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Abstract: This work aims at designing and evaluating scheduling algorithms that minimize
carbon cost on edge platforms. When a job is released to some edge server, difficult scheduling
questions arise: should the job be executed on that server? If yes, when? If no, which other edge
server should the job be transferred to? Typically, jobs are submitted online, and have a deadline to
enforce. On-line scheduling problems are already difficult without accounting for different energy
sources, so one should not expect any optimal solution. Still, an important research goal is to
revisit standard algorithms such as Earliest Completion Time (ECT) and Earliest Deadline First
(EDF) in order to design and evaluate carbon-aware variants. This paper introduces several new
algorithms that use sophisticated scheduling policies to efficiently decrease carbon cost; these
algorithms maximize the use of green intervals both on local and remote edge servers, by re-
evaluating previous decisions whenever needed to accommodate newly released jobs. We provide
a comprehensive simulation campaign based on actual platform/job data and carbon traces and
report an average gain of 48% over the standard approaches.
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Ordonnancement vert sur l’informatique en périphérie
Résumé : Ce travail vise à concevoir et à évaluer des algorithmes d’ordonnancement qui min-
imisent le coût du carbone sur les plates-formes périphériques (ou edge computing). Lorsqu’une
tâche est confiée à un serveur périphérique, des questions difficiles d’ordonnancement se posent :
doit-on l’exécuter sur ce serveur ? Si oui, quand ? Si non, vers quel autre serveur périphérique
le travail doit-il être transféré ? En général, les tâches sont soumises en ligne et ont une date
limite à respecter. Les problèmes d’ordonnancement en ligne sont déjà difficiles à résoudre sans
tenir compte des différentes sources d’énergie, de sorte qu’il ne faut pas s’attendre à une solution
optimale. Néanmoins, un objectif de recherche important consiste à réexaminer les algorithmes
standard tels que Earliest Completion Time (ECT) et Earliest Deadline First (EDF) afin de
concevoir et d’évaluer des variantes qui prennent en compte le coût carbone. Ce rapport de
recherche présente plusieurs nouveaux algorithmes qui utilisent des politiques d’ordonnancement
sophistiquées pour réduire efficacement le coût carbone. Ces algorithmes maximisent l’utilisation
des intervalles verts à la fois sur les serveurs locaux et distants, en réévaluant les décisions an-
térieures chaque fois que cela est nécessaire pour prendre en compte les nouvelles tâches qui
arrivent dans le système. Nous effectuons une campagne de simulation complète basée sur des
données réelles de plateforme/travail et des traces de coût carbone, et nous rapportons un gain
moyen de 48% par rapport aux approches standard.

Mots-clés : Informatique en périphérie, ordonnancement vert, coût carbone.
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1 Introduction

With growing concern about climate change and the corollary desire to make computing “greener”
(e.g., reduce its carbon footprint), there is much interest in powering computing resources with
renewable energy, and aligning the use of computing resources with when renewable energy is
available. The progress in decarbonizing the power grid has reduced the carbon emissions of
datacenters [31, 18] and the results have been shown to vary heavily based on location (what
renewables are available, weather, etc.) and use (load types, load competition). These variations
create opportunities for sophisticated scheduling across time (temporal load shifting) and space
(geographic load shifting) to reduce the carbon emissions associated with computing [35, 15, 40,
20, 21, 43, 44, 9, 32, 42, 19]. But the rapid growth in computing is not only happening in the cloud,
but also at the edge where the rise of intelligent city, consumer AI services, hierarchical machine-
learning models are increasingly deployed [13, 33]. Because of their distributed deployment,
varying local consumer use, and even varying weather factors, edge resources often have excess
computing capacity. From the perspective of “greening” computing use, the situation at the edge
is perhaps even more complex and varied. Choice of power supplier, different on site renewables
(solar or wind), competing local electrical load, competing compute load, and more, create a
landscape in which the carbon-emission content of power locally consumed varies from 0 to 100’s
grams of CO2e/kWh.

To address this need, this work aims at designing and evaluating scheduling algorithms that
minimize carbon cost on edge platforms. When a compute job is released into the system,
difficult questions include: should the job be executed on that server? If yes, when? If no,
which other edge server should the job be transferred to? Typically, jobs are submitted online,
and they have a deadline to enforce. This means that delaying the start of the execution of a
job to benefit from a green energy source later is a risky bet if more jobs are to be submitted
soon. Online scheduling problems are already difficult without accounting for different energy
sources, so one should not expect any optimal solution. Still, an important research goal is to
revisit standard algorithms such as Earliest Completion Time (ECT) and Earliest Deadline First
(EDF) in order to design and evaluate carbon-aware variants. In this introductory section, we
provide a high-level overview of the problem that we are addressing and a brief description of
the novel algorithms that we have designed to minimize carbon cost.

Edge platforms typically consist of a completely connected set of edge servers, complemented
by a powerful but carbon-costly Cloud resource, as illustrated in Figure 1. The edge servers
are identical but have different carbon profiles. A carbon profile is defined as a continuous set of
alternating green and brown intervals; as the name indicates, computing during a green interval
has no carbon cost, while computing during a brown interval incurs some cost per second of
execution. Jobs are submitted online to a local edge server, called their origin. Each job has
several parameters: length, release time, deadline, and data volume. When a job is submitted
to its origin, there are three possibilities:

• The job is executed locally on its origin. The carbon cost is then proportional to the time
spent executing during brown intervals (while execution during green intervals comes for
free);

• The job is transferred to another edge server. Then some transfer cost (proportional to the
volume of data transferred) is added to the cost of the execution on the other server;

• The job is delegated to the Cloud, typically with a high carbon cost both for transfer
and for execution, but also with a much faster total completion time than when using edge
servers.

The first rule of the game is that each job should meet its deadline, which motivates the
addition of the Cloud to the platform; we suppose that there is always enough time to execute

Inria
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Figure 1: The edge green scheduling problem: minimizing carbon emissions from computing,
whilst balancing job deadlines, carbon costs of communication, and distributed resources. All in
the presence of varying carbon emissions from power.

a job on the cloud between its release time and deadline. The second rule of the game is that
jobs can be frozen but cannot be migrated during execution: once the execution has started on
some edge server, it has to finish on that server, but the execution can be temporarily frozen
to benefit from forthcoming green intervals. Similarly, once the decision to delegate a job to
the Cloud is taken, it cannot be reversed; but no freezing is needed since the Cloud is always
carbon-costly. We detail all model and application parameters in Section 3.

We point out that the addition of the Cloud is a sine-qua-non to use total carbon cost as a
metric. To see why, consider an overloaded system: some jobs will not be able to match their
deadline on the edge servers. How do we account for (the carbon cost) of these failed jobs? The
addition of the Cloud nicely answers the question: some jobs will be executed at a very high
cost on the Cloud, but at the end of the day all jobs will have executed successfully, and total
carbon cost becomes a fair metric.

Now, for scheduling algorithms, the de-facto greedy standard is Earliest Completion Time
(ECT): schedule each job when it is released, and assign it the edge server that will allow for the
earliest completion time, given already taken decisions. Note that: (i) if the job is not assigned
on its origin, transfer times are taken into account into the completion time; and (ii) if the
job cannot match its deadline, it is executed on the Cloud. ECT does not account for green
and brown intervals to make decisions, and one can envision several variants to explore. A first
heuristic is to give priority to locality and assign a job to its origin server, but while aiming at
using as much green periods as possible before the job deadline. A second heuristic is to give
priority to carbon cost and to assign the job on the edge that maximizes the green fraction of
its execution, if transfer costs are not too high, and still ensuring that the job deadline is met.

In addition, more sophisticated algorithms like Earliest Deadline First (EDF) may revisit
previous scheduling decisions: upon release of a new job, the priority of all the jobs that have
been scheduled already but have not actually started execution yet, can be re-evaluated, and the
priority ordering used by the scheduler to map jobs can be updated. Several combinations can
be designed, and we refer to Section 4 for a complete description.

Altogether, our first contribution is a realistic yet tractable model for this important schedul-
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ing problem. Our second contribution is to assess the complexity of several problem instances.
Our third contribution is the design of an optimal algorithm for the offline version of the problem
with a single edge server, which is used as a key building block for the general online problem
with multiple servers. Our fourth contribution is the design and analysis of novel scheduling
algorithms that dramatically decrease carbon cost when compared to standard carbon-unaware
competitors. Indeed, we evaluate the performance of several carbon-aware algorithms on a vari-
ety of problem instances arising from experimental traces and report that an important fraction
of carbon consumption can be avoided. This is good news at a time where computing consumes
a larger and larger fraction of energy resources!

The rest of the paper is organized as follows. Section 2 surveys related work. In Section 3,
we detail the framework for platforms, jobs, resource variability and optimization objectives,
and we provide complexity results. In Section 4, we introduce our novel scheduling algorithms,
whose experimental assessment is conducted in Section 5. Finally, we give concluding remarks
and hints for future work in Section 6.

2 Related work

A range of applications of edge computing is given in [5], and these include e-health, disaster
recovery, autonomous vehicles or flying drones. Although no specific model is given, [5] provides
a list of objectives and constraints that have been studied, such as the delay, the bandwidth, the
energy, QoS-assurance, etc. Some challenges of edge computing are also discussed in [25]. An
extensive body of research investigates workload scheduling for reducing carbon emissions and
maximizing green energy use. This section examines key techniques employed in prior studies.

Temporal and spatial workload shifting can provide significant carbon savings by exploiting
variations in carbon intensity across time and geographic location. Temporal shifting, which has
been extensively studied in prior literature [35, 15, 16, 40, 20, 30, 21], leverages the delay-tolerant
properties of workloads to shift computation to periods of lower carbon intensity. Prior studies
typically enforce constraints on the maximum allowable delay, most often 24 hours from the job’s
submission. This formulation of job deadlines disproportionately affects shorter-duration jobs.

Shifting compute workloads to geographic regions with lower carbon intensity, based on time
zone differences and regional fuel mixes, has been studied in [43, 44, 9, 32, 42]. A combination
of both temporal and spatial shifting techniques for lower carbon emissions is studied in [26,
19, 38]. Our work utilizes both temporal and spatial workload shifting techniques. We impose
tight deadlines on jobs, allowing them temporal flexibility. Additionally, jobs can be spatially
transferred to other edge servers before the start of their execution, to exploit green availability
in other edge nodes or to ensure that job deadlines are met.

Resource scaling and job speedup is another common load adaptation technique that increases
energy consumption when abundant renewable generation is available. GreenPar [22] increases
the resource allocations of jobs and uses job speedup profiles to reduce runtimes, allowing them to
maximize green energy consumption while meeting SLAs. CarbonScaler [20] dynamically scales
applications in response to carbon intensity signals. [41] proposes a scheduler that uses DVFS
to allocate jobs in cloud data centers, reducing energy consumption.

Several studies have investigated strategies for managing data centers powered by renew-
able energy. Some leverage batteries to store surplus renewable energy and discharge it when
renewable generation is unavailable, allowing jobs to complete using green energy [29, 15, 22].
Others integrate supplemental power sources, such as the electric grid and backup generators,
to maintain stable resource capacity [15, 22, 17, 16]. While our evaluation assumes only a grid
connection, our algorithms are generalizable to any power model.

Inria
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Predictions of renewable energy availability could inform scheduling decisions on edge nodes.
Previous studies have used statistical and machine learning techniques to predict grid-level re-
newable availability to inform scheduling decisions [16, 17, 22, 1]. Radovanović et al. [35, 19]
assume exact knowledge of renewable availability and compute carbon-aware Virtual Capacity
Curves (VCCs) for Google’s datacenter clusters. We also assume full knowledge of future renew-
able availability and make scheduling decisions based on the system’s current and future state,
reassigning jobs if needed.

Scheduling independent jobs on edge-cloud systems has been studied with various platform
models; a good overview is provided by [28], which includes multiple cloud-assisted edge servers.
While energy constraints are present in some models, to the best of our knowledge, no work has
yet focused on edge servers operating under different carbon-cost intervals. On the theoretical
side for edge-cloud servers without carbon-aware considerations, [8] derived approximation algo-
rithms for a simple platform with 1 edge server and 1 cloud, while [8] studied the complexity of
minimizing the maximum stretch in an online setting.

Checkpointing is widely used for resilience in HPC and other workflow and batch-oriented
workloads [10, 23]. It involves periodically saving the system’s state, enabling recovery in the
event of a failure. However, checkpointing introduces overhead due to data storage and retrieval.
In contrast, our work relies on the pause and resume technique [27], which allows job execution
to be temporarily halted when green energy is no longer available and resumed without the
need for continuous state-saving mechanisms. We acknowledge that for our platform model, the
decision to allow pause-resume but neither migration once a job is started nor checkpointing,
was influenced by [2, 3], where it is shown that allowing migration does not affect the efficiency
of the algorithms that minimize the average response time or the average stretch1.

3 Framework
This section first details the framework (target platform in Section 3.1, and applications in
Section 3.2), the scheduling rules (Section 3.3), and the objective function (Section 3.4). Then,
we provide complexity results in Section 3.5, proving that the problem is difficult even on a single
edge server.

3.1 Target platform
The platform consists of a completely connected set of n edge servers ei, 1 ≤ i ≤ n, each with
identical speed. W.l.o.g, we assume unit speed for the edge servers. The execution horizon is a
(long) interval of T seconds, which is partitioned into green and brown intervals on each edge.
Specifically, edge ei has ui intervals:

I
(i)
1 = [0, τ

(i)
1 [, I

(i)
2 = [τ

(i)
1 , τ

(i)
2 [, . . . , I(i)ui

= [τ
(i)
ui−1, τ

(i)
ui

[, where τ (i)ui
= T .

Each interval I(i)j = [τ
(i)
j−1, τ

(i)
j [ is either green, with carbon cost 0, or brown, with carbon cost

k per second. As stated in Section 2, we assume full a priori knowledge of the green and brown
intervals.

The bandwidth between two edge servers is btrans , while the carbon cost of the transfer is
ktrans per second.

The platform is complemented by a powerful Cloud server with high processing capacity,
which has the capacity to process all submitted jobs in parallel.

1The stretch of a job is the ratio of the response time by its duration. The response time is the time elapsed
from release to completion.
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3.2 Jobs, execution times and carbon cost
Jobs are submitted online, at any time in [0,T [, for a total of m jobs during the whole horizon.
Job Jj , 1 ≤ j ≤ m is submitted to its origin edge server oj and is characterized by several
parameters and variables:

• parameter: release time rj ;
• parameter: deadline dj ;
• parameter: duration on an edge ℓj , expressed in seconds since we have unit edge speed;
• parameters: data/communication input volume f in

j and output volume fout
j , expressed in

bits;
• variable: execution duration t

(local)
j and carbon cost C

(local)
j when executed locally on its

origin oj , which both depend upon the final schedule;
• variable: execution duration t

(transfer)
j and carbon cost C

(transfer)
j when transferred to and

executed on another edge server ei ̸= oj , which both depend upon the final schedule;
• parameters: execution time t

(cloud)
j and carbon cost C

(cloud)
j when delegated to the cloud.

In a nutshell, execution durations and carbon costs may vary on the edge platform as a function
of the schedule, for both a local and a remote execution. However, because the Cloud can
process all jobs in parallel, t(cloud)j and C

(cloud)
j are constants that only depend on the job, not

on the schedule. Note that we need to enforce

t
(cloud)
j ≤ dj − rj for each job Jj , 1 ≤ j ≤ m (1)

to ensure that all submitted jobs can be processed successfully on the Cloud (if needed).
As for carbon costs on the edge platform, they are computed as follows:
• Local execution: job Jj is executed on its origin edge server oj . Assume that the job starts

executing at time t ≥ rj and completes its execution at time t′, where t + ℓj ≤ t′ ≤ dj .
While the duration is t

(local)
j = t′ − t, the job actually executes during exactly ℓj seconds

within the interval [t, t′[ and is frozen the rest of the time. Recall that the job can be
frozen one or several times but cannot be migrated once started. Letting αj ≤ 1 be the
amount (in seconds) of the execution time ℓj spent in brown intervals, the carbon cost of
the execution is

C
(local)
j = αjk

and the amount spent in green intervals comes for free. Note that the edge server must be
free during the whole duration interval [t, t′[ and cannot accommodate any other job until
completion time t′.

• Remote execution: job Jj is transferred to another edge server ei ̸= oj . Assume that the
job starts executing at time t and completes its execution at time t′. Since the execution
starts at time t, the scheduler initiates the input communication from oj to ei ALAP

(As Late As Possible), i.e., at time t − t
(comm−in)
j , where t

(comm−in)
j =

f in
j

btrans
is the time

needed for that communication. We must have t− t
(comm−in)
j ≥ rj . Note that we assume

that there is no delay nor contention for communications. Similarly to a local execution,
the job executes during exactly ℓj seconds within the interval [t, t′[, and we let αj ≤ 1
be the amount (in seconds) of the execution time ℓj spent in brown intervals on edge ei.
The return communication is initiated ASAP (As Soon As Possible) at time t′ and lasts for
t
(comm−out)
j =

fout
j

btrans
seconds, without delay nor contention. We must have t′+t

(comm−out)
j ≤

dj . The whole duration is t(transfer)j = t′− t+ t
(comm−in)
j + t

(comm−out)
j and the carbon cost

is proportional to the volume of data transferred:

C
(transfer)
j = αjk + (f in

j + fout
j )ktrans .
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As before, note that the edge server ei must be free during the whole duration of interval
[t, t′[ and cannot accommodate any other job until completion time t′. But ei can termi-
nate the execution of another job during the input communication, as well as initiate the
execution of another job during the return communication.

We observe that the model is equipped with many parameters but includes some simplification
regarding communications between edge servers. In a nutshell, the communication model is
unbounded multiport [4, 24], which means that all communications can take place in parallel
without contention. It is easy to change the communication model and, for instance, to move
to a bounded multiport model (where the network card of a server is the bottleneck) or even
to a one-port model including latencies, but this requires the introduction of several additional
parameters and complicates the description of the scheduling algorithms.

It remains to describe how the scheduler decides where to map each incoming job and at
which time to start its execution. This is a complicated process that we describe below.

3.3 Scheduling rules
Online scheduling problems are known to be difficult. The release of a new job may lead the
scheduler to re-evaluate its decisions. For short, the release of a new job is called an event. At
each event, there are two possible states for the jobs that have been previously submitted and
whose execution is not yet complete:

• state started : execution has already started: then the scheduler cannot re-assign the job (no
migration in our model) but can change the current plan for the remaining of the execution,
which includes changing the use of green and brown intervals, and idling (freezing) the job.
The aim of re-evaluating the current plan for a job on a server is to benefit from a larger
green portion globally for all jobs scheduled on that server. Of course, any change of plan
must enforce that the totality of the job is executed before its deadline. Note that at any
instant, at most one job can be started on each server;

• state planned : execution is scheduled but has not started yet: then the scheduler can change
the whole assignment. In addition to enforcing that the totality of the job is executed before
its deadline, the scheduler must account for the input communication in case of a transfer
to another edge.

Basically, the scheduler takes ALAP decisions. For instance, say there was an event at time t1,
namely the release of some job Jj and that the scheduler plans to execute it at time t2 on a
remote edge ei ̸= oj . Hence, at time t1, job Jj is planned ; the current schedule has the input
communication of job Jj from oj to ei start at time t2 − t

(comm−in)
j , ALAP to start execution

at t2. Now say there is a new event (a new job Jj′ released) at time t3 where t1 < t3 < t2. At
time t3, the state of job Jj is still planned, even if the input communication has been initiated,
i.e., if t3 ≥ t2 − t

(comm−in)
j . The scheduler may well re-evaluate its plan and decide to assign

job Jj somewhere else, for instance to another edge than ei and oj , or even to the Cloud. Note
that Jj is still planned at time t3 unless it starts its execution immediately, either locally or on
the Cloud. Note also that if the input communication of job Jj from oj to ei has started at
time t3, then it will (uselessly) proceed until completion, and the corresponding carbon cost will
be paid for.

In this scenario, Jj may be re-assigned at time t3 upon release of job Jj′ , but it is not the
only one! The scheduler may well re-evaluate its whole plan and re-assign all the jobs that are
in state planned. As mentioned, it can also update the execution of the jobs that are in state
planned and scheduled to execute on some edge server to try and benefit from a larger green
portion globally on that server. Finally, a job Jj planned to execute on the Cloud will always
be started ALAP, i.e., at time dj − t

(cloud)
j .
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Admittedly, the rules are complicated! But the intuition is simple: take any decision ALAP
in order to better be able to react to new job releases, and re-evaluate the schedule at each event,
completely for planned jobs, and partially for started jobs, which are pinned to their resource
but whose execution may be shifted if it leads to a lower total cost for all jobs.

Now, to design a scheduling algorithm, we only need to detail the scheduling policy: at each
event, the scheduler will order the jobs, both planned and started, according to some priority
rule, and will schedule them according to some criterion. We discuss various priority ordering
and assignment criteria in Section 4.

3.4 Objective function

The objective is to minimize the total carbon cost, with the constraint that all submitted jobs
must have been successfully executed before the end of the horizon T . Owing to the addition of
the Cloud and to Equation (1), there is always a solution to this problem.

In practical scenarios, it is likely that executing on the Cloud will be faster but more carbon
costly for all jobs (t(cloud)j ≤ t

(local)
j and C

(cloud)
j ≥ C

(local)
j for each job Jj). But if the edge

platform is overloaded, some jobs will have to be delegated to the Cloud, and it is crucial to
determine which ones.

3.5 Complexity

The offline version of the edge scheduling problem resembles a classical scheduling problem,
namely scheduling with limited machine availability [36]. The main difference is that the objective
is to minimize carbon cost instead of makespan. The problem is difficult even with a single edge
server:

Definition 1. We let OneEdgeSched be the problem of minimizing the total carbon cost with
m jobs and a single edge server (complemented with a Cloud server).

Theorem 1. With a single edge, the decision problem OneEdgeSchedDec associated to One-
EdgeSched (with a bound on the total carbon cost Cmax ) is NP-complete in the strong sense.

Proof. First, OneEdgeSchedDec belongs to NP, a certificate being the schedule and carbon
cost of each job. For the completeness, consider an instance I1 of the 3-PARTITION problem,
which is NP-complete in the strong sense [14]: given 3n positive integers ai, 1 ≤ i ≤ 3n and a
positive bound B with

∑3n
i=1 ai = nB, does there exist a partition of these 3n integers into n

triplets, each of sum B? We consider the following instance I2 of OneEdgeSchedDec with
one edge server e1:

• the execution horizon is the interval [0,T [ with T = 3nB, partitioned into 2 intervals.
The first interval I

(1)
1 = [0, 2nB[ is of length 2nB and is green. The second interval

I
(1)
2 = [2nB, 3nB[ is of length nB and is brown with carbon cost k = 1 per second

• there are m = 4n jobs which we denote as follows for the intuition: there are 3n flexible
jobs Aj of length aj , release date 0, and deadline T , for 1 ≤ j ≤ 3n; in addition, there are
n rigid jobs Bj of length B, release date (2j − 1)jB and deadline 2jB for 1 ≤ j ≤ n. The
rigid job Bj must execute during the interval [(2j−1)B, 2jB[⊂ I

(1)
1 : no flexibility and zero

carbon cost. On the contrary, jobs Aj can freely be shifted around the whole scheduling
window due to their flexibility

• we let Cmax = 0. Finally, we let the carbon cost of the Cloud be C
(cloud)
j = 1 for any job

Aj or Bj , so that no job can be executed on the cloud while matching the bound.
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The size of I2 is polynomial (even linear) in the size of I1. Obviously, there is a solution
to I1 if and only if the 3n jobs Aj perfectly fit into the n sub-intervals [0, B[, [2B, 3B[, [4B, 5B[,
. . . , [(2n− 2)B, (2n− 1)B[ left available by the rigid jobs, in which case they can be scheduled
with zero total carbon cost. Otherwise, some jobs Aj must (at least partially) execute during
the brown interval I(1)2 , with a non-zero cost. This is equivalent to say that there is a solution
to I1 if and only if I2 has a solution of cost Cmax .

Corollary 1. Unless P=NP, there is no constant approximation algorithm for OneEdgeSched.

Proof. Assume that there exists a λ-approximation to OneEdgeSched and consider the proof
of Theorem 1. Starting with instance I1 of 3-PARTITION, we construct the same instance I2
but without any a priori bound on the total carbon cost. There is a solution to I1 if and only if
the total cost is 0 in I2, which the λ-approximation must find because it cannot be worse than
λ times the optimal cost. Hence P=NP, which contradicts the assumption.

Even though the problem is already difficult with a single edge, we propose in the next
section heuristic algorithms targeting the original problem with several edge servers, denoted by
EdgeSched.

4 Algorithms

This section is devoted to the design of algorithms to solve the EdgeSched problem. In Sec-
tion 4.1, we present a set of greedy algorithms that schedule jobs as soon as possible when they
are released, and do not re-evaluate the choices made previously upon a new release. Then in
Section 4.2, we introduce an offline algorithm to schedule an ordered set of jobs on a single edge
server, and we prove its optimality. In Section 4.3, we use this algorithm as a building block to
design more sophisticated algorithms, some of them re-evaluating decisions taken for jobs that
are either started (but not yet completed) or planned.

Throughout this section, for the study of the complexity of the algorithms, we denote by l the
average job length, and by a the average elapsed time between the release date and the deadline
of a job. Each job spans over an average of pa intervals, where p =

∑n
i=1 ui

nT is the inverse of the
average interval length.

4.1 Greedy baseline algorithms

The five algorithms presented in this section serve as baselines, since they only take basic greedy
decisions each time a new job arrives in the system. Depending on its priority, a heuristic
decides where to execute the newly released job, without reconsidering decisions that had been
taken before. The first three algorithms (AllCloud, Local and ECT) are not aware of green
intervals and just decide where to execute the job (cloud server, local edge server, or another
edge server), while LocalGreen and ECTGreen do account for green intervals.

AllCloud: This baseline sends all jobs to the cloud upon their release; hence, there is no
execution on edge servers. The complexity is in O(1) per job.

Local: This algorithm favors locality: a newly released job is scheduled on its origin edge
server, as soon as possible after the last job that is already scheduled on it, if it is possible
to finish its execution before its deadline. Otherwise, the job is immediately sent to the
cloud server. The complexity is again in O(1) per job.
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ECT: This Earliest Completion Time algorithm schedules the new job on the edge server on
which it will complete first, taking into account the time needed to transfer the job (for a
non-local execution). If no server is able to complete the job before its deadline, the job
is sent to the cloud server. The complexity is in O(n) per job, since we try all possible n
edge servers.

LocalGreen: This algorithm aims at a local execution similarly to Local, but it also cares
about green intervals. Hence, the new job is scheduled on its origin edge server, after the
last job that is already scheduled on it, but using as much green intervals as possible while
finishing before its deadline. If not enough green intervals are available, it completes the
execution with the latest brown intervals before its deadline. If the deadline cannot be met
locally, the job is sent to the cloud server. For each job, we consider all edge intervals until
its deadline; hence, a complexity of O(pa) per job.

ECTGreen: In this algorithm, the new job is scheduled on an edge server that can execute
it before its deadline (similarly to ECT), and among these, the algorithm chooses the
edge server that has a green interval at the earliest time, taking into account transfer
time. If no server can execute the job before its deadline, the job is sent to the cloud.
ECTGreen allocates the job, if possible, only on green intervals. Otherwise, it completes
the execution with the latest brown intervals before its deadline, similarly to LocalGreen.
The complexity is O(npa) per job, since we now consider all edge intervals until the job’s
deadline, but on all edges.

4.2 OfflineGreenest– Optimal carbon cost for ordered jobs in one
edge

In this section, we present OfflineGreenest (see Algorithm 1), which runs on a single edge
server, in offline mode, on an ordered list of m jobs Jj , 1 ≤ j ≤ m. It executes jobs in the given
order on that edge server, maximizing the amount of green seconds used. Furthermore, if there
is a solution for allocating all these jobs, then OfflineGreenest will find the optimal solution
that uses the server as soon as possible for each job. This property becomes especially useful
when the algorithm is used in an online setting because, then, when a new job arrives on the
system, a good fraction of the load will already have been processed.

During its initialization phase, OfflineGreenest computes restricted release dates and
restricted deadlines. The restricted release date rr j of a job Jj , computed at Line 1, is its earliest
possible starting time, defined as the minimum between its release date and the earliest possible
completion time of the preceding job Jj−1. Similarly, the restricted deadline rd j of job Jj ,
computed at Line 2, is its latest possible completion time, defined as the minimum between its
deadline and the latest possible starting time of the succeeding job, Jj+1. To ease the writing
of the algorithm, we have assumed that restricted release dates and deadlines only occur at the
extremities of the green and brown intervals [τi, τi+1]. If this is not the case, one just needs to
subdivide these intervals, increasing their number by at most 2m.

Because the jobs must be executed in the given execution order, any schedule is completely
defined by stipulating when the server is active and processes jobs. The OfflineGreenest
algorithm defines the amount of time each green and brown interval will be used to process jobs
(during the remainder of these intervals, the edge server will be idle).

OfflineGreenest works in two passes. In the first pass (Lines 4 through 13), from time 0
through time T , it computes which amount AmountUsedi of each green interval [τi, τi+1[ will
be used in the final schedule. This computation is done through the use of two variables: Work,
which is the total size of the active jobs, that is of jobs which have been released but whose
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Algorithm 1: OfflineGreenest

1 rr1 ← r1; for j = 2 to m do rr j ← max{rj , rr j−1 + ℓj−1}
2 rdm ← dm; for j = m− 1 downto 1 do rd j ← min{dj , rd j+1 − ℓj+1}
3 θ1, ..., θN ← Sort({τi|1 ≤ i ≤ u} ∪ {rr j |1 ≤ j ≤ m} ∪ {rd j |1 ≤ j ≤ m})
4 ReservedGreen(1) ← 0
5 for x = 1 to N /* Compute amount of green intervals to use */
6 do
7 if θx = rd j then
8 Work←Work− ℓj

9 ReservedGreen(1) ← max{0,ReservedGreen(1) − ℓj}
10 if θx = rr j then Work←Work + ℓj
11 if θx = τi and [τi, τi+1] is green then
12 AmountUsedi ← min{τi+1 − τi,Work−ReservedGreen(1)}
13 ReservedGreen(1) ← ReservedGreen(1) + AmountUsedi

14 ReservedGreen(2) ← 0
15 for x = N downto 1 /* Compute amount of brown intervals to use */
16 do
17 if θx = τi and [τi, τi+1] is green then
18 ReservedGreen(2) ← ReservedGreen(2) + AmountUsedi

19 if θx = rr j then
20 if ℓj ≤ ReservedGreen(2) then
21 ReservedGreen(2) ← ReservedGreen(2) − ℓj

22 else
23 Allocate greedily an amount of brown intervals of size

ℓj −ReservedGreen(2) during [rr j ; min{rd j , rr j+1}]
24 ReservedGreen(2) ← 0

deadline has not yet be reached; and ReservedGreen(1), which records the amount of green
intervals that has been allocated to the execution of active jobs. Each time we encounter a
restricted deadline (Line 7), we update these two variables: Work is decreased by the duration
of the job (Line 8), and ReservedGreen(1) by the amount that was pre-allocated to that job
(Line 9). Each time we encounter a restricted release date, we increase Work by the duration
of the newly released job (Line 10). Each time we encounter a green interval, we allocate as
much of it as possible to the processing of jobs (Line 12) and we update ReservedGreen(1)

accordingly (Line 13).
At the end of this first pass, we have reserved as much of the green intervals as was possible.

This was done using the earliest possible green intervals. Note, however, that we have not made
any allocation; deciding which job is using which green interval is done during the second pass. In
this second pass (Lines 14 through 24), we consider intervals in reverse order, from time T through
time 0, and identify which amount of each brown interval will be used in the final schedule. This
computation is done using a single additional variable, ReservedGreen(2), which records the
amount of already encountered green intervals that has been reserved for job execution in the
first pass, and that has not already been allocated to jobs. Each time we encounter a green
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interval, we increase ReservedGreen(2) by the amount of that interval that was reserved in
the first pass (Line 18). Each time we encounter a restricted release date (Line 19), we have
two cases to consider. If the amount of green intervals reserved is no smaller than the length of
the job, all this job will be executed using green intervals and we decrease ReservedGreen(2)

accordingly (Line 21). Otherwise, part of the job must be executed using brown intervals. To
do this, we just take a slice of size ℓj −ReservedGreen(2) of the first brown intervals starting
from time rr j (Line 23), and we then set ReservedGreen(2) to 0, as we have exhausted all the
reserved green (Line 24).

Theorem 2. Given a set of m ordered jobs Jj , 1 ≤ j ≤ m, if a valid schedule of these jobs
exist, OfflineGreenest successfully executes them while optimally minimizing the carbon-cost.
Furthermore, among all such executions, it completes each job at the earliest possible time.

Proof. We have to prove that OfflineGreenest builds a valid schedule (if one exists), that it
maximizes the amount of green seconds used (which is equivalent to the carbon-cost optimality),
and that each job is completed at the earliest possible time.

First, we note that in any valid schedule, a job must be executed in the interval defined by
its restricted release date and its restricted deadline. Furthermore, there exists a valid schedule
if and only if for each job j, rd j − rr j ≥ ℓj .

By induction on the dates considered by its first pass, we establish that OfflineGreenest
maximizes the amount of green seconds used. This is initially true. Let us consider a new date θx,
which is the start of a green interval [τi, τi+1]. If AmountUsedi = τi+1−τi, the result is obvious.
Otherwise, this means that the total size of the active jobs (up to time τi+1) is smaller than the
amount of green intervals already reserved plus the size of interval τi+1−τi. Therefore, all active
jobs will be executed using solely green intervals and the amount of used green intervals is also
maximized.

To prove that OfflineGreenest builds a valid schedule, we must prove that the second pass
is always successful. The only potential problem is with the allocation of (parts of) brown inter-
vals. However, job Jj is only allocated brown energy during the interval [rr j ; min{rd j , rr j+1}]
and these intervals do not intersect. Furthermore, we have rr j+1 ≥ rr j+ℓj by definition, and the
existence of a valid schedule implies rd j ≥ rr j + ℓj . Therefore, the interval [rr j ; min{rd j , rr j+1}]
is at least of length ℓj . Furthermore, the amount of green intervals in [rr j ; min{rd j , rr j+1}]
is at most ReservedGreen(2). Indeed, ReservedGreen(2) is the amount of green intervals
reserved in the time interval [rr j ;T ] and not allocated to jobs Jj+1, ...Jm. Furthermore, all
the jobs in J1, ...Jj must have completed by the time rd j and, thus, ReservedGreen(2) is the
amount of green intervals reserved in the time interval [rr j ; rd j ] ⊃ [rr j ; min{rd j , rr j+1}] and not
allocated to jobs Jj+1, ...Jm. Hence, there is at least an amount ℓj − ReservedGreen(2) of
brown intervals during that interval.

Finally, the greedy allocation of Line 23 directly gives that each job is completed at the
earliest possible date (because green intervals are also used as early as possible).

The overall complexity of OfflineGreenest is O(u +m), where u is the total number of
green and brown intervals on the edge server.

4.3 Algorithms building on OfflineGreenest
In this section, we present sophisticated algorithms that rely on three mapping strategies and
two job priorities to schedule jobs; once an ordered list of jobs is specified for each server, the
algorithms use OfflineGreenest to obtain an optimal schedule that, in addition, uses the
server as soon as possible for each job. We first detail the three mapping strategies:
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InPlace: We assign, if possible, jobs on their origin server. If there is no feasible schedule, we
resort to the LowCarb strategy for the current job.

LowCarb: We assign jobs on servers so that total carbon cost is minimized. If there is no
feasible schedule, we delegate jobs to the cloud.

NoCarbComm: This is a strategy similar to LowCarb, except that the carbon cost of
transfers is ignored when designing the schedule, with the hope of favoring early starts on
remote servers. Of course, the actual total carbon cost, including transfers, is computed in
the end. If there is no feasible schedule, we delegate jobs to the cloud.

A first approach is to apply these strategies without re-evaluating previous decisions: upon
a job release at time t, we do not update the schedule of planned jobs on each edge, but instead
we insert the incoming job into the schedule of the edge server chosen by the strategy. To insert
job Jj into the schedule of server ei, we use OfflineGreenest on each period [t, dj [, where t is
the current time, that can accommodate Jj . Recall that some planned jobs may be frozen and
restarted, so we are looking for all periods of length at least ℓj during which edge ei is completely
idle. We use OfflineGreenest to compute the schedule for Jj in a given period and keep the
schedule with lowest carbon cost; using OfflineGreenest for a single job is not an overkill,
because at most two passes are needed to find the earliest optimal schedule for Jj .

This first approach leads to greedy heuristics GreedyInPlace, GreedyLowCarb and
GreedyNoCarbComm. The InPlace rule ensures that we favor a local execution, while
LowCarb aims at minimizing the carbon cost (which may induce more communications). Fi-
nally, by pretending to ignore transfer costs, NoCarbComm aims at starting a job as soon as
possible. On each edge, the complexity is in O(pa); hence, a total complexity for these greedy
heuristics in O(npa), to tentatively schedule the job on each edge server.

Much more ambitiously, a second approach re-evaluates previous scheduling decisions upon
release of each new job. There is some flexibility because planned jobs may be completely re-
scheduled, e.g., on other edge servers, and started jobs may have their execution frozen and
restarted differently. We consider two priority functions when re-evaluating scheduling decisions:
Looseness: Jobs are prioritized according to the time remaining before their deadline, weighted

by their size, in non-decreasing order; at time t, the looseness of job Jj is dj−t
ℓj

;
EDF: Jobs are prioritized according to the time remaining before their deadline, in non-

decreasing order (Earliest Deadline First).
We combine the three mapping strategies with the two priority rules, hence, obtaining six

algorithms performing reallocation, denoted

ReallocInPlaceLooseness,
ReallocInPlaceEDF,
ReallocLowCarbLooseness,
ReallocLowCarbEDF,
ReallocNoCarbCommLooseness,
ReallocNoCarbCommEDF.

At each new job release, these six algorithms reconsider all previous decisions for planned
jobs. They all sort planned jobs and the new job according to the priority function, and schedule
them one by one, in this order. To this purpose, they follow the target strategy. Initially, we
keep in the local list of each edge server only the job that has already started its execution, if
such a job exists, since it will always remain the first job on the ordered list of the server. As the
schedule is being rebuilt, new jobs are assigned to the list of each server. To assign a new job
on a server, we call OfflineGreenest for all the jobs currently in the list, including the first
one (for the remainder of its execution). Altogether, this second approach is much more costly,
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btrans {10, 100, 500, 1000} Mbit/s
ktrans {1, 10, 100, 1000} units of carbon/Mbit
k 180 units of carbon/second
Edge servers 10
Solar only all powered by solar generation with a grid connec-

tion
Wind only all powered by wind generation with a grid connec-

tion
Solar and Wind all powered by solar and wind generation with a grid

connection
Mix 30% powered by solar generation, 30% by wind gen-

eration, 30% by solar and wind, and all with a grid
connection

Job duration Right skewed in [0.4,340] minutes with mean 60 min-
utes

Job data volume Uniformly distributed in [2, 200] Gbit
Load {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
Looseness {2, 4, 6} ±10%
Uniform workload workload uniformly distributed across all edge

servers
Clustered workload 30% of the edge servers receive 90% of the workload
Mall workload 10% of the edge servers receive 80% of the workload
T 30 days
Cloud speed 10 times edge speed
Cloud carbon cost 10 times edge carbon cost
Cloud bandwidth 250 Mbit/s
Cloud transfer cost 1000 units of carbon/Mbit

Table 1: Values of the different parameters for the experiments.

because it computes a new schedule, job after job, potentially considering each edge server, and
each time applying OfflineGreenest. However, we expect dramatic cost savings!

We conclude with a technical exception to the general rule above: for the ReallocInPlace
variants, if a job cannot be executed locally, we do not assign it to another edge server until
all the remaining planned jobs have been assigned. Once all jobs that could be assigned locally
have been scheduled, we perform a second pass on the jobs that need to be sent to another edge
server, following the LowCarb strategy.

The complexity of running these algorithms is in O(pam(m+m)) at each release date, where m
is the maximum number of overlapping jobs at any time (m = max0≤t≤T

{
|{Jj | rj ≤ t < dj}|

}
).

5 Experiments

In Section 5.1, we describe the simulation settings. All parameters are summarized in Table 1.
Simulation results are discussed in Section 5.2.
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5.1 Methodology

5.1.1 Modeling edge resources

We model an edge location with multiple edge servers, and each edge server can have different on-
site renewable generation sources. We consider four edge server models: (1) with solar generation,
(2) with wind generation, (3) with both solar and wind generation, and (4) with no on-site
renewable generation (with only an electric grid connection). When renewable generation is not
available, the edge server consumes power from the electric grid. Each edge server is connected
to the cloud to ensure that job deadlines can be met even with restricted renewable availability.

The carbon intensity of computation at the edge is determined by the carbon intensity of the
edge server’s power source. Renewable generation produces green intervals (carbon intensity = 0).
However, renewable generation is only intermittently available, requiring the electric grid for
power supply when unavailable. The electric grid is a mix of both renewable (solar, wind) and
non-renewable (gas, coal, nuclear) generation sources. Therefore, consuming power from the grid
produces brown intervals. Figure 2 illustrates green and brown intervals across the edge server
models over a one-week period. Solar only, wind only, and solar and wind have green intervals
whenever renewable generation is available and switch to brown generation when unavailable.
The grid-only edge model consumes power directly from the grid, producing a brown period.
The cloud consumes power from the same grid than the edge servers.

Time

Solar and Wind

Wind only

Solar only

Grid only
Green
interval

Brown
interval

Cloud

Figure 2: Green and brown intervals across edge server models over a one-week period.

We assume an edge location in California, USA, and model the electric grid’s carbon intensity
based on the CAISO grid [7]. We use data from [39] from August 2023 to August 2024 at 5-
minute granularity. The carbon intensity of brown intervals is modeled as a constant k = 180
units of carbon/second, based on CAISO’s average carbon intensity over the considered period.

To model on-site solar generation, we use CAISO’s grid-wide solar generation. Since the
CAISO grid is vertically elongated, its solar generation is representative of an edge server’s on-
site generation. We account for the grid’s capacity factor of 25% [6, 37], which reflects actual
generation output, significantly lower than the theoretical maximum capacity. An edge server
is considered to have solar generation available at time t if the CAISO grid’s solar generation
at that time exceeds its 75th percentile value (i.e., 1 - solar capacity factor). Thus, we model
on-site solar generation availability at an edge server at time t as: solarGen(t, CAISO) >
P75(solarGen(CAISO)).

We build a similar model for wind generation at the edge. We consider the LZ_WEST zone
in the ERCOT grid (Texas, USA) due to its substantial wind penetration [34]. We obtain zone-
level wind generation from [12] and similarly account for its capacity factor of 40% [11]. Wind
generation is considered available at an edge server at time t when: windGen(t, LZ_WEST ) >
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P60(windGen(LZ_WEST )). In the wind and solar generation edge server model, a green
interval occurs if either of the above conditions is met.

We consider four configurations of edge locations, each with a total of 10 edge servers:
• Solar only : 10 edge servers powered by on-site solar generation, with a grid connection.
• Wind only : 10 edge servers powered by on-site wind generation, with a grid connection.
• Solar and Wind : 10 edge servers powered by both on-site solar and wind generation, with

a grid connection.
• Mix : 3 edge servers powered by on-site solar generation, 3 edge servers powered by on-site

wind generation, and 3 edge servers powered by both solar and wind generation, and one
edge server with no renewable generation, with a grid connection.

5.1.2 Modeling edge workloads

We generate synthetic edge workloads based on the properties of realistic edge workloads. Each
job is assumed to consume all cores on an edge server, with job durations that are right skewed
in [0.4, 340] minutes, with mean 60 minutes.

The Load of the system is the ratio of the total length of jobs (
∑m

j=1 ℓj) to the number of
edges by the execution horizon (nT ). We consider a range of system load factors, varying from
0.1 to 1 in 0.1 increments. Each hour, Load ×n core-hours are released, (assuming 1 core per
server), with job release times uniformly distributed throughout the hour.

The Looseness of a job Jj is the ratio of the length of its execution window (dj − rj) relative
to its length ℓj . This essentially models the workload’s temporal flexibility, and we consider
looseness values of 2, 4, and 6, with a random noise of ±10% in each.

Job arrivals at the edge are not necessarily uniformly distributed among edge servers. In
practice, some edge servers may receive more requests than others due to geographical factors,
such as higher demand in densely populated areas. We consider three job arrival models, with
randomly selected edges nodes that receive higher load:

• Uniform: the workload is distributed uniformly across all edge servers.
• Clustered : 30% of the edge servers receive 90% of the workload.
• Mall : 10% of the edge servers receive 80% of the workload.
We randomly generate 10 workloads for each triplet of parameters (job arrival model; Load ;

Looseness) and assign each job an origin server edge according to the chosen job model, a
deadline according to looseness, and a data/communication volume drawn uniformly between
2 and 200 Gbit. We impose the same data/communication volume for input and for output
(fj = f in

j = fout
j ). The number of jobs of a set depends on the Load and of the execution

horizon (T = 30days).

5.1.3 Model parameters

We list below the values of the different parameters:
• The bandwidth between edge servers, btrans , takes values in {10, 100, 500, 1000} Mbit/s.
• The carbon cost of communication between edge servers, ktrans , takes values

in {1, 10, 100, 1000} units of carbon/Mbit.
• The cloud executes jobs ten times faster than the edge servers and its carbon cost per

time unit is ten times larger than that of edge servers. The bandwidth between the cloud
and the edge servers is set at 250 Mbit/s and the carbon cost of these communications
is set at 1000 units of carbon/Mbit. Hence, the execution time of job Jj on the cloud is
t
(cloud)
j = ℓj/10+2(fj/250) and its carbon cost is C(cloud)

j = 180ℓj+2×1000fj . In addition,
we impose that the time needed to send and execute a job on the cloud is never larger than
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its execution time on its origin server. This is equivalent to limiting the communication
volume of a job as a function of its length (fj ≤ 125.5ℓj).

5.1.4 Metrics

Our performance measure is the total carbon cost of the solutions produced by the different
scheduling algorithms. However, the carbon cost of the optimal solution may vary by order of
magnitudes depending on the choice of the simulation parameters. Therefore, we cannot directly
compare the raw performance of different schedules on different instances. To circumvent this
problem, the first solution is to use an Oracle that is supposed to know, for each instance, which
algorithm is providing the best solution. Then, for each algorithm, we compute its RatioOracle,
that is, for each instance, the ratio of its carbon cost to the carbon cost found by Oracle. The
RatioOracle is always greater than 1, and the smaller the better. We can then build statistics
on the RatioOracle, like its (geometric) mean.

Using an omniscient oracle as baseline enables to determine the apparent overhead of always
using the same algorithm to build solution. Another approach would be to use as baseline a
simple algorithm. We then build the relative performance RatioLocal using as baseline Local.
If the average RatioLocal of an algorithm is 0.2, this means that this algorithm has a geometric
average cost equal to 20% of that of Local; in other words, using it rather than Local divides
the carbon cost by 5 (on average).

5.2 Results

We now report the simulation results. We start by comparing the overall performance of all
algorithms before focusing on a comparison between the greedy baseline and the best algorithms.
We conclude the section by assessing the reduction in carbon cost provided by the best solutions.

Combining the possible values of all the parameters and then generating several instances
for each combination would have led to a prohibitively large amount of simulations to perform.
Therefore, we opted for a randomized approach: we generated 20,000 instances by randomly
drawing an instance for each of the parameters and models.

5.2.1 Statistics on all algorithms

Table 2 presents statistics on the RatioOracle performance of all algorithms, where algorithms
are sorted with respect to their geometric mean.

Algorithm ReallocLowCarbEDF performs much better than other algorithms: it has a
mean of 1.06 while other algorithms have a mean greater than 1.27. Furthermore, this algorithm
has a standard deviation close to 1; hence, its performance is very stable. Moreover, in half of
the instances, ReallocLowCarbEDF found the solution with lowest cost, when ReallocIn-
PlaceEDF also found it for half of instances but achieving larger mean and standard deviation.
Finally, if we allow a carbon overhead of 10% with respect to the performance of the best solution,
once again ReallocLowCarbEDF achieves the best performance: it achieves a RatioOracle
no larger than 1.1 in 79% of instances.

Each algorithm with re-evaluation and EDF priority achieves a significantly better perfor-
mance average than its Looseness counterpart. Therefore, in the remainder of this section,
we focus on the algorithms with re-evaluation and EDF priority and on the greedy baseline
algorithms.

RR n° 9580



20 J. Cendrier & R. Wijayawardana & A.Benoit & Y. Robert & F. Vivien & A. A. Chien

5.2.2 Baselines vs. re-evaluation algorithms with EDF priority

Figure 3 presents the influence of the load (on the left) and of the carbon cost of transfer (per
Mbit of data/communication volume of the job, on the right) for the main algorithms for the
RatioOracle metric, using a logarithmic scale.

First, we observe that the heavier the load (or the higher the carbon cost of transfers),
the lower the cost of AllCloud. Hence, the improvement obtained by the best algorithms is
less significant. The curve of AllCloud gives us an idea of the difficulty of the instances or,
conversely, the room for improvement. Therefore, regardless of algorithm decisions, the relative
gain will be lower when the system is overloaded and/or with a high carbon cost of transfers.

Most conclusions drawn from the comparison of the performance of the greedy algorithms

Algorithms Mean SD Best 10%
AllCloud 37.737 2.932 0 0
LocalGreen 11.821 3.073 0 0
Local 3.915 2.879 2 7
ECTGreen 2.228 2.219 4 21
ECT 2.050 1.852 1 8
GreedyNoCarbComm 1.911 2.169 2 31
ReallocNoCarbCommLooseness 1.894 2.173 2 31
ReallocNoCarbCommEDF 1.787 2.190 13 45
GreedyInPlace 1.587 1.736 6 28
ReallocInPlaceLooseness 1.558 1.707 6 27
GreedyLowCarb 1.367 1.484 12 44
ReallocInPlaceEDF 1.272 1.690 49 68
ReallocLowCarbLooseness 1.272 1.335 11 47
ReallocLowCarbEDF 1.059 1.115 48 79

Table 2: Statistics on 20,000 random instances. The geometric means and standard deviations
of the RatioOracle of the different algorithms are reported in the Mean and SD columns. The
Best column contains the percentage of instances for which the algorithm found a solution with
lowest cost. Column 10% presents the percentage of instances for which the algorithm found a
solution whose cost was within 10% of the best solution.
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Figure 3: Impact of the load (on the left) and of the carbon cost of transfer (on the right) on the
RatioOracle performance of algorithms (with a logarithmic scale). Numbers in purple indicate
the number of instances corresponding to each case.
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Figure 4: Impact of the looseness on the RatioOracle performance of algorithms (with a loga-
rithmic scale). Numbers in purple indicate the number of instances corresponding to each case.

were expected. ECT generally finds better results than Local (respectively ECTGreen than
LocalGreen): because Local and LocalGreen do not transfer jobs, they end up using the
cloud more often to meet deadlines, which penalizes them (on average, respectively 13% and 37%
of jobs are executed on the cloud by Local and LocalGreen, compared to 1.8% for ECT and
2.8% for ECTGreen, see Table 3 in Appendix A). This trend is reversed when the carbon cost
of transfers becomes too large. Because ECT and ECTGreen have no control over transfers,
they allow transfers to happen even if this is more expensive than running jobs on the Cloud.
There is one potentially surprising phenomenon: LocalGreen, which is aware of green intervals,
obtain significantly worse results than Local, which is unaware of them. This can be explained:
LocalGreen sends more jobs to the cloud, because rather than executing jobs immediately
it waits for green intervals and, thus, wastes time, leaving less room for subsequent jobs which
then have to run on the Cloud. Its lower usage of brown intervals does not compensate for
its overutilization of the Cloud. ECTGreen does not achieve better performance than ECT
because it performs more transfers whose cost is not balanced by their benefit: this is exemplified
when the carbon cost of transfer is at least 100.

ReallocNoCarbCommEDF achieves better overall performance than ECT, performing
slightly more job transfers but using less the Cloud. ReallocNoCarbCommEDF becomes
competitive when the load is very high and very competitive when the carbon cost of transfer
is negligible. On the contrary, it is useless when this transfer cost becomes very high, which
explains its poor ranking in Table 2. The performance of ReallocInPlaceEDF is good in
general but rather poor when the carbon cost of transfer is small because it does not use this
opportunity to transfer jobs. Finally, the performance of ReallocLowCarbEDF is excellent
and consistent, as expected from Table 2. It is the best algorithm, except when the carbon cost
of transfer becomes negligible, a case in which it is very slightly underperforming.

The parameters other than the load and the carbon cost of transfer have little impact on
the relative performance of the different algorithms, see Appendix A. However, when the job
Looseness increases (see Figure 4), the performance of ReallocLowCarbEDF and Realloc-
InPlaceEDF improves with respect to the other algorithms: as the looseness increases, there
are more opportunities of optimization which these algorithms succeed to benefit from. Also, we
can see on Figure 8 of Appendix A that the performance of ReallocInPlaceEDF is identical
to that of ReallocLowCarbEDF, except when the configuration of edge locations is Mix .
Hence, the average performance of these two algorithms only differ because of the inclusion of
the Mix configuration in our simulation settings.
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Figure 5: Impact of the month on the RatioLocal metric. Numbers in green indicate the average
percentage of green for the month.

5.2.3 Comparison of algorithms with re-evaluation to Local

Here, we compare the performance of ECT and of the three re-evaluation algorithms with EDF
priority using the RatioLocal metric. Figure 5 presents the influence of months on the per-
formance of algorithms. We obtained this figure by grouping the results obtained from all
simulations, especially those using different edge models. Hence, the percentage of green for a
given month corresponds to the average percentage of green in the Solar only , Wind only , and
Solar and Wind models. We can note that, in May, edge servers are powered 52% of the time
by renewable energies, compared with only 30% in December (looking only at the Solar only
model, the amount of renewable energy is 4% in December but 43% in May). Hence, there is a
significant variation in the proportion of renewable energy depending on the month. Therefore,
one could have expected that the month of the year would have had an impact on the relative
performance of the algorithms. It is immediately apparent that this is not at all the case.

Overall, the carbon cost of ECT is only 52% of the cost of Local. This cost falls to 45% for
ReallocNoCarbCommEDF, to 32% for ReallocInPlaceEDF and to 27% ReallocLow-
CarbEDF. When comparing their carbon cost to that of ECT, ReallocNoCarbCommEDF
still gets a saving of 13%, ReallocInPlaceEDF, a saving of 38%, and ReallocLowCarb-
EDF, a saving of 48%.

6 Conclusion

We have studied classical greedy, simple carbon-aware, and carbon-aware with transfer schedul-
ing approaches applied to the edge green scheduling problem. The carbon-aware algorithms
consider additional dimensions of carbon variation as well as the cost of job transfer (communi-
cation carbon costs). The results show that carbon-aware schedulers can robustly reduce carbon
emissions for workload, across a variety of load and communication carbon costs. The best two
of the more sophisticated algorithms that consider reallocation consistently outperform these
simple carbon-aware schedulers. These results are also robust to seasonal variations in edge site
carbon content of power, and workload flexibility (looseness).

Future work will extend OfflineGreenest to a more general case with c different costs
for the intervals, with 2(c − 1) passes likely needed to obtain an optimal solution. We will also
investigate scenarios where brown and green intervals are not completely known in advance,
which would require the scheduling algorithms to dynamically re-act and reallocate jobs to cope
with sudden (unexpected) variations.
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A Additional figures

Algorithms NbLocal CostLocal NbExtern CostTransfer CostExtern NbCloud CostCloud
AllCloud 0.0 0.0 0.0 0.0 0.0 100.0 100.0
Local 86.9 25.1 0.0 0.0 0.0 13.1 74.9
ECT 71.0 37.5 27.2 36.1 11.5 1.8 14.9
LocalGreen 63.0 5.0 0.0 0.0 0.0 37.0 95.0
ECTGreen 46.7 22.2 50.5 47.8 12.7 2.8 17.4
ReallocInPlaceEDF 90.3 58.9 6.8 14.8 1.6 2.9 24.7
ReallocLowCarbEDF 79.4 50.8 17.9 21.6 4.3 2.7 23.3
ReallocNoCarbCommEDF 54.7 27.7 44.0 48.2 11.7 1.3 12.4

Table 3: Statistics on 20,000 random instances. The percentage of jobs executed locally, on
another edge server, on Cloud are reported respectively in the NbLocal, NbExtern and NbCloud
columns. The associated costs (in percent) are reported respectively in columns CostLocal,
CostTransfer (for transferred data cost) and CostExtern (for external execution), and CostCloud.
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Figure 6: Impact of the bandwidth on the RatioOracle performance of algorithms (with a loga-
rithmic scale). Numbers in purple indicate the number of instances corresponding to each case.
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Figure 7: Impact of the job arrival model on the RatioOracle performance of algorithms (with
a logarithmic scale). Numbers in purple indicate the number of instances corresponding to each
case.
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Figure 8: Impact of the edge location on the RatioOracle performance of algorithms (with a
logarithmic scale). Numbers in purple indicate the number of instances corresponding to each
case.
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