
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
94

65
--

FR
+E

N
G

RESEARCH
REPORT
N° 9465
March 2022

Project-Team ROMA

Checkpointing strategies
to protect parallel jobs
from non-memoryless
fail-stop errors
Anne Benoit, Lucas Perotin, Yves Robert, Frederic Vivien

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Checkpointing strategies to protect parallel
jobs from non-memoryless fail-stop errors

Anne Benoit∗, Lucas Perotin∗, Yves Robert∗†, Frederic Vivien∗

Project-Team ROMA

Research Report n° 9465 — March 2022 — 51 pages

Abstract: This paper studies checkpointing strategies for parallel jobs subject to fail-stop errors.
The optimal strategy is well known when failure inter-arrival times obey an Exponential law,
but it is unknown for non-memoryless failure distributions. We explain why the latter fact is
misunderstood in recent literature. We propose a general strategy that maximizes the expected
efficiency until the next failure, and we show that this strategy is asymptotically optimal for very
long jobs. Through extensive simulations, we show that the new strategy is always at least as good
as the Young/Daly strategy for various failure distributions. For distributions with a high infant
mortality (such as LogNormal 2.51 or Weibull 0.5), the execution time is divided by a factor 1.9
on average, and up to a factor 4.2 for recently deployed platforms.

Key-words: checkpoint, failures, parallel jobs, non-memoryless

∗ Roma project-team, LIP laboratory, ENS Lyon, France
† Innovative Computing Laboratory, University of Tennessee Knoxville, USA

Stratégies de checkpoint pour protéger les
tâches parallèles contre des erreurs ayant des

distributions générales

Résumé : Cet article étudie les stratégies de checkpoint pour des tâches
parallèles sujettes à des erreurs fatales. La stratégie optimale est bien con-
nue lorsque les temps d’inter-arrivée des pannes obéissent à une loi exponen-
tielle, mais elle est inconnue pour les distributions d’erreurs générales. Nous
expliquons pourquoi ce dernier fait est mal compris dans la littérature récente.
Nous proposons une stratégie générale qui maximise l’efficacité attendue jusqu’à
la prochaine défaillance, et nous montrons que cette stratégie est asymptotique-
ment optimale pour les travaux très longs. Par des simulations extensives, nous
montrons que la nouvelle stratégie est toujours au moins aussi bonne que la
stratégie de Young/Daly pour diverses distributions de pannes. Pour les distri-
butions avec une mortalité infantile élevée (comme LogNormal 2.51 ou Weibull
0.5), le temps d’exécution est divisé par un facteur 1.9 en moyenne, et jusqu’à
un facteur 4.2 pour des plates-formes récemment déployées.

Mots-clés : checkpoint, fautes, tâches parallèles, distributions d’erreurs
générales.

Checkpointing strategies with non-memoryless fail-stop errors 3

1 Introduction

Checkpointing is the standard technique to protect applications running on HPC
(High Performance Computing) platforms. Every day, the platform experiences
a few fail-stop errors (or failures, we use both terms indifferently). After each
failure, the application executing on the faulty processor (and likely on many
other processors for a large parallel application) is interrupted and must be
restarted. Without checkpointing, all the work executed for the application is
lost. With checkpointing, the execution can resume from the last checkpoint, af-
ter some downtime (enroll a spare to replace the faulty processor) and a recovery
(read the checkpoint).

Consider a parallel application executing on a platform whose nodes are
subject to fail-stop errors. How frequently should it be checkpointed so that its
expected execution time is minimized? There is a well-known trade-off: taking
too many checkpoints leads to a high overhead, especially when there are few
failures, while taking too few checkpoints leads to a large re-execution time
after each failure. However, the optimal strategy is known only when failure
inter-arrival times obey an Exponential distribution. In that case, the optimal
checkpointing period is (approximately) given by the Young/Daly formula as
WYD =

√
2µC [43, 11], where µ is the application MTBF (Mean Time Between

Failures) and C is the checkpoint duration.

This paper revisits checkpointing strategies for parallel jobs on platforms
subject to failures that obey arbitrary probability distributions. This is a very
important topic because the most accurate probability distributions to model
processor failures are LogNormal [21] and Weibull [32, 33, 38, 39] instead of
Exponential. For instance, LANL failure traces are best fit by Weibull distri-
butions of different shapes [15]. However, dealing with non-memoryless distri-
butions induces dramatic difficulties. Several recent papers mistakenly consider
that if each processor experiences failures distributed according to some non-
memoryless distribution, then the platform as a whole will experience failures
distributed according to the same (scaled) distribution. This is wrong, unless
we could rejuvenate thousands of processors each time a failure hits one single
processor. Hence, it is important to provide a provenly correct strategy for
arbitrary distributions.

The main contributions of this paper are the following:
• A synthetic overview of known results for Exponential distributions, some of
which being frequently rediscovered;
• A detailed explanation of why non-memoryless distributions require a fully
different approach;
• The design of a new checkpointing strategy, NextStep, which is asymptoti-
cally optimal for arbitrary distributions;
• A practical and fast implementation of NextStep through time discretiza-
tion and numerical approximation;
• A detailed experimental comparison with the standard Young/Daly approach.

RR n° 9465

4 Benoit, Perotin, Robert, Vivien

The paper is organized as follows. We first survey related work in Section 2.
Then, we provide background on checkpointing parallel jobs with Exponential
or non-memoryless distributions in Section 3. We detail the design of the check-
pointing strategy NextStep in Section 4, and show that it is asymptotically
optimal for arbitrary distributions. The experimental evaluation in Section 5
presents extensive simulation results comparing NextStep and the usual ap-
proach à la Young/Daly. Finally, we conclude in Section 6.

2 Related work

2.1 Checkpointing preemptible parallel jobs

Checkpoint-restart is one of the most widely used strategy to deal with fail-stop
errors. Several variants of this policy have been studied; see [22] for an overview.
The natural strategy is to checkpoint periodically, and one must decide how
often to checkpoint, i.e., derive the optimal checkpointing period. An optimal
strategy is defined as a strategy that minimizes the expectation of the execution
time of the job. For a preemptible job, where one can checkpoint at any time,
the classical formula due to Young [43] and Daly [11] states that the optimal
checkpointing period is WYD =

√
2µC, where µ is the job MTBF and C the

checkpoint cost. This formula is a first-order approximation. For memoryless
failures, Daly provides a second-order, more accurate, approximation in [11],
while our previous work [7] provides the optimal value; both [11] and [7] use
the Lambert function. The derivation in [7] is based on Equation (1) (see
Section 3.2), a formula rediscovered ten years later, with a quite different proof
based on a Markov model, in [35].

As explained in Section 3.6, non-memoryless failures are more difficult to
deal with for parallel jobs. Several papers study non-periodic checkpointing
strategies, with and without partial rejuvenation [29, 24, 31]. A recent paper [28]
uses full rejuvenation while [38] wrongly assumes IID failures for a range a classic
distributions, including Weibull and LogNormal, which are not memoryless (see
Section 3.6). An unorthodox approach is used in [17], where it is assumed
that the failures striking the whole platform obey a Weibull distribution; this
is misleading for two reasons: (i) it is not clear what is the failure distribution
on each individual processor; and (ii) after one processor is struck by a failure
and rejuvenated, the platform failure distribution does not remain Weibull (see
a more detailed discussion in Section 3.6).

In order to deal with non-memoryless failures, the NextFailure problem
is studied in [7], where the goal is to maximize the expected amount of work
completed before the next failure. This problem is solved using a dynamic
programming algorithm, and it is used as a solution to the initial problem of
makespan minimization. Simulations are done with Exponential and Weibull
laws, showing that the proposed algorithm outperforms existing solutions with
Weibull distributions. In this paper, we propose to maximize the expected
efficiency rather than the expected work, with our new NextStep heuristic.

Inria

Checkpointing strategies with non-memoryless fail-stop errors 5

This requires a much more subtle approach. Nevertheless, we succeed in proving
that NextStep is asymptotically optimal.

2.2 Checkpointing task-based applications

Going beyond preemptible applications, some works have studied task-based
applications, using a model where checkpointing is only possible right after the
completion of a task. The problem is then to determine which tasks should be
checkpointed. This problem has been solved for linear workflows (where the task
graph is a simple linear chain) by Toueg and Babaoglu [41], using a dynamic
programming algorithm. This algorithm was later extended in [6] to cope with
both fail-stop and silent errors simultaneously. Another special case is that of
a workflow whose dependence graph is arbitrary but whose tasks are parallel
tasks that each executes on the whole platform. In other words, the tasks have
to be serialized. The problem of ordering the tasks and placing checkpoints is
proven NP-complete for simple join graphs in [1], which also introduces several
heuristics. For general workflows, deciding which tasks to checkpoint has been
shown #P-complete [19], but several heuristics are proposed in [20].

2.3 Extensions: multi-criteria, hierarchical checkpointing,
independence

In addition to the minimization of the expected job makespan, other optimiza-
tion criteria have been considered in the literature. I/O is a scarce resource on
modern platforms, and several works aim at minimzation I/O volume while en-
forcing an efficient checkpoint for makespan [25, 23]. Similarly, energy-makespan
bi-criteria optimization has been addressed in [15, 18]. To reduce I/O overhead,
various two-level checkpointing protocols have been studied [36, 14]. Some au-
thors have also generalized two-level checkpointing to account for an arbitrary
number of levels [30, 4, 12, 5].

As for failure independence, the standard model assumes IID failure inter-
arrival times, or IATs, on each node, with a common distribution D. While it
is reasonable to assume that IATs are identically distributed on a given pro-
cessor, because the faulty node is rejuvenated (replaced by a spare) after each
failure, it is very questionable to assume that IATs are independent across the
platform. As for temporal dependence, it has been observed many times that
when a failure occurs, it may trigger other failures that will strike different sys-
tem components [21, 40, 3]. As an example, a failing cooling system may cause
a series of successive crashes of different nodes. Also, an outstanding error in
the file system will likely be followed by several others [34, 27]. As for spatial
dependence, it is clear that the overheating of some node in a cabinet is quite
likely to be followed by the overheating of neighbor nodes (which comes atop
of a temporal dependence as well!) Bautista-Gomez et al. [3] have studied nine
systems, and they report periods of high failure density in all of them. They call
these periods cascade failures. This observation has led them to revisit the tem-
poral failure independence assumption, and to design bi-periodic checkpointing

RR n° 9465

6 Benoit, Perotin, Robert, Vivien

algorithms that use different periods in normal (failure-free) and degraded (with
failure cascades) modes. [40] introduces a dynamic strategy called lazy check-
pointing to adjust to changes in the failure rate. Another approach has been
proposed in [2], using quantiles of consecutive IAT pairs.

3 Framework

This section overviews known results for checkpoint strategies. We cover uni-
processor and multi-processor applications, either with Exponential failure dis-
tributions or with arbitrary failure distributions. Beforehand, we detail the
platform and job model.

3.1 Model

3.1.1 Platform and jobs

We consider a large parallel platform with m identical processors, or nodes.
These nodes are subject to fail-stop errors, or failures. A failure interrupts the
execution of the node and provokes the loss of its whole memory. We consider
parallel jobs that can be checkpointed at any time. In scheduling terminology,
the jobs are preemptible. Consider a parallel job running on several nodes:
when one of these nodes is struck by a failure, the state of the application is
lost, and execution must restart from scratch, unless a fault-tolerance mecha-
nism has been deployed. The classical technique to deal with failures makes use
of a checkpoint-restart mechanism: the state of the application is periodically
checkpointed, i.e., all participating nodes take a checkpoint simultaneously. This
is the standard coordinated checkpointing protocol, which is routinely used on
large-scale platforms [9], where each node writes its share of application data to
stable storage (checkpoint of duration C). When a failure occurs, the platform
is unavailable during a downtime D, which is the time to enroll a spare proces-
sor that will replace the faulty processor [11, 22]. Then, all application nodes
(including the spare) recover from the last valid checkpoint in a coordinated
manner, reading the checkpoint file from stable storage (recovery of duration
R). Finally, the execution is resumed from that point on, rather than starting
again from scratch. Note that failures can strike during checkpoint and recov-
ery, but not during downtime (otherwise we can include the downtime in the
recovery time). When a failure hits a processor, that processor is replaced by a
spare. This amounts to start anew with a fresh processor. In the terminology of
stochastic processes, the faulty processor is rejuvenated. However, all the other
processors are not rejuvenated: this would be infeasible due to the multidinious
spares needed!

3.1.2 Failures

We assume that each node experiences failures whose inter-arrival times follow
Independent and Identically Distributed (IID) random variables obeying an ar-

Inria

Checkpointing strategies with non-memoryless fail-stop errors 7

bitrary probability distribution D. We only assume that D is continuous and of
finite expectation and variance, a condition satisfied by all standard distribu-
tions. We let µind denote the expectation of D, also known as the individual
processor MTBF. Even if each node has an MTBF of several years, large-scale
parallel platforms are composed of so many nodes that they will experience sev-
eral failures per day [16, 8]. Hence, a parallel job using a significant fraction of
the platform will typically experience a failure every few hours.

3.1.3 Checkpointing strategies

Given a parallel job of length Tbase (base time without checkpoints nor failures),
the optimization problem is to decide when and how often to checkpoint in
order to minimize the expected execution time of the job. The job is divided
into Nc segments of length Wi, 1 ≤ i ≤ Nc, each followed by a checkpoint of
length C. Of course

∑Nc

i=1Wi = Tbase. Throughout the paper, we add a final
checkpoint at the end of the last segment, e.g., to write final outputs to stable
storage. Symmetrically, we add an initial recovery when re-executing the first
segment of a job (e.g., to read inputs from stable storage) if it has been struck
by a failure before completing the checkpoint. Adding a last checkpoint and
an initial recovery brings symmetry and simplifies formulas, but it is not at all
mandatory: see Section 3.4 for an extension relaxing either or both assumptions.

3.2 Uni-processor job, and D Exponential

This is the simplest case. Consider a job J executing on a single processor ex-
periencing failures whose inter-arrival times follow an Exponential distribution
D = Exp(λ) of parameter λ > 0, whose PDF (Probability Density Function) is
f(x) = λe−λx for x ≥ 0. The processor MTBF is µind = 1

λ . The optimal check-
pointing strategy, i.e., the strategy minimizing the expected execution time, can
be derived as shown below.

Lemma 1. The expected time E(W,C,R) to execute a segment of W seconds
of work followed by a checkpoint of C seconds and with recovery cost R seconds
is

E(W,C,R) =
(
1

λ
+D

)
eλR

(
eλ(W+C) − 1

)
. (1)

Lemma 1 comes from [7, Theorem 1]. It also applies when the segment is
not followed by a checkpoint (take C=0). The slowdown function is defined as

f(W,C,R) = E(W,C,R)
W . We have the following properties:

Lemma 2. The slowdown function W 7→ f(W,C,R) has a unique minimum
Wopt that does not depend on R, is decreasing in the interval [0,Wopt] and is
increasing in the interval [Wopt,∞).

Proof. Again, see [7, Theorem 1]. The exact value of Wopt is obtained using
the Lambert W function, but a first-order approximation is the Young/Daly

formula WYD =
√

2C
λ .

RR n° 9465

8 Benoit, Perotin, Robert, Vivien

Lemma 2 shows that infinite jobs should be partitioned into segments of size
Wopt followed by a checkpoint. What about finite jobs? Back to our job J of
duration Tbase, we partition it into Nc segments of length Wi, 1 ≤ i ≤ Nc, each
followed by a checkpoint C. By linearity of the expectation, the expected time
to execute job J is

E(J)=
Nc∑
i=1

E(Wi, C,R) =

(
1

λ
+D

)
eλR

Nc∑
i=1

(
eλ(Wi+C)− 1

)
,

where
∑Nc

i=1Wi = Tbase. By convexity of the Exponential function, or by
using Lagrange multipliers, we see that E(J) is minimized when the Wi’s take a
constant value, i.e., all segments have same length. Thus, we obtain Wi = Tbase

Nc

for all i, and we aim at finding Nc that minimizes

E(J) = Nc E
(
Tbase
Nc

, C,R

)
= f

(
Tbase
Nc

, C,R

)
× Tbase , (2)

where f is the slowdown function. We let Nopt = Tbase

Wopt
, where Wopt achieves

the minimum of the slowdown function. Nopt would be the optimal number of
segments if we could have a non-integer number of segments. Lemma 2 shows
that the optimal value NME of Nc is either NME = max(1, bNoptc) or NME =
dNopte, whichever leads to the smallest value of E(J). In the experiments, we

use the simplified Young/Daly expression NME =
⌈
Tbase

WYD

⌉
.

3.3 Parallel job, and D Exponential

Because of the memoryless property of the Exponential distribution, the multi-
processor case can be reduced to the uni-processor case. Everything holds by
replacing the parameter λ by pλ, where p is the number of processors of job
J . To see this formally, say the job J is executed on p processors {Pq}1≤q≤p.
Let Xq

i ∼ Exp(λ), i ≥ 1, 1 ≤ q ≤ p, denote the IID fault inter-arrival times
on processor Pq. Let Yi, i ≥ 1, denote the fault inter-arrival times for (the p
processors executing) job J .

The assumption Xq
i ∼ Exp(λ) formally means that when processor Pq is

rejuvenated (or when it is used for the first time), the next failure will strike
according to a distribution Exp(λ). If the job starts at time t, and the last
failure stroke at time t1 < t, what is the distribution of the probability of the
next failure, knowing that Pq has been alive for t− t1 seconds? The memoryless
property of Exponential distributions is the key: it is still the same Exponential
distribution. To keep notations simple, we let Xq

i ∼ Exp(λ), i ≥ 0, denote the
failure inter-arrival times on Pq once the job has started (and similarly for Yi,
i ≥ 0).

First, we have Y1 = minq(X
q
1). Hence Y1 ∼ Exp(pλ) (minimum of p Exp(λ)

distributions). Assume that the first failure for job J stroke at time t2 (hence
Y1 = t2 − t) on some processor Pq0 , which is then rejuvenated. Because of the
memoryless property, knowing this information does not change the distribution
of the next failure on any other processor, and Y2 ∼ Exp(pλ) for the very same
reason that Y1 ∼ Exp(pλ).

Inria

Checkpointing strategies with non-memoryless fail-stop errors 9

3.4 Extension without final checkpoint nor initial recov-
ery, and D Exponential

Consider a parallel job J with p processors, which is partitioned into segments.
This section deals with the case where no checkpoint is enforced at the end of the
last segment. By symmetry, we also deal with the case where no recovery is paid
when re-executing the first segment after a failure. Let pλ denote the failure rate
for job J , assuming that job failures obey an Exponential law D = Exp(pλ).

The job is partitioned into N segments of length Wi, with checkpoint cost
Ci and recovery cost Ri. Let Ctot =

∑N
i=1 Ci and Rtot =

∑N
i=1Ri. In the model

of Sections 3.2 and 3.3, we had Ci = C, Ri = R for 1 ≤ i ≤ N , Ctot = NC,
and Rtot = NR. If no checkpoint is taken after the last segment, CN = 0 and
Ctot = (N − 1)C. If no recovery is paid when re-executing the first segment,
R1 = 0 and Rtot = (N − 1)R.

What is the optimal strategy to minimize the expected execution time EN
of the job? From Lemma 1, we have

EN =

N∑
i=1

E(Wi, Ci, Ri)=

(
1

pλ
+D

) N∑
i=1

epλRi
(
epλ(Wi+Ci) − 1

)
, (3)

where
∑N
i=1Wi = Tbase. GivenN , EN is minimized when the sum

∑N
i=1 e

pλ(Wi+Ci+Ri)

is minimized. By convexity of the Exponential function, or by using Lagrange
multipliers, we see that EN is minimized when the Wi+Ci+Ri’s take a constant
value Wseg. This value is given by

NWseg = Tbase + Ctot +Rtot, (4)

and the length Wi of each segment is then computed as Wi = Wseg − Ci − Ri.
If CN = 0, the last segment involves an additional amount C of work duration.
Similarly, if R1 = 0, the first segment involves an additional amount R of work
duration. Then, we can derive the optimal value of N and Wseg as follows:
Equation (4) gives N = Tbase−R−C+R1+CN

Wseg−R−C . Plugging this value into

EN =

(
1

pλ
+D

)[
(N − 1)epλR + epλR1 +NepλWseg

]
enables to solve for Wseg, using the Lambert function in a similar way as in [7].

While the derivation is painful, the conclusion is comforting: in the optimal
solution, all segments have same length of work, up to an additional recovery for
the first segment and an additional checkpoint for the last one. The Young/Daly
approximation still holds, as well as all the results of this paper (whose presen-
tation is much simpler with all segments followed by a checkpoint).

3.5 Uni-processor job, and D arbitrary

When failures inter-arrival times obey an arbitrary distribution D, they are
still IID, because the processor is rejuvenated (replaced by a spare) after each

RR n° 9465

10 Benoit, Perotin, Robert, Vivien

failure. To the best of our knowledge, even the optimal value Wopt for the
slowdown function is not known analytically. For some distributions, Wopt can
be computed numerically, using partial moments for the expectation of the time
lost due to failures. But note that Wopt does no give the optimal checkpointing
period for infinite jobs, contrarily to the memoryless case. In fact, the optimal
checkpointing strategy is not known for infinite jobs, let alone for finite jobs.

For instance, consider a Weibull distribution D ∼ Weibull(k, λ) of shape

k and scale λ; its PDF is P(X = t) = k
λ (tλ)k−1e−(tλ)k for t > 0. If k < 1,

the instantaneous failure rate of D is decreasing with time (infant mortality),
checkpoints should be spaced more and more as time progresses since the last
failure. On the contrary, if k > 1, the instantaneous failure rate ofD is increasing
with time (ageing) and, hence, checkpoints should be spaced less and less. This
explains that the optimal checkpointing strategy is aperiodic. See [29, 24, 31]
for more details.

3.6 Parallel job, and D arbitrary

When D is arbitrary, even though the failure inter-arrival times Xq
i are IID on

each processor, they are not for (the p processors executing) job J . In other
words, the Yi are not IID, unless D is Exponential. However, owing to the
theory on the superposition of renewal processes, whenever D is continuous and
of finite expectation µind, we know that the following limit exists:

lim
n→∞

E
(∑n

i=1 Yi
n

)
=
µind

p
. (5)

This result is given as Formula 1.4 in [26]. See also [22] for an elementary proof
using Wald’s equation. Equation (5) is good news because we can define the job
MTBF as µind

p : in average, a failure will strike the job every µind

p seconds. Note
that the MTBF is given a new definition here: the failures striking the parallel
job J are not IID, so there is no longer a mean time before the next failure of
the job. Instead, there is a limit on the average time between failures. At any
time, the distribution of the next failure is complicated because it must account
for the history of the p− 1 processors that have not been rejuvenated when the
last failure stroke. Indeed, assume that the execution of job J was started on
p fresh processors {Pq}1≤q≤p, and that the last failure stroke on processor Pq
at time tq (where tq = 0 if Pq has never been struck). Let i(q) be the index of
the last failure on Pq (where i(q) = 0 if Pq has never been struck). To simplify
notations, say that the last failure stroke processor P1, meaning that tq < t1 for
q ≥ 2. The probability that the next failure strikes at time t on Pq (it will be
failure number i(q) + 1) is

P(Xq
i(q)+1 = t|Xq

i(q)+1 ≥ t− tq).

In other words, only Xq
1 follows the distribution D, while each Xq

i , q ≥ 2, is
shifted. To compute the distribution of the next failure of job J , we need to

Inria

Checkpointing strategies with non-memoryless fail-stop errors 11

compute the distribution of the minimum of all the Xq
i(q)+1’s, which are not

identical because of their history.

There is a theoretical approach that simplifies the problem, namely reju-
venating all the p processors of the job after each failure (and before starting
the execution of the job). Of course, this is impossible in practice when p
exceeds a small number, but it is nice from a theory perspective: with total
rejuvenation, each failure becomes a renewal point for the whole job, and the
failure inter-arrival times that strike the job become IID: their distribution is
the minimum of p IID distributions D. Even better, there are a few failure
distributions D such that the minimum of p IID instances also obey the same
distribution D (with scaled parameters). For instance, consider a Weibull dis-
tribution D ∼ Weibull(k, λ) of shape k and scale λ, whose expectation is
µind = λΓ(1 + 1

k), where Γ denotes the Gamma function Γ(t) =
∫∞

0
xt−1e−xdx

for t > 0. Then the minimum Y of p IID Weibull(k, λ) is also a Weibull
distribution Y ∼Weibull(k, λ

p1/k). We observe that the MTBF does not scale

linearly with p, unless k = 1: the expectation of Y is µ = µind

p1/k . This discussion

explains the errors in [17]: (i) the platform cannot obey a Weibull distribu-
tion, unless total rejuvenation is used; and (ii) assuming total rejuvenation, the
MTBF of a job is not inversely proportional to its number of processors.

A realistic approach to cope with the not-IID problem is to discretize time
into small quanta, and to use dynamic programming to compute the best check-
point strategy for job J up to the next failure [7]. Obviously, the smaller the
quanta, the more accurate the results, but the more costly the dynamic pro-
gramming algorithm. The approach in [7] greedily uses this strategy from one
failure to another, up to the completion of the job. However, optimizing check-
points up to the next failure, while optimal from one failure to the next (up to
the precision of the quanta), may well be sub-optimal for the whole job. A main
contribution of this paper is to introduce a new greedy strategy and to prove an
approximation bound for its performance. To the best of our knowledge, this is
the first theoretical result for parallel jobs with non-memoryless failures.

4 The NextStep heuristic

In this section, we present the NextStep heuristic to checkpoint parallel jobs
under any failure probability distribution. The main idea of NextStep is the
following: after each failure, NextStep is able to find the checkpointing strat-
egy that maximizes the expected efficiency (see below) before the next failure or
the end of the job. Intuitively, optimizing the expected efficiency on a failure-
by-failure basis should lead to a good approximation on the optimal solution,
at least for large job sizes. One major contribution of this work is to show that
NextStep is asymptotically optimal for arbitrary failure distributions.

We first introduce notations in Section 4.1, before formally describing NextStep
in Section 4.2. Finally, we prove the asymptotic optimality in Section 4.3.

RR n° 9465

12 Benoit, Perotin, Robert, Vivien

4.1 Preliminaries

Consider a parallel job J of length Tbase executing on p processors, with check-
point time C. Assume that the job just experienced a failure, and it is ready to
resume execution of the remaining W work units (or the job is just starting, and
then W = Tbase). For any processor Pj , 1 ≤ j ≤ p, let τj be the time elapsed
since its last failure. In particular, if Pj has been hit by the last failure, then
τj = 0; note also that we do not assume fresh processors when starting the job.
We call ~τ = (τ1, τ2, . . . , τp) the history vector.

Given a checkpointing strategy, a job with W remaining work units and a
history vector ~τ , the function first(W |~τ) returns the size W1 of the segment
preceding the first checkpoint.

Work. LetW(W |~τ) be the random variable that quantifies the amount of work
successfully executed before the next failure. We have the following recursion:

W(0|~τ) = 0

W(W |~τ) =


W1 +W(W −W1|~τ +

−−−−−→
W1 + C)

if the processor does not fail during
the next W1 + C units of time,

0 otherwise.

(6)

In Equation (6), given a scalar quantity x, −→x = (x, x, . . . , x) denotes the vector
with p identical components equal to x. Weighting the two cases in Equation (6)
by their probabilities of occurrence, we obtain the expected amount of work
successfully computed before the next failure:

E(W(W |~τ))=Psuc(W1 + C|~τ)(W1 + E(W(W −W1|~τ +
−−−−−→
W1 + C))), (7)

where the probability of success Psuc is computed as

Psuc(x|~τ) =

p∏
i=1

P(X ≥ x+ τi|X ≥ τi). (8)

X is a generic random variable following the probability distribution D, the
failure inter-arrival time on each processor. Given any such distribution D,
Psuc(x|~τ) can be computed in time O(p).

Efficiency. Rather than focusing solely on the work done, we aim at maximiz-
ing the expected efficiency, which also depends on the number of checkpoints
that have been taken. This is particularly crucial at the end of the job, where
maximizing the amount of work until the next failure may not be the best strat-
egy if the job is about to complete. Indeed, the efficiency also depends on the
time spent computing; if no failures occur, it depends on the number of check-
points that are taken. Hence, we define EW (W,~τ,Nc) as the maximum expected
work until the next failure (or the completion of the job if no failure occurs)
using Nc checkpoints; similarly, ETnext

(W,~τ,Nc) is the expected time until the
next failure, or before the completion of the job if no failure occurs. Note that

Inria

Checkpointing strategies with non-memoryless fail-stop errors 13

the number Nc of checkpoints only matters in the latter case where the job has
completed.

Finally, if a job still needs to be processed for W units of time, with a his-
tory ~τ , we define the maximum possible efficiency among all possible numbers
of checkpoints Nc:

Ee(W,~τ) = max
Nc

EW (W,~τ,Nc)

ETnext
(W,~τ,Nc)

. (9)

Time discretization. We introduce a time quantum u, and discretize time
into quanta. This means that all quantities (segment sizes, checkpoint and
recovery times) are integer multiples of u, and that failures strike at the end of
a quantum. More precisely, the probability that a failure happens at the end of

quantum i is
∫ iu

(i−1)u
f(x|~τ)dx, where f(x|~τ) is the probability density function

of the platform failure distribution D in the continuous case conditioned by
the history. This discretization restricts the search for an optimal execution to
a finite set of possible executions. The trade-off is that a smaller value of u
leads to a more accurate solution, but also to a higher number of states in the
algorithm, hence, to a higher computing time.

In what follows, if a variable y is defined in seconds (or work units), y∗ = y/u
is the corresponding number of quanta, which we always suppose integer. For
instance, the job size becomes W ∗ = W/u and the checkpoint size C∗ = C/u.
Similarly, we let P∗suc(x∗| ~τ∗) , Psuc(ux|u~τ) be the probability that the next x∗

quanta succeed given the history ~τ∗, expressed in number of quanta.

4.2 NextStep

We define NextStep formally as: find a function returning the size of the
first segment to be checkpointed, such that Ee(W, ~τ0) is maximized. Here, ~τ0
corresponds to the initial history of the platform when the execution starts.
Solving NextStep analytically seems out of reach, but the recursive definition
of E(W(W |~τ)) (see Equation (7)), together with time discretization, allows us
to compute the maximum efficiency. Indeed, there is no need to keep the time
elapsed since the last failure of each processor as a parameter of the recursive
calls. This is because the τ variables of all processors evolve identically: recur-
sive calls only correspond to cases where no failure has occurred. The algorithm
is called again each time a failure occurs, to decide where checkpoints should be
taken.

Thanks to the discretization, all the EW (W, ~τ0, Nc) values can be computed
with a time quantum u. We let x∗ be the number of quanta that remain to
proceed (where initially, x∗ = W ∗). We need to find and store the best solutions
for any possible values of x∗ and Nc in the recursive call. Hence, we further
consider Np, the number of checkpoints already taken, and Nf , the number of
checkpoints that can still be taken (where Np + Nf = Nc). This corresponds
to Algorithm 1: the compE procedure fills a table solve that contains, for any
triple (x∗, Np, Nf), the maximum expected work until the next failure for these
parameters, and the best segment size W ∗1 that achieves this. For Nf = 1, the

RR n° 9465

14 Benoit, Perotin, Robert, Vivien

Algorithm 1: compE (x∗,Np,Nf)

1 if x∗ = 0 then return 0;
2 if Nf = 1 then

3 ~τ∗ ← ~τ∗0 +
−−−−−−−−−−−−→
W ∗ − x∗ +NpC

∗;

4 best← x∗P∗
suc(x

∗ + C∗| ~τ∗) ;
5 solve[x∗][Np][Nf]← (best, x∗);
6 return best;

7 if solve[x∗][Np][Nf] = (best,W ∗
1) then return best;

8 else
9 best← −∞;

10 ~τ∗ ← ~τ∗0 +
−−−−−−−−−−−−→
W ∗ − x∗ +NpC

∗;
11 for i = 1 to x∗ do
12 work ← compE(x∗ − i,Np + 1, Nf − 1);

13 cur ← P∗
suc(i+ C∗| ~τ∗)× (i+ work);

14 if cur > best then
15 best← cur;
16 W ∗

1 ← i ;

17 solve[x∗][Np][Nf]← (best,W ∗
1);

18 return best;

only possibility is to compute x∗ in its entirety and then checkpoint. Otherwise,
we try all possible places for the first checkpoint, and recursively call compE .
If a value with a given (x∗, Np, Nf) had been computed before, we retrieve the
corresponding result line 7.

There remains to compute ETnext
(W ∗, ~τ∗, Nc), i.e., the expected time until

next failure or job completion. The following lemma helps us compute these
values efficiently with discrete segments:

Lemma 3. Using discrete quanta of size u, the expectation of the time before
the next failure or the completion of the job, expressed in number of quanta, is
the following:

ETnext
(W ∗, ~τ∗0 , Nc) =

W∗+NcC
∗−1∑

i=0

P∗suc(i| ~τ∗0).

Proof. Let X denote the random variable of the number of quanta executed
before the next failure (or the completion of the job) given the history ~τ∗0 ,
the total number of quanta of the job W ∗ and the number of checkpoints Nc.
Clearly, X is taking integer values in [1,W ∗ +NcC

∗], thus

E(X) =

W∗+NcC
∗∑

i=1

iP{X = i} =

W∗+NcC
∗∑

i=1

P{X ≥ i}

=

W∗+NcC
∗∑

i=1

P∗suc(i− 1| ~τ∗0) =

W∗+NcC
∗−1∑

i=0

P∗suc(i| ~τ∗0).

Inria

Checkpointing strategies with non-memoryless fail-stop errors 15

Algorithm 2: NextStep (W ∗)

/* Compute ETnext (W
∗, ~τ∗0 , nc) for nc ∈ [1,W ∗] */

1 S ← 0;

2 for i = 0 to W ∗ − 1 do S ← S + P∗
suc(i| ~τ∗0);

3 for nc = 1 to W ∗ do
4 for i = 1 to C∗ do

5 S ← S + P∗
suc(W

∗ + (nc − 1)C∗ + i| ~τ∗0);
6 ETnext (W

∗, ~τ∗0 , nc)← S;

/* Compute EW (W ∗, ~τ∗0 , nc) (array solve) */

7 for nc = 1 to W ∗ do compE(W ∗, 0, nc);

/* Solution of NextStep */

8 best← −∞; Nc ← 0; W ∗
1 ← 0;

9 for nc = 1 to W ∗ do

10 cur ← first(solve[W ∗][0][nc])/ETnext (W
∗, ~τ∗0 , nc);

11 cursegment← second(solve[W ∗][0][nc]);
12 if cur > best then
13 best← cur; Nc ← nc ; W

∗
1 ← cursegment;

14 return (Nc,W
∗
1);

From Lemma 3, we derive that ETnext
(W ∗, ~τ∗0 , nc + 1) = ETnext

(W ∗, ~τ∗0 , nc) +∑W∗+(nc+1)C∗−1
i=W∗+ncC∗ P∗suc(i| ~τ∗0). This is used in Algorithm 2 to compute all the

ETnext
values more efficiently on lines 1–6. Algorithm 1 is called to fill the solve

table with all values of EW on line 7. We obtain the efficiency Ee(W ∗, ~τ∗0)
for all possible number of checkpoints and keep the maximum, see lines 8–13.
Finally, the algorithm returns the values for Nc and W ∗1 corresponding to the
maximum efficiency, which allows us to rebuild completely the corresponding
solution using the table solve.

Proposition 1. Using a time quantum u, and for any failure inter-arrival
time distribution, Algorithm 2 computes the solution to NextStep (maximizing
efficiency) in time O(p(W ∗)4).

Proof. The NextStep algorithm consists of three steps. In the first step, it
computes all values of ETnext

(W ∗, ~τ∗0 , nc) for nc ∈ [1,W ∗]. To do so, two loops
are executed. The first one has W ∗ steps, where each step computes a single
addition. The value of P∗suc(W ∗ + (nc − 1)C∗ + i| ~τ∗0) is the product of the
individual probability of failure of the p processors (as in Equation (8)). We
assume that the individual probabilities of failure can be computed in O(1),
thus the loop takes a time O(pW ∗). The second loop is similar, with two nested
loops, and its complexity is O(pW ∗C∗). We can safely assume that C∗ ≤
W ∗, otherwise doing any checkpoint is straightforwardly bad (if we succeed the
checkpoint, we would have succeeded the entire job), and the complexity is at
most O(p(W ∗)2).

RR n° 9465

16 Benoit, Perotin, Robert, Vivien

In the second step, the algorithm fills the table solve and calls compE (W ∗, 0, nc)
for nc ∈ [1,W ∗]. The function compE (x, y, z) fills the table entry corresponding
to its parameters if necessary, with eventual recursive calls to compE where
y + z is constant and x decreases. Given the initial calls with x = W ∗ and

y + z ∈ [1,W ∗] the number of entries written in the table is at most W∗3

2 . To
upper bound the overall complexity of this step, we first note that an entry
may only be written in the table if the compE function is called with the same
parameters. In the sub-case Nf = 1, this takes few operations and involves a
call to P∗suc, thus a time O(p). Otherwise, this means compE has been called
with parameters corresponding to the last sub-case. If so, a loop is executed
x∗ ≤W ∗ times, and each iteration requires a call to compE , which either takes
time O(1) or fills another entry of the table (therefore the complexity is taken
into account for this other entry), and the other operations are in O(1), except
the computation of P∗suc in O(p). Overall, the individual cost of each entry of
the table is at most in O(pW ∗). Finally the calls to compE that do not fill the
table may only be made recursively and were taken into account in the analysis.
Given the size of the table in O((W ∗)3), this second step is in O(p(W ∗)4).

Finally, the last step returning the solution consists of a loop with W ∗ itera-
tions, where each iteration is done in O(1), which gives a complexity in O(W ∗).
The complexity is dominated by the second step; hence, the result.

4.3 Asymptotic analysis

We proceed in two steps. First, we show that for an infinite job and for any
integer n, the expected work completed by NextStep before the n-th failure
(which happens at a random time) is larger than or equal to the one of any
other strategy. Then, we show that the expected work processed within T units
of time is asymptotically optimal with T (Theorem 1).

4.3.1 Expected work completed before the n-th failure

We compare NextStep to any other strategy for an infinite job that has an
infinite number of failures. We assume that the job starts at time t0 = 0. For
k ≥ 1, let tk be the random variable representing the date of the k-th failure,
and for k ≥ 0, let ~τk be the random variable representing the history of the
machine at time tk. Note that neither tk nor ~τk depend on the checkpointing
strategy. For any n ≥ 1, let WFn be the random variable corresponding to the
expected work executed from the start up to failure n by NextStep, and let
OPTn denote the same variable for an optimal strategy, both depending on the
initial history ~τ0. We show that E(WFn) = E(OPTn).

We define wfk (resp. optk) the random variable representing the work exe-
cuted by NextStep (resp. an optimal strategy) between times tk−1 and tk. At
any decision point, i.e., after each failure, the expected time before the next fail-
ure or the completion is the expected time before the next failure, because the
job is infinite; hence, this time does not depend upon the number of checkpoints.
From Equation (9), we deduce that, for any history, NextStep maximizes the

Inria

Checkpointing strategies with non-memoryless fail-stop errors 17

expected work accomplished before the next failure. Hence, we have for any
k ≥ 1 and any possible history ~τ at the (k − 1)-th failure (or ~τ = ~τ0 if k = 1):

E(wfk|~τk−1 = ~τ) ≥ E(optk|~τk−1 = ~τ).

This inequality holds for any possible history ~τ , i.e., for any possible event
{~τk−1 = ~τ}, and ~τk−1 does not depend on the strategy. Therefore, this inequality
can be directly extended to E(wfk|~τk−1) and E(optk|~τk−1). Note that these
expectations are conditioned by a random variable instead of an event, thus
are random variables themselves (constant for k = 1 if we consider ~τ0 as a
constant random variable) which always verify E(wfk|~τk−1) ≥ E(optk|~τk−1). In
particular:

E(E(wfk|~τk−1)) ≥ E(E(optk|~τk−1)). (10)

This result can be combined with the property E(X) = E(E(X|Y)) (Law of
Total Expectation) whenever both sides exist [37, p. 179] to obtain, for all
k ≥ 1,

E(wfk) = E(E(wfk|~τk−1)) ≥ E(E(optk|~τk−1)) = E(optk).

Finally, we obtain:

E(WFn) = E

(
n∑
k=1

wfk

)
=

n∑
k=1

E(wfk)

≥
n∑
k=1

E(optk) = E

(
n∑
k=1

optk

)
= E(OPTn).

This shows that the expected work completed by NextStep before the n-th
failure is larger than or equal to the one of any other strategy.

4.3.2 NextStep is asymptotically optimal

For any T , we show how to define n(T), the index of a failure striking at a time
close enough to T , so that the relative work difference performed between T
and tn(T) (whichever comes first) is negligible:

Lemma 4. Let n(T) = pb T
E(X)c, then lim

T→∞
E(|T−tn(T)|)

T = 0.

Proof. Consider an infinitely long job executing on p processors Pi, 1 ≤ i ≤
p. Let X denote the random variable for failure inter-arrival times on each

processor if there is no history. For T > 0, we fix K(T) =
⌊

T
E(X)

⌋
, thus n(T) =

pK(T).
Let ti,j be the random variable representing the time when processor Pi

fails for the j-th time. Clearly, for all i and k > 0, ti,k+1 − ti,k follows the
distribution X, because Pi is rejuvenated after each failure. Therefore, E(ti,j) =
E(Xi,0) + (j − 1)E(X), where E(Xi,0) depends on the initial state of processor

RR n° 9465

18 Benoit, Perotin, Robert, Vivien

Pi. We then use a variant of the strong law of large numbers [10, Ex. 8
p. 137]: If (X1, X2, . . . , Xj) are identically distributed with finite expectations

and Sj =
∑j
k=1Xk, then

Sj
j → E(X1) in L1, i.e., lim

j→∞ E
(∣∣∣Sjj − E(X1)

∣∣∣) = 0.

Applying this result with Xk = ti,k+1 − ti,k, we obtain Sj−1 = ti,j − ti,1 and

∀i, lim
j→∞ E

(∣∣∣∣ ti,j − ti,1j − 1
− E(X)

∣∣∣∣) = 0.

For any given j, since the ti,j − ti,1’s are identically distributed for all i, we
can define a function ε(j) verifying lim

j→∞ ε(j) = 0 and such that, using triangular
inequalities:

E(|ti,j − jE(X)|) ≤ jε(j) + E(X) + ti,1

for all i and j. Finally, min
1≤i≤p

ti,K(T) ≤ tn(T) ≤ max
1≤i≤p

ti,K(T), because the total

number of failures is the sum of the number of failures of each processor and
n(T) = pK(T). Hence,

E(|tn(T) −K(T)E(X)|) ≤ E(max
1≤i≤p

(|ti,K(T) −K(T)E(X)|))

≤ E(

p∑
i=1

(|ti,K(T) −K(T)E(X)|))

≤ pK(T)ε(K(T)) + pE(X) +

p∑
i=1

ti,1.

By definition, K(T)E(X) ≤ T ≤ (K(T)+1)E(X), and, because of the triangular
inequality, we have:

E(|T − tn(T)|)
T

=
E(|(T −K(T)E(X)) + (K(T)E(X)− tn(T))|)

T

≤ E(X)

K(T)E(X)
+
K(T)pεK(T)

K(T)E(X)
+

pE(X)

K(T)E(X)
+

∑p
i=1 ti,1

K(T)E(X)

=
1

K(T)
+

p

E(X)
ε(K(T)) +

p

K(T)
+

∑p
i=1 ti,1

K(T)E(X)
.

Here, p, E(X), and
∑p
i=1 ti,1 are fixed, while lim

T→∞K(T) =∞. Hence the result,
using lim

K(T)→∞ ε(K(T)) = 0.

Theorem 1. For any T , with n(T) = pb T
E(X)c, let w∗n(T) be the optimal expected

work done up to time tn(T) (from the start to the n(T)-th failure). Then, for

any checkpointing strategy, we have EW ([0,T])
T ≤ w∗

n(T)

T +o(1). Furthermore, with

NextStep, we have EW ([0,T])
T ≥ w∗

n(T)

T − o(1). Hence, NextStep is asymptot-
ically optimal.

Inria

Checkpointing strategies with non-memoryless fail-stop errors 19

Proof. Assuming EW ([a, b]) = 0 if a > b, thanks to Lemma 4, we obtain that,
for any strategy,

EW (T)

T
≤

EW ([0, tn(T)])

T
+

EW ([tn(T), T])

T

≤
w∗n(T)

T
+

E(|T − tn(T)|)
T

=
w∗n(T)

T
+ o(1).

Furthermore, for NextStep, we have:

EW (T)

T
≥

EW ([0, tn(T)])

T
−

EW ([T, tn(T)])

T

≥
w∗n(T)

T
−

E(|T − tn(T)|)
T

=
w∗n(T)

T
− o(1),

which concludes the proof.

4.3.3 Counter-example to optimality

The NextStep heuristic is asymptotically optimal but not always optimal.
This is because, for short jobs, maximizing the efficiency until the next failure
is not exactly equivalent to minimizing the makespan. In Appendix C, we give
an example where NextStep is not optimal, for an Exponential law. The
example is designed as a worst-case scenario and shows that the number of
checkpoints may differ between NextStep and the optimal.

4.3.4 A note on the optimal solution for an Exponential law

Sections 3.2 and 3.3 have shown how to statically compute the optimal strategy
to minimize the expected makespan of a job when the failures obey an Expo-
nential distribution. This optimal strategy is static, meaning that we compute
the number and length of the job segments once and for all, before starting
the execution. On the contrary, the NextStep strategy is dynamic, since it is
called after each failure. One may envision a dynamic version of the optimal
static strategy, where one would recompute the number and length of the job
segments after each failure (and maybe after each checkpoint too), as a function
of the remaining size of the job. We show in Appendix B that this dynamic ap-
proach is identical to the static one. This new result demonstrates the fairness
of comparing NextStep with a static approach.

5 Performance Evaluation

In this section, we evaluate and compare the performance of NextStep with
the Young/Daly periodic checkpointing heuristic, using simulations on synthetic
jobs with various parameters, and subject to failures that are sampled from a
wide range of probability distributions. Section 5.1 details job parameters and
failure distributions. Section 5.2 presents all simulation results.

RR n° 9465

20 Benoit, Perotin, Robert, Vivien

5.1 Simulation Setup

Algorithms

We compare the performance of NextStep with YoungDaly, the Young/Daly
periodic checkpointing strategy (see Sections 3.2 and 3.3). For YoungDaly,

a job J of length Tbase and using p processors is divided into NME =
⌈
Tbase

WYD

⌉
equal-size segments, each followed by a checkpoint. Here, WYD =

√
2Cµind

p . By

default, we use µind = 10 years in the simulations.

Because YoungDaly is a periodic strategy, the size of its checkpointed seg-
ments are defined once and for all. On the contrary, NextStep adapts its check-
pointing strategy to the failure history. Hence, after each failure, NextStep
must recompute the size of its checkpointed segments. We take this recom-
putation time into account in the simulation, and conservatively add it to the
recovery time1. To keep the recomputation time as low as possible, we intro-
duce two optimizations to Algorithm 2. The goal is to dramatically shorten its
execution time while maintaining the quality of the produced solution.

The first optimization is about the loop at Line 9. In Algorithm 2, the loop
is over all possible numbers of checkpoints, ranging from a single checkpoint to
one checkpoint per time quantum (i.e., W ∗ checkpoints). This latter solution
would lead to a huge number of checkpoints. A natural conjecture is that the
expected performance of NextStep would be a bell-shaped function of the
number of checkpoints that are taken, first increasing and then decreasing after
a threshold number has been reached. Therefore, in our implementation, we
have replaced the for loop at Line 9 by a while loop that continues to look
for a solution involving one additional checkpoint only if at least one of the five
prior attempts leads to the best solution overall.

The second optimization is about the computation of the probability of suc-
cess in Algorithm 1, Lines 4 and 13; and Algorithm 2, Line 2 and 5. This prob-
ability is the product of the individual probabilities of the processors. Hence,
the execution time of this step is linear in the number of processors, while we
want to consider platforms with tens of thousands of processors. Furthermore,
this probability is computed many times, for many different values of i and nc.
We replace the exact computation by the following approximation. We first sort
the values in τ∗0 and we retain the smallest ten and largest ten values; then we
approximate the remaining values using 100 quantiles, according to the distribu-
tion. When i and nc vary, they add an additive term to the history, which does
not change the ranking of the values. We can thus replace the exact computa-
tion by one that uses the 10 smallest and 10 largest values of the history, and
the 100 quantiles with their frequency of occurrences (if there are k values for
a quantile, we compute a single probability and its exponentiation rather than
k probabilities that we multiply). Hence, for a pre-processing cost of O(p log p)
we approximate in constant time the probability of success, since the processors

1An alternative would be to perform this recomputation on dedicated resources, and in
parallel to the recovery. We study the most costly scenario for NextStep.

Inria

Checkpointing strategies with non-memoryless fail-stop errors 21

that define the 120 history values remain the same up to the next failure.

Probability Distributions

We experiment with a wide range of probability distributions:
• The Exponential distribution, with probability density function f(t) =
e−t/µind
µind

;

• The Weibull distribution, with probability density function f(t; k, λ) =
k
λ

(
t
λ

)k−1
e−(t/λ)k , where k is the shape parameter and λ is the scale parameter.

To obtain an MTBF of µind, we chose λ = µind

Γ(1+ 1
k)

, and therefore the probability

density function becomes f(t, k) =
kΓ(1+ 1

k)

µind

(
tΓ(1+ 1

k)

µind

)k−1

e
−
(
tΓ(1+ 1

k
)

µind

)k
. In the

experiments, k is varied in {0.5, 0.7, 1.5}. The first two shape values are realistic
values taken from [32, 33, 15]; for k < 1, processors are more likely to fail if the
processor is recent (infant mortality). The last shape value k = 1.5 provides an
example of a distribution whose instantaneous failure rate increases with time.
Note that k = 1 corresponds to the Exponential distribution;
• The Gamma distribution, with probability density function f(t, k,Θ) =
tk−1e−

t
Θ

Γ(k)Θk
, where k is the shape parameter and Θ is the scale parameter. To

obtain an MTBF of µind, we scale it using Θ = µind

k and obtain f(t, k) =

kktk−1e
− kt
µind

Γ(k)µkind
, where k is the shape parameter and Γ is the Gamma function. In

the experiments, k is varied in {0.5, 0.7}. Note that k = 1 corresponds again to
the exponential distribution;
• The Lognormal distribution, with probability density function f(t, µ, σ) =

1
tσ
√

2π
e

(
− (ln t−µ)2

2σ2

)
and with expectation eµ+σ2/2, where µ and σ are respectively

the expectation and the standard deviation of the variable’s natural logarithm.
We tested with two sets of (µ, σ), used in [13] and [42]: (µ1 = 6.6025, σ1 =
1.6206) and (µ2 = 10.89, σ2 = 1.08). In order to harmonize with the other

probability distributions, we aim at having µind = eµ+σ2/2 = 10 years. To
achieve this without altering the shape of the probability distribution, we fix
a parameter k = µ/σ2, in order to express the probability density function
with (µind, k). After scaling, we obtain two sets (µind = 10, k = 2.51) and
(µind = 10, k = 9.34) that we consider in the experiments. We retrieve the
probability density function with:

µ =
ln(µind)

1 + 1
2k

; σ =

√
µ

k
=

√
ln(µind)

k + k
2

.

Traces

We generate a failure trace for each failure distribution and for each processor.
In that trace, failure inter-arrival times obey the distribution, and the last fail-
ure happens after time h, where h is the horizon of the failure trace. The horizon

RR n° 9465

22 Benoit, Perotin, Robert, Vivien

Table 1: Ratio of the execution time achieved by YoungDaly to that of
NextStep for the 8 failure distributions, when Tbase = 48 and Tplat = 100,
and when aggregating all results.

LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal
2.51 0.5 0.5 0.7 0.7 1.5 9.34

Tbase =48, Tplat =100 1.89 (2.02) 1.15 (1.34) 1.04 (1.17) 1.04 (1.14) 1 (1.1) 1.01 (1.06) 1.03 (1.06) 1.02 (1.11)
Aggregated 2.48 (2.26) 1.44 (1.6) 1.24 (1.43) 1.13 (1.28) 1.07 (1.21) 1.01 (1.07) 1.04 (1.07) 1.03 (1.09)

is set to two years (h = 730 days) for all the traces. The different heuristics
are then evaluated using the trace, thereby making sure that all heuristics are
evaluated using the very same failure scenario. If during a simulation, a check-
pointing strategy reaches time h before the completion of the job, the simulation
is said to fail.

Simulation Parameters

In the experiments, we compare both checkpointing strategies under the follow-
ing parameter settings:
• The number of processors p, logarithmically varied in the range 103 to 105.
These values represent mid-size to large parallel platforms.
• The checkpoint/recovery/downtime C = R = 10D, in seconds, varied in
{60, 600}. In practice, the small value of C is optimistic while the later is pes-
simistic; and the low value of D assumes that spares are immediately available.
• The duration of the job Tbase, in hours, varied in {1, 3, 10, 48}. Tbase corre-
sponds to the total length of the job, excluding checkpoints, if no failure occurs,
when it is run on p processors (weak scaling). This corresponds to the duration
range of typical HPC jobs, lasting from one hour up to two days.
• The age of the platform Tplat, in days, varied in {0, 10, 30, 100, 365}. This is
the time from which we start using the failure traces: either from their very
beginning if Tplat = 0, or from a later time if Tplat > 0. The age of the platform
plays an important role for non-memoryless failure distributions. At the cre-
ation of the platform, all the processors are new and without any failure history.
After a failure, the processor that failed is replaced/rejuvenated, but the other
processors are not and keep their history. For instance, if the processors experi-
ence infant mortality, we expect the number of failures to be much higher with
Tplat = 0, when all processors are new, than after a year of service (Tplat = 365).

Evaluation Methodology

For each possible choice of parameters, we generate 50 different failure scenarios.
For each failure scenario, the simulated makespan (duration of the whole exe-
cution) of both heuristics is computed. We include the time spent to compute
the segment sizes of NextStep. On the plots, we report the average makespan
over these 50 instances, together with the tenth and the ninetieth percentiles, as
a function of the number of processors. The YoungDaly heuristic is shown in
red, and NextStep in blue. In all figures, the y-axis is the makespan in hours,

Inria

Checkpointing strategies with non-memoryless fail-stop errors 23

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

100

300

1000

3000

100

300

1000

3000

Number of processors

E
x
ec
u
ti
on

ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 1: Expected performance of both heuristics under all failure distributions
for a 100 days old platform with a workflow of Tbase = 48 hours.

and the x-axis corresponds in most cases to the number of processors; both axes
are in log-scale.

In the tables, we report the relative performance of YoungDaly and NextStep.
More precisely, for each failure scenario, we compute the ratio of the makespan
achieved by YoungDaly divided by that of NextStep. Hence, NextStep
achieves a better makespan when the ratio is greater than 1; the larger the
ratio, the higher the benefice of using NextStep. To produce meaningful
statistics on these ratios, we compute and report their geometric mean and ge-
ometric standard deviation (in parentheses). For a few configurations, Young-
Daly does not succeed to complete the job before the trace horizon. For these
cases, in order to be able to compute statistics, we take for the execution time
of YoungDaly a lower bound, namely the time at which the execution was
stopped: h − Tplat. We checked that using this lower-bound or computing the
statistics while just discarding these configurations leads to almost identical
results (differences below 1%). The simulation code for all experiments is pub-
licly available at http://perso.ens-lyon.fr/frederic.vivien/resilience/
non-memoryless-checkpoint.

5.2 Results

We first compare the behavior of both checkpointing heuristics with the different
probability distributions on a particular set of parameters, before studying the
impact of the different parameters. Only a selection of results is presented here

RR n° 9465

24 Benoit, Perotin, Robert, Vivien

Table 2: Ratio of the execution time achieved by YoungDaly to that of
NextStep for the 8 failure distributions for the different platform sizes and
when averaging over all the other parameters.

Platform LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal
size 2.51 0.5 0.5 0.7 0.7 1.5 9.34

1000 1.34 (1.6) 1.14 (1.33) 1.08 (1.22) 1.03 (1.11) 1.01 (1.08) 1 (1.04) 1.01 (1.04) 1.01 (1.04)
1778 1.53 (1.82) 1.18 (1.41) 1.11 (1.3) 1.03 (1.12) 1.02 (1.1) 1 (1.04) 1.01 (1.04) 1.01 (1.04)
3162 1.88 (2.07) 1.26 (1.49) 1.16 (1.37) 1.05 (1.16) 1.02 (1.13) 1.01 (1.04) 1.02 (1.04) 1.01 (1.05)
5623 2.22 (2.28) 1.33 (1.54) 1.19 (1.38) 1.07 (1.19) 1.04 (1.14) 1.01 (1.06) 1.03 (1.04) 1.02 (1.06)

10000 2.72 (2.33) 1.38 (1.58) 1.23 (1.42) 1.09 (1.24) 1.06 (1.18) 1.01 (1.05) 1.03 (1.05) 1.02 (1.06)
17783 3.2 (2.33) 1.51 (1.66) 1.26 (1.44) 1.14 (1.29) 1.08 (1.22) 1.01 (1.07) 1.04 (1.06) 1.03 (1.07)
31623 3.74 (2.18) 1.72 (1.72) 1.36 (1.5) 1.22 (1.36) 1.12 (1.27) 1.02 (1.08) 1.07 (1.08) 1.05 (1.12)
56234 3.65 (2.02) 1.76 (1.63) 1.37 (1.5) 1.24 (1.35) 1.14 (1.3) 1.01 (1.1) 1.08 (1.09) 1.05 (1.13)

100000 3.5 (1.92) 1.85 (1.55) 1.41 (1.48) 1.33 (1.41) 1.15 (1.32) 1.01 (1.09) 1.08 (1.1) 1.07 (1.16)

due to lack of space, but exhaustive results for all combinations of parameters
can be found in Apendix C.

5.2.1 Comparison of Probability Distributions

Figure 1 compares the two heuristics for the different failure distributions, with
a checkpoint length of one or ten minutes, where the job length is 48 hours and
the platform is 100 days old. In this case, although the platform is not new, we
see that the NextStep heuristic is performing either better than or similarly
to YoungDaly. Moreover, the difference tends to be more important when
the checkpoint length is higher (bottom graphs). Recall that the lower is the
better, since we plot execution times.

Although the MTBF of any individual processor is the same for all failure
laws (µind = 10 years), the shape of these laws significantly impacts the number
of failures that occur during the processing of the job, as well as the distribution
of the failures. For instance, if the processors tend to have infant mortality
(which corresponds to distributions on the left of the figure), and if the platform
is not very old, then jobs may actually experience more failures than expected.
This is the case for the Lognormal distribution with k = 2.51 or Weibull with
k = 0.5 in Figure 1. This explains the higher execution times of YoungDaly
for both heuristics.

Furthermore, YoungDaly does not checkpoint often enough, as it considers
the global long term MTBF of the platform instead of its actual instantaneous
failure rate. This is because YoungDaly does not take the failure history
into account. On the contrary, NextStep does take that history into account.
Therefore, it correctly estimates the instantaneous failure rate. This results in
a makespan that can be up to two times lower.

There are some distributions for which processors tend to be more robust
at the beginning because of their young age (distributions on the right of the
figure). In this case, when the platform is rather young, the number of failures
is lower than what would be expected regarding the MTBF of the platform. A
good example is the Weibull distribution with k = 1.5 in Figure 1. In that case,
the actual instantaneous failure rate of the platform is lower than expected,
YoungDaly tends to over-checkpoint because it does not take into account

Inria

Checkpointing strategies with non-memoryless fail-stop errors 25

Table 3: Ratio of the execution time achieved by YoungDaly to that of
NextStep for the 8 failure distributions as a function of platform age, with
p = 56234 and Tbase = 48 and when averaging over the two checkpoint sizes.

Platform LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal Average
age 2.51 0.5 0.5 0.7 0.7 1.5 9.34

0 4.17 (2.06) 2.33 (1.48) 1.85 (1.44) 1.42 (1.38) 1.28 (1.32) 1.03 (1.08) 1.08 (1.07) 1.08 (1.07) 1.58 (1.78)
10 3.27 (2.26) 1.61 (1.66) 1.29 (1.46) 1.13 (1.29) 1.06 (1.2) 1.01 (1.06) 1.04 (1.06) 1.02 (1.06) 1.31 (1.71)
30 2.57 (2.17) 1.36 (1.55) 1.15 (1.32) 1.08 (1.21) 1.03 (1.16) 1 (1.06) 1.03 (1.06) 1 (1.06) 1.21 (1.58)

100 1.89 (2.02) 1.15 (1.34) 1.04 (1.17) 1.04 (1.14) 1 (1.1) 1.01 (1.06) 1.03 (1.06) 1.02 (1.11) 1.12 (1.42)
365 1.42 (1.72) 1.05 (1.17) 1.01 (1.1) 1.02 (1.11) 1 (1.08) 1 (1.06) 1.01 (1.07) 1.03 (1.13) 1.06 (1.27)

Table 4: Ratio of the execution time achieved by YoungDaly to that of
NextStep for the 8 failure distributions for the two checkpoint durations (in
seconds) when averaging over all the other parameters.

Checkpoint LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal
duration 2.51 0.5 0.5 0.7 0.7 1.5 9.34

60 2.18 (2.27) 1.33 (1.52) 1.17 (1.37) 1.08 (1.2) 1.03 (1.14) 1 (1.03) 1.02 (1.04) 1.01 (1.04)
600 2.83 (2.2) 1.56 (1.66) 1.3 (1.47) 1.18 (1.34) 1.11 (1.26) 1.02 (1.09) 1.06 (1.08) 1.05 (1.12)

this actual failure rate, whereas NextStep adapts its checkpointing strategy
according to this history, showing once again its versatility. Yet this time,
the difference between heuristics is low, because the overall checkpointing cost
remains small in both cases.

Finally, if the platform actual instantaneous failure rate is in accordance
with the expected MTBF, as is the case for an Exponential law, YoungDaly
is optimal. We check that the performance of NextStep and YoungDaly are
similar in this setting.

Altogether, these results show that NextStep always adapts to the ac-
tual instantaneous failure rate, because it accounts for the failure history of
processors. Its versatility makes it a better strategy in all the cases: Table 1
summarizes the results, reporting the ratio of the execution time achieved by
YoungDaly to that of NextStep (geometric average, geometric standard de-
viation). We point out that the difference is more significant for the realistic
distribution laws that have been advocated in the literature: namely Weibull
with a shape parameter smaller than one [32, 33, 15], and Lognormal [13, 42].

The previous study was for long jobs lasting 48 hours and Tplat = 100. We
also present the aggregated results over all job lengths and platform ages in
Table 1. We observe that NextStep achieves even larger gains. For instance,
for Lognormal 2.51, the average ratio becomes 2.48, instead of 1.89 for the
scenario with Tplat = 100.

5.2.2 Impact of the Different Parameters

Impact of the number of processors. It can also be observed on Figure 1:
the more processors, the more failures, and the larger the makespan for both
heuristics, as one could have foretold. In most settings, the performance of
YoungDaly worsens relatively to that of NextStep when the number of
processors increases (recall that the y-axis is in log-scale). Again, this can
be explained as follows: the difference between the estimated failure rate and

RR n° 9465

26 Benoit, Perotin, Robert, Vivien

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

0 100200300 0 100200300 0 100200300 0 100200300 0 100200300 0 100200300 0 100200300 0 100200300

100

1000

10000

100

1000

10000

Age of platform (in days)

E
x
ec
u
ti
on

ti
m
e
in

h
ou

rs
YoungDaly NextStep

Figure 2: Expected performance of both heuristics under all failure distribu-
tions, with p = 56234 and Tbase = 48 hours.

the instantaneous failure rate increases with the number of processors; hence,
worse results for YoungDaly. On the contrary, NextStep adapts to the
instantaneous failure rate. Table 2 provides a comprehensive summary of results
for each platform size, averaging over all other parameters. The table confirms
this observation.

Impact of the age of the platform. The age of the platform has a great
impact on the performance of both heuristics, because the instantaneous failure
rate of the platform highly depends on it. When processors have a high infant
mortality, a more recent platform leads to more errors and thus to a higher
makespan for both heuristics. This can be observed in Figure 2, especially on
the leftmost graphs. On this figure, the x-axis is now the age of the platform
(in a linear scale). The number of processors is fixed to p = 56234 and the job
execution time is Tbase = 48 hours.

For all distributions to the left of the Exponential, the newer the platform,
the higher the difference between the heuristics. Indeed, for younger platforms,
processors are more likely to fail due to infant mortality; and the older the
platform, the more the instantaneous failure rate resembles an Exponential.
The same observation can be made for Weibull 1.5, although in this case, this
is due to low infant mortality. Indeed, with this distribution, less failures occur
for younger platforms.

Lognormal 9.34 behaves slightly differently. For this distribution, once again,
YoungDaly does not adapt to the instantaneous failure rate: either it overesti-

Inria

Checkpointing strategies with non-memoryless fail-stop errors 27

Table 5: Ratio of the execution time achieved by YoungDaly to that of
NextStep for the 8 failure distributions for the different job lengths (in hours)
and when averaging over all the other parameters.

Job LogNormal Weibull Gamma Weibull Gamma Exponential Weibull LogNormal
length 2.51 0.5 0.5 0.7 0.7 1.5 9.34

1 2.36 (2.84) 1.42 (1.81) 1.25 (1.58) 1.12 (1.39) 1.07 (1.29) 1.02 (1.09) 1.05 (1.08) 1.04 (1.12)
3 2.83 (2.47) 1.52 (1.71) 1.29 (1.49) 1.15 (1.32) 1.09 (1.25) 1.01 (1.07) 1.04 (1.08) 1.03 (1.1)

10 2.63 (2) 1.47 (1.51) 1.25 (1.35) 1.14 (1.23) 1.07 (1.17) 1 (1.05) 1.04 (1.06) 1.03 (1.08)
48 2.16 (1.6) 1.35 (1.32) 1.16 (1.21) 1.11 (1.15) 1.05 (1.11) 0.997 (1.03) 1.03 (1.05) 1.02 (1.06)

mates the instantaneous failure rate of a new platform and does not checkpoint
enough, or it underestimates the instantaneous failure rate of an old platform
and checkpoints too much. On the contrary, NextStep adjusts the checkpoint-
ing strategy for both cases. For intermediate platform ages, both heuristics have
close performance because this is where the instantaneous failure rate is the clos-
est to what is expected (µind

p) by YoungDaly. Nevertheless, the variance is
different from that of the Exponential law, and NextStep achieves slightly
better performance.

Table 3 summarizes these results. The last column provides an average
over all distributions. Most gains are obtained for young platforms. NextStep
always achieves a performance at least similar to YoungDaly, and much better
in many cases.

Impact of the checkpoint time. As expected, the larger the checkpoint cost,
the larger the execution time for both heuristics, as shown in Figure 1. Having
a larger checkpoint cost exacerbates the differences between both heuristics.
Indeed, when checkpoints cost more, both heuristics execute fewer checkpoints
and thus lose more time at each failure. In the end, this increases the relative
errors due to a bad checkpointing strategy. Table 4 summarizes the results for
the two checkpoint costs (one minute or ten minutes).

Impact of the job length. Again, the larger the job length, the larger the
execution time for both heuristics, as shown on Figure 3. Moreover, the error
bars are much wider for a small workload, because having larger jobs will smooth
the impact of each individual failure. Table 5 summarizes results for the four
job lengths by aggregating all results. Overall, more gain can be achieved with
smaller job lengths. Indeed, relatively to the lengths of jobs, checkpoints are
more expensive for small jobs. This conclusion is similar to that on the impact
of the cost of checkpoints. This phenomenon can be observed by comparing
Tables 4 and 5, where the impact of increasing the checkpoint cost is similar to
the impact of decreasing the job length.

6 Conclusion

In this paper, we have investigated checkpointing strategies to protect parallel
jobs from non-memoryless fail-stop errors. Indeed, the optimal strategy has
been well studied when failure inter-arrival times obey an Exponential law, but
not well understood for non-memoryless failure distributions. We have designed

RR n° 9465

28 Benoit, Perotin, Robert, Vivien

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

W
ork

size:
1h

W
ork

size:
3h

W
ork

size:
10h

W
ork

size:
48h

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

1

10

100

1

10

100

1

10

100

1

10

100

Number of processors

E
x
ec
u
ti
on

ti
m
e
in

h
ou

rs
YoungDaly NextStep

Figure 3: Expected performance of both heuristics under all failure distributions
on a 365 day old platform, with C = 60 seconds.

a general strategy, NextStep, which maximizes the expected efficiency until
the next failure. While it may not be optimal because of side-effects towards
the end of the job, we proved that this strategy is asymptotically optimal for
very long jobs.

Instead of maximizing the expected efficiency until the next failure, tradi-
tional solutions consist in checkpointing periodically according to the platform
MTBF (YoungDaly strategy). Our extensive simulation results show that
this strategy works well for Exponential laws, but not for the other laws, be-
cause it either underestimates or overestimates the actual instantaneous failure
rate. On the contrary, NextStep is always at least as good as YoungDaly for
any failure distribution, and significantly outperforms it in many cases. Over-
all, our study demonstrates the interest of always using NextStep instead of
YoungDaly.

In particular, the difference between NextStep and YoungDaly is very
important for distributions whose infant mortality of the distribution is high, e.g.
LogNormal 2.51 or Weibull 0.5. The latter distributions have been advocated
to model failures on real-life platforms, which further evidences the impact and
significance of NextStep.

Future work will focus on checkpointing strategies for workflows composed of
parallel jobs with dependencies, instead of independent jobs as in this study. The
criticality of some jobs in the workflow may lead to checkpoint them more often
than prescribed by the NextStep strategy tuned for a given non-memoryless

Inria

Checkpointing strategies with non-memoryless fail-stop errors 29

failure distribution.

References

[1] G. Aupy, A. Benoit, H. Casanova, and Y. Robert. Scheduling compu-
tational workflows on failure-prone platforms. Int. J. of Networking and
Computing, 6(1):2–26, 2016.

[2] G. Aupy, Y. Robert, and F. Vivien. Assuming failure independence: are
we right to be wrong? In FTS’2017, 2017.

[3] L. Bautista-Gomez, A. Gainaru, S. Perarnau, D. Tiwari, S. Gupta, C. En-
gelmann, F. Cappello, and M. Snir. Reducing waste in extreme scale sys-
tems through introspective analysis. In IPDPS, pages 212–221. IEEE, 2016.

[4] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama,
and S. Matsuoka. FTI: High performance fault tolerance interface for hybrid
systems. In Proc. SC’11, 2011.

[5] A. Benoit, A. Cavelan, V. Le Fèvre, Y. Robert, and H. Sun. Towards
optimal multi-level checkpointing. IEEE Trans. Computers, 66(7):1212–
1226, 2017.

[6] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Assessing general-purpose
algorithms to cope with fail-stop and silent errors. ACM Trans. Parallel
Computing, 3(2), 2016.

[7] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien. Check-
pointing strategies for parallel jobs. In Proc. of SC’11, 2011.

[8] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward
exascale resilience: 2014 update. Supercomputing frontiers and innovations,
1(1), 2014.

[9] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Transactions on Computer Systems,
3(1):63–75, 1985.

[10] K. L. Chung. A Course in Probability Theory. Stanford University, 3
edition, 2000.

[11] J. T. Daly. A higher order estimate of the optimum checkpoint interval for
restart dumps. FGCS, 22(3):303–312, 2006.

[12] S. Di, M. S. Bouguerra, L. Bautista-Gomez, and F. Cappello. Optimization
of multi-level checkpoint model for large scale HPC applications. In IPDPS.
IEEE, 2014.

RR n° 9465

30 Benoit, Perotin, Robert, Vivien

[13] S. Di, H. Guo, R. Gupta, E. R. Pershey, M. Snir, and F. Cappello. explor-
ing properties and correlations of fatal events in a large-scale hpc system.
Trans. on Parallel and Distributed Systems, 2018.

[14] S. Di, Y. Robert, F. Vivien, and F. Cappello. Toward an optimal online
checkpoint solution under a two-level HPC checkpoint model. IEEE Trans.
Parallel & Distributed Systems, 2016.

[15] N. El-Sayed and B. Schroeder. To checkpoint or not to checkpoint: Under-
standing energy-performance-i/o tradeoffs in hpc checkpointing. In CLUS-
TER, pages 93–102, 2014.

[16] K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold. Evaluating the
Viability of Process Replication Reliability for Exascale Systems. In SC’11.
ACM, 2011.

[17] A. Frank, M. Baumgartner, R. Salkhordeh, and A. Brinkmann. Improving
checkpointing intervals by considering individual job failure probabilities.
In IPDPS, pages 299–309, 2021.

[18] E. Gelenbe, P. Boryszko, M. Siavvas, and J. Domanska. Optimum check-
points for time and energy. In 28th MASCOTS, pages 1–8. IEEE, 2020.

[19] L. Han, L.-C. Canon, H. Casanova, Y. Robert, and F. Vivien. Checkpoint-
ing workflows for fail-stop errors. IEEE Trans. Computers, 67(8):1105–
1120, 2018.

[20] L. Han, V. Le Fèvre, L.-C. Canon, Y. Robert, and F. Vivien. A generic
approach to scheduling and checkpointing workflows. In ICPP’2018, the
47th Int. Conf. on Parallel Processing, 2018.

[21] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and F. Cappello.
Modeling and tolerating heterogeneous failures in large parallel systems. In
Proc. SC’11, 2011.

[22] T. Herault and Y. Robert, editors. Fault-Tolerance Techniques for
High-Performance Computing, Computer Communications and Networks.
Springer Verlag, 2015.

[23] T. Herault, Y. Robert, A. Bouteiller, D. Arnold, K. B. Ferreira, G. Bosilca,
and J. Dongarra. Checkpointing strategies for shared high-performance
computing platforms. International Journal of Networking and Computing,
9(1):28–52, 2019.

[24] S. Hiroyama, T. Dohi, and H. Okamura. Aperiodic checkpoint placement
algorithms—survey and comparison. Journal of Software Engineering and
Applications, 6(4A):41–53, 2013.

Inria

Checkpointing strategies with non-memoryless fail-stop errors 31

[25] W. Jones, J. Daly, and N. DeBardeleben. Impact of sub-optimal checkpoint
intervals on application efficiency in computational clusters. In HPDC’10,
pages 276–279. ACM, 2010.

[26] O. Kella and W. Stadje. Superposition of renewal processes and an appli-
cation to multi-server queues. Statistics & probability letters, 76(17):1914–
1924, 2006.

[27] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. Making cloud intermediate data
fault-tolerant. In Proc. 1st ACM Symposium on Cloud Computing, SoCC
’10. ACM, 2010.

[28] S. Levy and K. B. Ferreira. An examination of the impact of failure dis-
tribution on coordinated checkpoint/restart. In FTXS Workshop, pages
35–42. ACM, 2016.

[29] Y. Ling, J. Mi, and X. Lin. A variational calculus approach to optimal
checkpoint placement. IEEE Trans. Computers, pages 699–708, 2001.

[30] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing System.
In Proc. SC’10, 2010.

[31] H. Okamura and T. Dohi. Comprehensive evaluation of aperiodic check-
pointing and rejuvenation schemes in operational software system. Journal
of Systems and Software, 83(9):1591–1604, 2010.

[32] B. Schroeder and G. A. Gibson. A large-scale study of failures in high-
performance computing systems. In Proc. of DSN, pages 249–258, 2006.

[33] B. Schroeder and G. A. Gibson. Understanding failures in petascale com-
puters. Journal of Physics: Conference Series, 78(1), 2007.

[34] K. Schroiff, P. Gemsjaeger, and C. Bolik. Cascading failover of a data
management application for shared disk file systems in loosely coupled node
clusters, 2006. US Patent 6,990,606.

[35] P. Sigdel, X. Yuan, and N. Tzeng. Realizing best checkpointing control in
computing systems. IEEE TPDS, 32(2):315–329, 2021.

[36] L. Silva and J. Silva. Using two-level stable storage for efficient checkpoint-
ing. IEE Proceedings - Software, 145(6):198–202, 1998.

[37] D. Stirzaker. Elementary Probability. Cambridge University Press, 2 edi-
tion, 2003.

[38] O. Subasi, G. Kestor, and S. Krishnamoorthy. Toward a general theory of
optimal checkpoint placement. In CLUSTER, pages 464–474. IEEE, 2017.

RR n° 9465

32 Benoit, Perotin, Robert, Vivien

[39] O. Subasi, T. Martsinkevich, F. Zyulkyarov, O. Unsal, J. Labarta, and
F. Cappello. Unified fault-tolerance framework for hybrid task-parallel
message-passing applications. IJHPCA, 32(5):641–657, 2018.

[40] D. Tiwari, S. Gupta, and S. S. Vazhkudai. Lazy checkpointing: Exploit-
ing temporal locality in failures to mitigate checkpointing overheads on
extreme-scale systems. In 44th Int. Conf. on Dependable Systems and Net-
works, pages 25–36. IEEE, 2014.

[41] S. Toueg and O. Babaoğlu. On the optimum checkpoint selection problem.
SIAM J. Comput., 13(3), 1984.

[42] N. Yigitbasi, M. Gallet, D. Kondo, A. Iosup, and D. Epema. Analysis
and modeling of time-correlated failures in large-scale distributed systems.
Parallel and Distrib. Syst. Report Series, 2010.

[43] J. W. Young. A first order approximation to the optimum checkpoint
interval. Comm. of the ACM, 17(9):530–531, 1974.

A NextStep is not optimal for Exponential laws

A.1 Introduction to the example

Consider a single-processor job of length Tbase = T = 0.062249, which we need
to checkpoint at the end. The duration of a checkpoint is C = 0.001 and we
have R = D = 0. The failure probability density function is f(x) = e−x, an
Exponential law with parameter λ = 1. We show that NextStep is not optimal
for this example.

We start in Section A.2 with the computation of a fundamental function: if
a failure strikes between instants a and b, what is the expected time Elost(a, b)
elapsed between a and the time of the failure? Here, a will always be either
equal to 0 (a = 0), or to the time the last checkpoint was completed. Then,
b can be any instant before the end of the next checkpoint. Thus, Elost(a, b)
corresponds to the expected work lost after the last checkpoint.

Next, we compute in Section A.3 the expected makespan when a single
checkpoint is taken E∗stat(T,Nc = 1). We show in Section A.4 that this is the best
static strategy, by proving that the optimal makespan of a static strategy which
takes two checkpoints, E∗stat(T,Nc = 2), is strictly greater than E∗stat(T,Nc = 1).
This enables us to conclude using the results recalled in Section 3.2 of the main
paper. Indeed, with the notations of Section 3.2, if taking two checkpoints is
worse than taking one, then the optimal number of checkpoints Nopt is not
greater than 2. Hence, NME ≤ 2.

Finally, we lower-bound the expected makespan of NextStep. To do so,
we first find in Section A.5 the optimal expected efficiency E∗e(T,Nc) achiev-
able by NextStep for Nc = 1 and Nc = 2, and we show that the efficiency
is better for Nc = 2, implying that the initial strategy includes at least two
checkpoints. Then, in Section A.6, for any Nc ≥ 2, we suppose that NextStep

Inria

Checkpointing strategies with non-memoryless fail-stop errors 33

does Nc checkpoints in the first call and we lower-bound the expected makespan
ÊNS (T,Nc) in this case. Rephrased differently, ÊNS (T,Nc) corresponds to the
expected makespan of the algorithm that optimizes the efficiency up to the next
failure starting with Nc checkpoints, and applies NextStep afterwards. We
check that for all Nc ≥ 2, ÊNS (T,Nc) > E∗stat(T, 1). In particular, if the actual
number of checkpoints of NextStep planned in the first call is N∗c ≥ 2, its
expected makespan ENS (T) verifies ENS (T) = ÊNS (T,N∗c) > E∗stat(T, 1), which
shows that it is not optimal.

A.2 Computation of Elost(a, b)

The expected time lost if we have a failure between a and b, when a checkpoint
was completed exactly at time a or when a = 0, is computed as follows:

Elost(a, b) =

∫ b

a

(x− a)P{X = x|a < X < b}dx

=
1

P{a < X < b}

∫ b

a

(x− a)f(x)dx

=
1

P{X < b} − P{X < a}

∫ b

a

(x− a)e−xdx

=
1

e−a − e−b

∫ b

a

(x− a)e−xdx

∫ b

a

(x− a)e−xdx =
[
−(x− a)e−x

]b
a
−
∫ b

a

−e−xdx

= −(b− a)e−b −
[
e−x

]b
a

= −(b− a)e−b + e−a − e−b

Elost(a, b) =
−(b− a)e−b + e−a − e−b

e−a − e−b

= 1− (b− a)e−b

e−a − e−b

= 1− b− a
eb−a − 1

We check that Elost(a, b) only depends on b − a, which is comforting because
the law is memoryless. In the following, we will use the difference b−a as single
parameter x, i.e.,

Elost(x) = 1− x

ex − 1
(11)

RR n° 9465

34 Benoit, Perotin, Robert, Vivien

A.3 Computation of E∗
stat(T,Nc = 1)

With a single checkpoint, the makespan is T +C if there are no failures. Other-
wise, we lose the time elapsed before the first failure occurs, Elost(T + C), and
we need to start again. Therefore, E∗stat(T,Nc = 1) can be expressed as follows:

E∗stat(T, 1) = P{X > T + C}(T + C)

+ P{X < T + C}(E∗stat(T, 1) + Elost(T + C))

E∗stat(T, 1) = T + C +
1− e−(T+C)

e−(T+C)
Elost(T + C) (12)

With T = 0.062249 and C = 0.001, using Equation (11), we obtain E∗stat(T, 1) ≈
0.06529206.

A.4 Computation of E∗
stat(T,Nc = 2)

In this case, recall from Section 3.2 (main paper) that the best solution is to have
two equal-sized segments. Therefore, we can use Equation (12) with E∗stat

(
T
2 , 1
)

and obtain:

E∗stat (T,Nc = 2) = 2× E∗stat
(
T

2
, 1

)
= 2

(
T

2
+ C +

1− e−(T2 +C)

e−(T2 +C)
Elost

(
T

2
+ C

))
Using Equation (11), we get E∗stat(T, 2) ≈ 0.06529212 > E∗stat(T, 1) with T =
0.062249 and C = 0.001. As stated in Section A.1, this result shows that the
optimal checkpointing heuristic uses a single checkpoint at the end.

A.5 Computation of E∗
e(T,Nc = 1) and E∗

e(T,Nc = 2)

We now show that NextStep does at least two checkpoints in the first call, by
computing the best expected efficiency E∗e(T,Nc) using one or two checkpoints,
and checking that indeed E∗e(T, 2) > E∗e(T, 1).

With a single checkpoint at the end, we can either process 0 units of work
if we have a failure, or process the whole job. Therefore,

E∗W (T, 1) = 0× P{X < T + C}+ TP{X > T + C}
= Te−(T+C)

Furthermore, the expected time before the next failure or the end of the job can
be computed as follows:

ETnext (T, 1) = P{X > T + C}(T + C)

+ P{X < T + C}Elost(T + C)

= e−(T+C)(T + C)

+ (1− e−(T+C))

(
1− T + C

eT+C − 1

)

Inria

Checkpointing strategies with non-memoryless fail-stop errors 35

Hence, with no additional checkpoint,

E∗e(T, 1) =

Te−(T+C)

e−(T+C)(T + C) + (1− e−(T+C))
(

1− T+C
eT+C−1

) (13)

With T = 0.062249 and C = 0.001, we obtain E∗e(T, 0, 1) ≈ 0.95339305.

If we add one checkpoint, we could place it anywhere; in that case, if we
checkpoint after w ∈ (0, T) units of work, the work done before the next failure
or the end of the job can either be 0 if a failure occurs in [0, w+C], w if a failure
occurs in (w + C, T + 2C) or T if no failure occurs before T + 2C. Thus,

E∗W (T ,Nc = 2) = max
w

EW (T, 2, w)

= max
w

(wP{w + c < X < T + 2C}

+ TP{X > T + 2C})
= max

w
(w(e−(w+C) − e−(T+2C)) + Te−(T+2C))

= max
w

((T − w)e−(T+2C) + we−(w+C))

The expected time before the next failure or the end of the job is:

ETnext
(T,Nc = 2) = P{X > T + 2C}(T + 2C)

+ P{X < T + 2C}Elost(0, T + 2C)

= e−(T+2C)(T + 2C)

+ (1− e−(T+2C))

(
1− T + 2C

eT+2C − 1

)
Altogether, these results give the formula for E∗e(T,Nc = 2):

E∗e(T, 2) =

maxw((T − w)e−(T+2C) + we−(w+C))

e−(T+2C)(T + 2C) + (1− e−(T+2C))
(

1− T+2C
eT+2C−1

)
The best choice for w is hard to express analytically, but with T = 0.062249

and C = 0.001, we numerically obtain w∗ ≈ 0.0313732 and E∗e(T, 2) > 0.95339312 >
E∗e(T, 1). This shows that NextStep will not execute a single checkpoint at

the end. We will finally show that for all Nc ≥ 2, ÊNS (T,Nc) > E∗stat(T, 1).

A.6 Lower bound on ÊNS (T,Nc = 2)

We have shown that NextStep plans to take at least two checkpoints in its
first call. We now move to evaluating the expected makespan achieved by
NextStep.

RR n° 9465

36 Benoit, Perotin, Robert, Vivien

We have already shown that if NextStep does two checkpoints in the first
call, the first one is placed after w∗ units of work executed and, by definition,
the second one is taken at the end. To compute ÊNS (T, 2), we note that if
no failures happen, the makespan is T + 2C, whereas if the failure strikes in
the second segment, we lose Elost(T − w∗ + C) and we need to reprocess the
remaining T − w∗ units of time, which takes a time ENS (T − w∗) (because
the law is memoryless and R = D = 0). Finally, if a failure strikes in the
first segment, we lose Elost(w∗ + C) and we need to retry from the beginning.

Overall, ÊNS (T, 2) can be expressed as follows:

ÊNS (T, 2) = P{X > T + 2C}(T + 2C)

+ (P{X > w∗ + C} − P{X > T + 2C})
× (w∗ + C + Elost(T + C − w∗) + ENS (T − w∗))

+ (1− P{X > w∗ + C})(Elost(w∗ + C) + ÊNS (T, 2))

We isolate ÊNS (T, 2) on the left side of the equation and divide by P{X >
w∗ + C} to obtain:

ÊNS (T, 2) =
1

e−(w∗+C)

× ((T + 2C)e−(T+2C) + (1− e−(w∗+C))Elost(w∗ + C))

+
e−(w∗+C) − e−(T+2C)

e−(w∗+C)

× (w∗ + C + Elost(T + C − w∗) + ENS (T − w∗)))

The only unknown value is ENS (T − w∗), which we may lower-bound by
the optimal strategy given a segment of length T − w∗. If we choose to do a
single checkpoint (at the end of the segment) and stick with this strategy, the
expected makespan of the segment is E∗stat(T − w∗, 1) ≈ 0.0324. However, if
we choose to do at least one additional checkpoint, the expected makespan is
larger than T − w∗ + 2C. Indeed, this will be the case if there is no failure
before the end of the first checkpoint because, in this case, we will have to take
at least one more checkpoint after the initial one. If, otherwise, a failure strikes
before the completion of this first checkpoint, the situation is exactly the same
as before (the law being memoryless). Therefore, the strategy will not change
and, whatever the failure scenario, we will eventually execute two checkpoints.
Since T −w∗ + 2C ≈ 0.0329 > E∗stat(T −w∗, 1), an optimal strategy is initially
to do a single checkpoint.

Clearly, if a failure occurs, changing the strategy can only result in an in-
crease in expected makespan, so we have ENS (T − w∗) ≥ E∗stat(T − w∗, 1).
Finally,

Inria

Checkpointing strategies with non-memoryless fail-stop errors 37

ÊNS (T, 2) ≥
1

e−(w∗+C)

× ((T + 2C)e−(T+2C) + (1− e−(w∗+C))Elost(w∗ + C))

+
e−(w∗+C) − e−(T+2C)

e−(w∗+C)

× (w∗ + C + Elost(T + C − w∗) + E∗
stat(T − w∗, 1))

Using Equations (11) and (12), with T = 0.062249 and C = 0.001, we get

ÊNS (T, 2) > 0.06529218 > E∗stat(T, 1).

A.7 Lower bound on ÊNS (T,Nc = 3)

We now assume that NextStep initially splits the job into three segments. We
consider the longest segment, of length L ≥ T

3 , which starts after w units of
work and s segments. In particular, w = 0 if s = 0, w ∈ (0, T −L) if s = 1, and
w = T − L if s = 2.

To lower-bound the expected makespan in that scenario, we consider several
cases:

• If no failure occurs, the makespan is T+3C. This happens with probability
e−(T+3C).

• If a failure occurs in the longest segment, the conditional expected makespan
is at least T + C + Elost

(
T
3 + C

)
, because we have to process at least

T +C for the job in total, and we lose an additional time Elost(L+C) ≥
Elost

(
T
3 + C

)
because a failure occurred in the longest segment. We de-

note by f(w, s, L) the probability of this case.

• Finally, in all the other cases, whose total probability is 1 − e−(T+3C) −
f(w, s, L), we will have at least to process the whole work and take a
checkpoint for a time of T + C.

We are always in one and only one of these three scenarios, therefore we can
lower-bound the expected makespan using previous bounds on the conditional
expected makespan combined with their probability of occurrence:

ÊNS (T ,Nc = 3) ≥ (T + 3C)e−(T+3C)

+

(
T + C + Elost

(
T

3
+ C

))
f(w, s, L)

+ (T + C)
(

1− e−(T+3C) − f(w, s, L)
)

ÊNS (T ,Nc = 3) ≥ (T + 3C)e−(T+3C)

+ Elost
(
T

3
+ C

)
f(w, s, L) + (T + C)

(
1− e−(T+3C)

)

RR n° 9465

38 Benoit, Perotin, Robert, Vivien

Clearly, the bound increases when f(w, s, L) increases. Therefore, we need
to find a lower bound for f(w, s, L) to be able to conclude. f(w, s, L) is the
probability that a failure strikes the longest segment the first time we try to
process it. This is the conjunction of the success of the segments before and the
failure of the longest segment. Therefore,

f(w, s, L) = e−(w+sC)(1− e−(L+C)).

This function is clearly increasing with L and decreasing with w and s. The
largest possible s is 2. As L ≥ T

3 and w ≤ T − L, the smallest possible L is T
3

whereas the largest possible w is 2T
3 . Clearly, f(w, s, L) ≥ f

(
2T
3 , 2,

T
3

)
, and the

lower bound on ÊNS (T,Nc = 3) becomes:

ÊNS (T , 3) ≥ (T + 3C)e−(T+3C) + (T + C)
(

1− e−(T+3C)
)

+ Elost
(
T

3
+ C

)
e−(2T

3 +2C)
(

1− e−(T3 +C)
)

Using Equation (11), with T = 0.062249 and C = 0.001, we get ÊNS (T, 3) >
0.06534 > E∗stat(T, 1).

A.8 Lower bound of ÊNS (T,Nc) for 4 ≤ Nc ≤ 1001

If NextStep initially chooses to do Nc checkpoints, the resulting makespan is
T +NcC if no failures occur, and at least T + C otherwise. Therefore,

ÊNS (T,Nc) ≥ (T +NcC)e−(T+NcC) + (1− e−(T+NcC))(T + C)

= T + C + (Nc − 1)Ce−(T+NcC)

= T + C + e−(T+C) × (Nc − 1)Ce−(Nc−1)C

The function f(x) = xe−x is increasing for 0 ≤ x ≤ 1. Hence, because (Nc −
1)C ≤ 1000× 0.001 = 1, we use NC = 4 to get

ÊNS (T,Nc) ≥ ÊNS (T, 4) = T + C + 3Ce−(T+4C).

With T = 0.062249 and C = 0.001, we get ÊNS (T,Nc) > 0.066 > E∗stat(T, 1) in
this case.

A.9 Lower bound of ÊNS (T,Nc) for Nc > 1001

Finally, if NextStep initially chooses to do Nc checkpoints, the resulting
makespan is at least Elost (T +NcC) if a failure occurs. Thus,

Inria

Checkpointing strategies with non-memoryless fail-stop errors 39

ÊNS (T,Nc) ≥ (1− e−(T+NcC))Elost (T +NcC)

= (1− e−(T+NcC))

(
1− T +NcC

eT+NcC − 1

)
= (1− e−(T+NcC))

(
1− T +NcC

1− e−(T+NcC)
e−(T+NcC)

)
= 1− e−(T+NcC) − (T +NcC)e−(T+NcC)

= 1− (1 + T +NcC)e−(T+NcC)

Let f(x) = 1− (1 + x)e−x. Then, ÊNS (T,Nc) = f(T +NCC) and

f ′(x) = −e−x + (1 + x)e−x = xe−x.

For x > 0, f is therefore increasing with x and we have

f(T +NCC) ≥ f(T + 1001C).

With T = 0.062249 and C = 0.001, we obtain ÊNS (T,Nc) ≥ f(T + NCC) ≥
f(T + 1001C) > 0.2 > E∗stat(T, 1).

We have shown that for all Nc ≥ 2, ÊNS (T,Nc) > E∗stat(T, 1); therefore
NextStep is strictly worse than the best static strategy, which shows that it
is not optimal. This concludes the analysis of the counter-example.

B On the dynamic version of the optimal static
strategy for an Exponential law

In this section, we prove that the dynamic version of the optimal static strategy
is identical to the static version when failures obey an Exponential law. We
start with a few notations before formally stating this result.

B.1 Notations

In the following, we consider a sequential or parallel job of length Tbase. A
checkpointing strategy S is defined as S = {c1, c2, . . . , cm}, where each ck ∈
(0, Tbase) denotes the amount of the work executed before checkpoint number k.
Note that we assume that there is a checkpoint at the end, i.e., cm = Tbase.

When a failure occurs, let E(R) be the expected time before the processors
are ready to work again. This includes the downtime and a recovery time, but
may be longer if we encounter another failure during the recovery time. For a
given checkpointing strategy S and a work w ∈ S∪{0}, we denote by E([0, w],S)
the expected time between the start of the job and the completion of the check-
point corresponding to w units of work. Similarly, we denote by E([w, Tbase],S)

RR n° 9465

40 Benoit, Perotin, Robert, Vivien

the expected time between the moment the checkpoint corresponding to w units
of work is completed (or the start of the job if w = 0) and the moment the job
completes, including the last checkpoint. If we do not have w ∈ S ∪ {0}, both
expectations are considered infinite. With these definitions, we clearly have:

∀w ∈ S,E([0, Tbase],S) = E([0, w],S) + E([w, Tbase],S).

Finally, given a work w ∈ [0, Tbase], we let S∗w be a checkpointing strategy
such that for all S, we have E([w, Tbase],S) ≥ E([w, Tbase],S∗w). Although mul-
tiple checkpointing strategies may minimize this expectation, the value of this
expectation E∗w , E([w, Tbase],S∗w) is unique and well defined. Intuitively, S∗w
is an optimal checkpointing strategy for the end of the job after w units have
been processed and checkpointed.

B.2 Main result

Theorem 2. For a job of length Tbase, consider the following two approaches:

• (A) Static Strategy: Find an optimal checkpointing heuristic S∗0 that min-
imizes the total expected makespan E∗0 and does not update the strategy
until the job is completed.

• (B) Dynamic Strategy: Start with the best static strategy S∗0 , then when-
ever an event occurs, i.e., a segment is completed or a failure happens,
find an optimal static checkpointing strategy minimizing the remaining ex-
pected makespan. If the remaining expected makespan is strictly smaller
with the new strategy, update the checkpointing strategy accordingly.

The static strategy (A) and the dynamic strategy (B) are identical.

The optimal static strategy (A) is well-known and uses NME segments, where
NME is given in Section 3.2 (main paper). The value of NME depends upon the
length of the job that remains to be processed, so strategy (B) could compute
a different value when called after the first checkpoint or the first failure. The
proof shows that this is never the case.

Proof. Initially, both strategies are identical by definition. We assume that
strategy (B) and strategy (A) are not always identical and obtain a contradic-
tion. Suppose that both strategies are different. Then, there exists a failure
scenario in which both strategies diverge. Consider such a scenario and let W
be the total work executed and checkpointed when the first event e occurs, after
which strategy (B) becomes different from strategy (A).

After this event e, the expected resulting makespan of strategy (A) is EAremain =
t(e) + E([W,Tbase],S∗0), where t(e) = 0 if the event is the end of a segment,
t(e) = D if the event is a failure in the first segment for the model in which
a recovery is not necessary for the first segment, and t(e) = E(R) otherwise.
In any case, t(e) is a duration independent of the checkpointing heuristic. We
must finish the processing of the job as planned with strategy S∗0 . The latter is

Inria

Checkpointing strategies with non-memoryless fail-stop errors 41

identical to E([W,Tbase],S∗0), because the law is memoryless. Therefore, we are
exactly at the same point after event e as we were when we first succeeded the
checkpoint corresponding to W units of work.

Strategy (B) also needs to spend t(e) units of time to deal with event e.
Then, by hypothesis, strategy B finds a new checkpointing strategy such that
the expected makespan for the remaining processing is reduced. As before,
because the law is memoryless, an optimal strategy is S∗W . By assumption, the
new strategy reduces the total expected makespan and we have:

t(e) + E([W,Tbase],S∗W) < EAremain ⇔
t(e) + E([W,Tbase],S∗W) < t(e) + E([W,Tbase],S∗0) ⇔

E([W,Tbase],S∗W) < E([W,Tbase],S∗0).

Now, suppose that we had applied the strategy S2 = (S∗0 \ [W,Tbase]) ∪ (S∗W \ (0,W)).
The total expectation would have been:

E([0, Tbase],S2) = E([0,W],S2) + E([W,Tbase],S2)

= E([0,W],S∗0) + E([W,Tbase],S∗W)

E([0, Tbase],S2) < E([0,W],S∗0) + E([W,Tbase],S∗0)

E([0, Tbase],S2) < E([0, Tbase],S∗0)

E([0, Tbase],S2) < E∗0

This contradicts the definition of S∗0 .

C All simulation results

The following figures are the results of the simulations with all combinations of
parameters.

RR n° 9465

42 Benoit, Perotin, Robert, Vivien

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

1

10

100

1000

10000

1

10

100

1000

10000

Number of processors

E
x
ec
u
ti
o
n
ti
m
e
in

h
ou

rs
YoungDaly NextStep

Figure 4: Expected performance of the two heuristics under all failure distribu-
tions on a 0 day old platform and with a workflow W of 1 hour. Top: C = 60,
bottom: C = 600.

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

10

100

1000

10000

10

100

1000

10000

Number of processors

E
x
ec
u
ti
on

ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 5: Expected performance of the two heuristics under all failure distribu-
tions on a 0 day old platform and with a workflow W of 3 hours. Top: C = 60,
bottom: C = 600.

Inria

Checkpointing strategies with non-memoryless fail-stop errors 43

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

10

100

1000

10000

10

100

1000

10000

Number of processors

E
x
ec
u
ti
o
n
ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 6: Expected performance of the two heuristics under all failure distribu-
tions on a 0 day old platform and with a workflow W of 10 hours. Top: C = 60,
bottom: C = 600.

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

100

1000

10000

100

1000

10000

Number of processors

E
x
ec
u
ti
on

ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 7: Expected performance of the two heuristics under all failure distribu-
tions on a 0 day old platform and with a workflow W of 48 hours. Top: C = 60,
bottom: C = 600.

RR n° 9465

44 Benoit, Perotin, Robert, Vivien

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

1

10

100

1000

10000

1

10

100

1000

10000

Number of processors

E
x
ec
u
ti
o
n
ti
m
e
in

h
ou

rs
YoungDaly NextStep

Figure 8: Expected performance of the two heuristics under all failure distribu-
tions on a 10 day old platform and with a workflow W of 1 hour. Top: C = 60,
bottom: C = 600.

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

10

100

1000

10000

10

100

1000

10000

Number of processors

E
x
ec
u
ti
on

ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 9: Expected performance of the two heuristics under all failure distribu-
tions on a 10 day old platform and with a workflow W of 3 hours. Top: C = 60,
bottom: C = 600.

Inria

Checkpointing strategies with non-memoryless fail-stop errors 45

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

10

100

1000

10000

10

100

1000

10000

Number of processors

E
x
ec
u
ti
o
n
ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 10: Expected performance of the two heuristics under all failure distri-
butions on a 10 day old platform and with a workflow W of 10 hours. Top:
C = 60, bottom: C = 600.

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

100

1000

10000

100

1000

10000

Number of processors

E
x
ec
u
ti
on

ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 11: Expected performance of the two heuristics under all failure distri-
butions on a 10 day old platform and with a workflow W of 48 hours. Top:
C = 60, bottom: C = 600.

RR n° 9465

46 Benoit, Perotin, Robert, Vivien

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

1

10

100

1000

10000

1

10

100

1000

10000

Number of processors

E
x
ec
u
ti
o
n
ti
m
e
in

h
ou

rs
YoungDaly NextStep

Figure 12: Expected performance of the two heuristics under all failure distribu-
tions on a 30 day old platform and with a workflow W of 1 hour. Top: C = 60,
bottom: C = 600.

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

10

100

1000

10000

10

100

1000

10000

Number of processors

E
x
ec
u
ti
on

ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 13: Expected performance of the two heuristics under all failure distribu-
tions on a 30 day old platform and with a workflow W of 3 hours. Top: C = 60,
bottom: C = 600.

Inria

Checkpointing strategies with non-memoryless fail-stop errors 47

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

10

100

1000

10000

10

100

1000

10000

Number of processors

E
x
ec
u
ti
o
n
ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 14: Expected performance of the two heuristics under all failure distri-
butions on a 30 day old platform and with a workflow W of 10 hours. Top:
C = 60, bottom: C = 600.

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

100

1000

10000

100

1000

10000

Number of processors

E
x
ec
u
ti
on

ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 15: Expected performance of the two heuristics under all failure distri-
butions on a 30 day old platform and with a workflow W of 48 hours. Top:
C = 60, bottom: C = 600.

RR n° 9465

48 Benoit, Perotin, Robert, Vivien

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

1

10

100

1000

1

10

100

1000

Number of processors

E
x
ec
u
ti
o
n
ti
m
e
in

h
ou

rs
YoungDaly NextStep

Figure 16: Expected performance of the two heuristics under all failure distri-
butions on a 100 day old platform and with a workflow W of 1 hour. Top:
C = 60, bottom: C = 600.

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

10

100

1000

10000

10

100

1000

10000

Number of processors

E
x
ec
u
ti
on

ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 17: Expected performance of the two heuristics under all failure distri-
butions on a 100 day old platform and with a workflow W of 3 hours. Top:
C = 60, bottom: C = 600.

Inria

Checkpointing strategies with non-memoryless fail-stop errors 49

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

10

100

1000

10000

10

100

1000

10000

Number of processors

E
x
ec
u
ti
o
n
ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 18: Expected performance of the two heuristics under all failure distri-
butions on a 100 day old platform and with a workflow W of 10 hours. Top:
C = 60, bottom: C = 600.

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

100

300

1000

3000

100

300

1000

3000

Number of processors

E
x
ec
u
ti
on

ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 19: Expected performance of the two heuristics under all failure distri-
butions on a 100 day old platform and with a workflow W of 48 hours. Top:
C = 60, bottom: C = 600.

RR n° 9465

50 Benoit, Perotin, Robert, Vivien

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

1

10

100

1

10

100

Number of processors

E
x
ec
u
ti
o
n
ti
m
e
in

h
ou

rs
YoungDaly NextStep

Figure 20: Expected performance of the two heuristics under all failure distri-
butions on a 365 day old platform and with a workflow W of 1 hour. Top:
C = 60, bottom: C = 600.

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

10

100

1000

10

100

1000

Number of processors

E
x
ec
u
ti
on

ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 21: Expected performance of the two heuristics under all failure distri-
butions on a 365 day old platform and with a workflow W of 3 hours. Top:
C = 60, bottom: C = 600.

Inria

Checkpointing strategies with non-memoryless fail-stop errors 51

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

10

100

1000

10

100

1000

Number of processors

E
x
ec
u
ti
o
n
ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 22: Expected performance of the two heuristics under all failure distri-
butions on a 365 day old platform and with a workflow W of 10 hours. Top:
C = 60, bottom: C = 600.

LogNormal 2.51 Weibull 0.5 Gamma 0.5 Weibull 0.7 Gamma 0.7 Exponential Weibull 1.5 LogNormal 9.34

C
h
eck

p
oin

t:
60s

C
h
eck

p
oin

t:
600s

1e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+051e+03 1e+04 1e+05

100

300

1000

3000

100

300

1000

3000

Number of processors

E
x
ec
u
ti
on

ti
m
e
in

h
ou

rs

YoungDaly NextStep

Figure 23: Expected performance of the two heuristics under all failure distri-
butions on a 365 day old platform and with a workflow W of 48 hours. Top:
C = 60, bottom: C = 600.

RR n° 9465

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

