI: An MPI Library for
Execution of Parallel Applications on Volatile Nodes. In 16th European PVM/MPI
Users’ Group Meeting, pages 124–133. Springer-Verlag, 2009.

[28] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington, G. Chiu, R. Col-
well, W. Dally, J. Dongarra, et al. Top ten exascale research challenges. DOE ASCAC
subcommittee report, pages 1–86, 2014.

[29] R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy to improve
computer reliability. IBM J. Res. Dev., 6(2):200–209, 1962.

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors31

[30] D. P. Mehta, C. Shetters, and D. W. Bouldin. Meta-Algorithms for Scheduling a Chain
of Coarse-Grained Tasks on an Array of Reconfigurable FPGAs. VLSI Design, 2013.

[31] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design, Modeling, and
Evaluation of a Scalable Multi-level Checkpointing System. In SC. ACM, 2010.

[32] X. Ni, E. Meneses, N. Jain, and L. V. Kalé. ACR: Automatic Checkpoint/Restart for
Soft and Hard Error Protection. In SC. ACM, 2013.

[33] T. O’Gorman. The effect of cosmic rays on the soft error rate of a DRAM at ground
level. IEEE Trans. Electron Devices, 41(4):553–557, 1994.

[34] J. Plank, K. Li, and M. Puening. Diskless checkpointing. IEEE Trans. Parallel Dist.
Systems, 9(10):972–986, 1998.

[35] M. W. Rashid and M. C. Huang. Supporting highly-decoupled thread-level redundancy
for parallel programs. In Proc. HPCA’2008, pages 393–404. IEEE, 2008.

[36] B. Schroeder and G. A. Gibson. Understanding Failures in Petascale Computers.
Journal of Physics: Conference Series, 78(1), 2007.

[37] L. Silva and J. Silva. Using two-level stable storage for efficient checkpointing. IEE
Proceedings - Software, 145(6):198–202, 1998.

[38] J. Stearley, K. B. Ferreira, D. J. Robinson, J. Laros, K. T. Pedretti, D. Arnold, P. G.
Bridges, and R. Riesen. Does partial replication pay off? In FTXS. IEEE, 2012.

[39] O. Subasi, J. Arias, O. Unsal, J. Labarta, and A. Cristal. Programmer-directed partial
redundancy for resilient HPC. In Computing Frontiers. ACM, 2015.

[40] O. Subasi, G. Yalcin, F. Zyulkyarov, O. Unsal, and J. Labarta. Designing and Modelling
Selective Replication for Fault-Tolerant HPC Applications. In Proc. CCGrid’2017,
pages 452–457, May 2017.

[41] D. Talia. Workflow Systems for Science: Concepts and Tools. ISRN Software
Engineering, 2013.

[42] Top500. Top500 Supercomputer Sites. http://www.top500.org.

[43] S. Toueg and Ö. Babaoglu. On the optimum checkpoint selection problem. SIAM J.
Comput., 13(3):630–649, 1984.

[44] N. H. Vaidya. A case for two-level distributed recovery schemes. SIGMETRICS
Perform. Eval. Rev., 23(1):64–73, 1995.

[45] S. Yi, D. Kondo, B. Kim, G. Park, and Y. Cho. Using replication and checkpointing
for reliable task management in computational grids. In SC. ACM, 2010.

[46] J. W. Young. A first order approximation to the optimum checkpoint interval. Comm.
of the ACM, 17(9):530–531, 1974.

[47] J. Yu, D. Jian, Z. Wu, and H. Liu. Thread-level redundancy fault tolerant CMP based
on relaxed input replication. In ICCIT. IEEE, 2011.

RR n° 9235



Combining Checkpointing and Replication for Linear Workflows with Fail-Stop and Silent Errors32

[48] G. Zheng, L. Shi, and L. V. Kale. FTC-Charm++: an in-memory checkpoint-
based fault tolerant runtime for Charm++ and MPI. In IEEE Int. Conf. on Cluster
Computing, pages 93–103, 2004.

[49] Z. Zheng and Z. Lan. Reliability-aware scalability models for high performance com-
puting. In Cluster Computing. IEEE, 2009.

[50] Z. Zheng, L. Yu, and Z. Lan. Reliability-aware speedup models for parallel applications
with coordinated checkpointing/restart. IEEE Trans. Computers, 64(5):1402–1415,
2015.

[51] J. Ziegler, H. Muhlfeld, C. Montrose, H. Curtis, T. O’Gorman, and J. Ross. Accelerated
testing for cosmic soft-error rate. IBM J. Res. Dev., 40(1):51–72, 1996.

[52] J. Ziegler, M. Nelson, J. Shell, R. Peterson, C. Gelderloos, H. Muhlfeld, and C. Mon-
trose. Cosmic ray soft error rates of 16-Mb DRAM memory chips. IEEE Journal of
Solid-State Circuits, 33(2):246–252, 1998.

[53] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin. IBM
experiments in soft fails in computer electronics. IBM J. Res. Dev., 40(1):3–18, 1996.

RR n° 9235



RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

32


