
HAL Id: hal-04996292
https://inria.hal.science/hal-04996292v1

Submitted on 18 Mar 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Partial Detectors Versus Replication To Cope With
Silent Errors

Anne Benoit, Thomas Herault, Yves Robert, Alix Trémodeux

To cite this version:
Anne Benoit, Thomas Herault, Yves Robert, Alix Trémodeux. Partial Detectors Versus Replication
To Cope With Silent Errors. RR-9581, Inria. 2025. �hal-04996292�

https://inria.hal.science/hal-04996292v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
95

81
--

FR
+E

N
G

RESEARCH
REPORT
N° 9581
March 2025

Project-Team ROMA, Topal

Partial Detectors Versus
Replication To Cope With
Silent Errors
Anne Benoit, Thomas Herault,
Yves Robert, Alix Trémodeux

RESEARCH CENTRE
Centre Inria de Lyon

Bâtiment CEI-2, Campus La Doua
56, Boulevard Niels Bohr - CS 52132
69603 Villeurbanne

Partial Detectors Versus Replication To Cope
With Silent Errors

Anne Benoit∗, Thomas Herault†,

Yves Robert‡, Alix Trémodeux§

Project-Team ROMA, Topal

Research Report n° 9581 — March 2025 — 26 pages

Abstract: This work considers an iterative algorithm that executes on an error-prone platform.
Silent errors strike at each iteration with some probability. A detector is applied as a verification
mechanism before taking a checkpoint. However, this mechanism is likely not perfect, and fails
to detect some errors. More precisely, an error striking at iteration I will be detected only after
iteration (I−1)+X, where X is a random variable obeying a probability distribution with bounded
support [1, D] such as a truncated geometric distribution. Intuitively, the error silently amplifies
during some iterations before it can be detected at distance X or higher. As a consequence, when
taking a verification before a checkpoint, there is the risk of missing an error that has struck recently
but cannot be detected yet. The simplest solution is to keep two checkpoints in memory, and to
use two segments of D − 1 iterations, each followed by a verification and a checkpoint: in steady
state, perform D−1 iterations after the last checkpoint and take a verification; (i) if successful, we
can safely erase the oldest checkpoint, because the most recent checkpoint is necessarily verified.
We take a new checkpoint to replace the old one, which is not verified yet; (ii) otherwise, we
need to rollback to the oldest checkpoint, not to the last one which may not be verified. Can this
simple scheme perform better than replication? What is the optimal number of segments (hence
of checkpoints) to keep in memory, and what is the length of these segments? This work answers
these questions, both theoretically and through Monte Carlo simulations.

Key-words: Silent errors, replication, partial detectors, bounded detection latency.
Authors’ emails: {anne.benoit,thomas.herault,yves.robert,alix.tremodeux}@inria.fr.

∗ ENS Lyon, UCB Lyon, CNRS, Inria, LIP, F-69342, LYON Cedex 07, and Institut Universitaire de France,
and Institute for Data Engineering and Science (IDEaS), Georgia Tech, USA

† Inria Bordeaux Sud-Ouest, Bordeaux, France
‡ ENS Lyon, UCB Lyon, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France
§ ENS Lyon, UCB Lyon, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France

{anne.benoit, thomas.herault, yves.robert, alix.tremodeux}@inria.fr.

Comparaison de la détection partielle et de la réplication
pour les erreurs silencieuses

Résumé : Ce travail s’intéresse aux algorithmes itératifs qui s’exécutent sur des plates-formes
soumises à des erreurs silencieuses et compare la réplication avec l’utilisation de détecteurs par-
tiels (capables de détecter une partie des erreurs, mais pas toutes les erreurs).

Mots-clés : Erreurs silencieuses, réplication, détecteurs partiels, distance de détection bornée.

Partial Detectors 3

Contents
1 Introduction 4

2 Related work 6
2.1 Background . 6
2.2 Partial detectors . 7
2.3 Recall and precision . 7

3 Framework 8

4 Replication 9

5 Partial Detectors 10
5.1 Setting . 10
5.2 Expectations . 11
5.3 Recurrence formulas . 14
5.4 Minimization . 15

6 Evaluation 16
6.1 Validation . 16
6.2 Parameter exploration . 18
6.3 Comparison with replication . 22

7 Conclusion 23

RR n° 9581

4 A.Benoit & T. herault & Y. Robert & A. Trémodeux

1 Introduction

Let us consider an iterative algorithm whose execution is struck by silent errors. The only
application-independent approach to mitigate the impact of such errors is replication, which
works as follows:

• The execution is partitioned into segments of M iterations, each followed by a checkpoint.
Assume that the initial data can also be recovered if necessary;

• The execution of a new segment (after a checkpoint C) consists of at least two attempts,
and possibly more:

– Attempt 1: Execute the segment for the first time and checkpoint the result res1;
– While the results after t ≥ 1 attempts are all different, execute new attempt t + 1 ,

i.e., recover from the checkpoint C, redo the M iterations and checkpoint the result
rest+1;

– Keep the outcome of the two identical checkpoints and proceed to the next segment.
Here, the classical hypothesis is that two errors will never lead to the same (incorrect) result;
more precisely, one neglects this event whose probability is extremely low. Hence, the rationale is
to make attempts until the same result is obtained twice, because that result will necessarily be
correct. Interestingly, the optimal value of M (the segment length) can be obtained numerically as
a function of the resilience parameters, namely the fault-rate and checkpoint cost. Optimality is
defined as minimizing the expected time per iteration. We provide such a derivation in Section 4.
Note that, to the best of our knowledge, this derivation is new, despite the many related studies
on replication.

While replication is the only general-purpose approach to cope with silent errors, several
application-specific methods have been introduced. We survey several examples of such detectors
in Section 2, which is devoted to related work. In a nutshell, one uses a detector to verify that the
current state of the computation is correct. The main problem with silent errors is their detection
latency: when a silent error strikes, it does not manifest immediately to the application, but
only after some non-deterministic and potentially high number of iterations. A detector must be
applied to check whether the current state of the application is correct or not. In the absence
of a detector (and without replication), the application must be re-executed from scratch when
the error manifests: since one does not know when the error struck, it is impossible to restart
from any given intermediate (checkpointed) state, if available, because it may well be corrupted.
On the contrary, when applying a detector at the end of some iteration, one can verify that no
error has struck so far, and safely take a checkpoint. Obviously, the key hypothesis here is that
the detector must be perfect, i.e., it will identify all errors when applied. In other words, its
recall must be equal to 1, meaning that any silent error can be detected at any stage, possibly
at the end of the current iteration, or after any number of following iterations. With a perfect
detector, a segment of computations would consist of M iterations, followed by the detector,
whose verification is applied at cost V . If the verification is successful, no silent error has struck
during the segment and one can safely take a checkpoint of cost C, which is guaranteed not to
be corrupted. Otherwise, we recover from the last checkpoint, which is certified to be verified,
and re-execute the segment. The optimal value of M is well-known [4], as well as a first-order
approximation that is the counterpart for silent errors of the Young-Daly formula for fail-stop
errors [25, 10].

Unfortunately, it is very difficult, if at all possible, to design perfect detectors. More likely,
one can design partial detectors that will detect many errors, but not all. One can envision
several trade-offs where the recall1 of the detector can be adjusted as a function of the cost of

1The recall of a detector is defined as the fraction of errors that it can detect. if the recall is 1, all errors are
detected. If not, some errors are missed by the detector; these are called false negatives.

Inria

Partial Detectors 5

the verification mechanism. The more comprehensive the verification, the higher the recall of
the detector, but also the higher its cost [1, 11].

Using partial detectors instead of replication seems a promising cost-effective alternative to
replication. However, one must assume that the detection latency is bounded to guarantee
correctness: indeed, if a silent error strikes at some iteration and fails to be detected for the
whole remaining iterations because its detection latency is so high, the result will not be valid,
and one will never know whether it is actually the case or not. Henceforth, we study partial
detectors whose detection latency is bounded. More precisely, we envision the following scenario:
when a silent error strikes during iteration I, one will be able to detect it by applying the partial
detector at iteration (I − 1) +X or after, where X is a random variable obeying a probability
distribution with bounded support [1, D]. For instance say a silent error strikes at iteration
I = 10, and draw X = 3. If we apply the detector at the end of current iteration I = 10 or at
the end of the following iteration I = 11, the error will not be detected. However, if we apply the
detector at the end of iteration I = 12, i.e., X = 3 iterations later (including the original iteration
I = 10), then it will be detected. The same holds true for any later iteration. Regardless of
the value of X, the partial detector will systematically detect the error D iterations later, where
D is the maximum detection latency, The rationale for this model if that we expect the impact
of the silent error on the application data to grow and become more and more detectable. For
computation errors, this corresponds to a numerical amplification of the error as the execution
progresses.

The main focus of this work is to provide a comprehensive assessment of the above scenario.
Given a partial detector of bounded latency, what is the best (less costly) execution scheme
to ensure correctness? How does it compare to replication? The simplest scheme is to have
segments of M = D − 1 iterations and to keep two checkpoints in memory, as illustrated below:

time

· · · I I V2 C2 I · · · I I V1 C1 I · · · I I V0 C0 · · ·

verified checkpoint

M = D − 1 iterations

Segment S1

M = D − 1 iterations

Segment S0

execution

start of execution

Here, we are executing segment S0, checkpoints C1 and C2 are stored in memory. By induc-
tion, the oldest checkpoint C2 is certified to be verified, but this is not yet the case for checkpoint
C1. When we complete the execution of the current segment S0, we apply the detector through
verification V0. There are two cases:

• No error is detected. Then checkpoint C1 is verified, because all errors that might have
struck during segment S1 did so at least D iterations before and would have been detected
by V0. For instance, if an error struck during the last iteration of S1, then its distance to the
last iteration of segment S0 is the maximum detection latency D (remember that we include
the original struck iteration in the distance count). We can safely take checkpoint C0 and
overwrite the older checkpoint C2.

• An error is detected. We must roll back. But there is no way of knowing whether the error
struck during segment S0 or earlier on during S1; in the latter case, the error went through
undetected when verification V1 was applied. Hence, we need to roll back to checkpoint C2,
which is known to be verified, and to re-execute S1 followed by S0. But now, if an error is
detected by V1, we can roll back to C2 again, because C2 is verified.

Despite simple to understand, this scheme is not easy to evaluate and compare with replication.
Our main contribution is to assess the efficiency of this scheme and more complicated ones,
involving many segments. In fact, we solve the main optimization problem: how many segments,

RR n° 9581

6 A.Benoit & T. herault & Y. Robert & A. Trémodeux

or equivalently how many checkpoints to keep in memory? And how many iterations to execute
within each segment? These results lay the theoretical foundations for the problem of comparing
partial detectors and replication.

The rest of the paper is organized as follows. Section 2 surveys related work. In Section 3, we
detail the framework. Section 4 is devoted to analyzing replication and computing the optimal
number of iterations per segment. Section 5 is the heart of the paper, where we assess partial
detectors: we compute the expected time per iteration for a general scheme with k segments /
checkpoints and M iterations per segment, and we provide the optimal values of k and M . This
theoretical analysis is complemented by Monte-carlo simulations in Section 6. Finally, we give
concluding remarks and hints for future work in Section 7.

2 Related work
Section 2.1 provides some background on silent errors, while Section 2.2 reviews partial detectors.
Finally, we discuss recall and precision in Section 2.3.

2.1 Background
While fail-stop errors lead to fatal interruptions (such as a crash) and cause the loss of the entire
memory of the processor, silent errors, a.k.a. silent data corruptions (SDCs), only impact a given
process and lead to incorrect results. But a silent error strikes undetected and the processor can
continue its execution; sometimes the silent error can be detected and corrected, and some other
times it degenerates into a fatal fail-stop error.

Silent errors may be caused, for instance, by arithmetic errors in the Arithmetic and Logic
Unit (ALU), soft errors in the L1 cache which is usually not well protected, or in the L2 cache
which might be protected by one parity bit, or bit flips in the dynamic random-access memory
(DRAM) due to cosmic radiation, overheat and other sources [18, 19, 27, 26].

There are several hardware mechanisms to detect and correct silent errors, such as parity
bits, error correcting codes (ECCs), and Chip-kill technology. They have been implemented to
protect the DRAM and different cache layers to some extent. However, the closer the data is
to the processing unit, the more frequent the access to that data and therefore the higher the
overhead of these methods. Thus, processor caches are not protected by ECC in general, but
by weaker mechanisms, like simple parity, exposing a higher risk of undetectable error in case of
multiple simultaneous bit flips. Buses also often are a weak link in the protecting chain, making
all data transfers at higher risk. In addition, the constant need to reduce component size and
voltage increases the likelihood of silent errors.

Although many silent errors caused by one or multiple bits that spontaneously flip to the
opposite state are caught by the above-mentioned hardware mechanisms, in reality, some bit
flips still manage to pass undetected [23, 3]. In a nutshell, silent errors have become a major
threat due to the increase in problem size [22]: the larger the problem, the more memory to be
used to store the data, the more frequent the errors, and the higher the probability of overriding
ECC protection, generating multiple errors.

A major problem with silent errors is detection latency : contrarily to a fail-stop error whose
detection is immediate, a silent error is identified only when the corrupted data is activated
and/or leads to an unusual application behavior. However, checkpoint and rollback recovery
assumes instantaneous error detection, and this raises a new difficulty: if the error stroke before
the last checkpoint, and is detected after that checkpoint, then the checkpoint is corrupted and
cannot be used to restore the application. To solve this problem, one may envision keeping several
checkpoints in memory and restoring the application from the last valid checkpoint, thereby

Inria

Partial Detectors 7

rolling back to the last correct state of the application [16]. But even if it was at all possible
to store many checkpoints (which is very demanding in memory), one would not know how to
identify the last valid one. Some verification mechanism, a.k.a. detector, must be enforced.

2.2 Partial detectors

Considerable efforts have been directed at designing detectors to reveal silent errors, because
error detection is usually very costly. As already discussed, the only general-purpose method
is to replicate the execution of the target computational kernel on two sets of processors (i.e.,
duplication) and to compare the results of both executions. If they do not coincide, an error
has been detected, and the application must be executed a third time. To avoid a-posteriori
re-execution, triplication (i.e., using three parallel executions of the same work) can be enforced,
which allows for error correction in addition to error detection, using a simple majority vote.
However, triplication (originally known as triple modular redundancy and voting [17]) is even
more costly than duplication, which already requires half the resources to execute redundant
operations.

Application-specific information can be very useful to enable ad-hoc solutions, which dra-
matically decreases the cost of detection. Many techniques have been advocated. They include
memory scrubbing [14] and Algorithm-Based Fault Tolerance (ABFT) techniques [13, 7, 21], such
as coding for the sparse-matrix vector multiplication kernel [21], blockwise checksum calculation
for error-bounded lossy compressor [15], and coupling a higher-order with a lower-order scheme
for PDEs [5]. Self-stabilizing corrections after error detection in the conjugate gradient method
are investigated in [20]. Fault-tolerant iterative solvers for sparse linear algebra are introduced
in [9, 12, 8], using extra checks such as re-computing inner products of vectors that should be
orthogonal, or even re-computing the residual. Another example is the lightweight SDC detector
based on data dynamic monitoring [2], designed to recognize anomalies in HPC datasets based
on physical laws and spatial interpolation. Similar fault filters have also been designed to de-
tect silent errors based on time series predictions [6]. Although not completely accurate, these
partial verification techniques nevertheless cover a substantial number of silent errors, and more
importantly, they incur very low overheads. These properties make them attractive candidates
for designing more efficient resilient protocols.

To summarize, perfect detectors are very appealing because they can be applied before taking
a checkpoint, which by definition will be verified since all potential errors will have been detected.
With a perfect detector, the approach is to use of a single segment of execution and a single
checkpoint is kept in memory. Partial detectors can be added in the middle of that segment to
speed-up detection. However, perfect detectors are more a perspective than an actual proposal.
Without a perfect detector, replication was the only known approach. Introducing a partial
detector with bounded detection latency, and assessing its performance, is the key contribution
of this work.

2.3 Recall and precision

Partial detectors are characterized by their recall and their precision. The recall, denoted by r,
is the ratio between the number of detected errors and the total number of errors that occurred
during a computation. The precision, denoted by p, is the ratio between the number of true
errors and the total number of errors detected by the verification. For example, the basic spatial
based SDC detector [2],has been shown to have a recall value around 0.5 and a precision value
very close to 1, which means that it is capable of detecting half of the errors with almost no
false alarm. A perfect detector can be considered as a special type of partial detector with recall

RR n° 9581

8 A.Benoit & T. herault & Y. Robert & A. Trémodeux

r∗ = 1 and precision p∗ = 1. Each partial detector also has an associated cost V , which is
typically much smaller than the cost V ∗ of a perfect detector.

A detailed study [1] considers several partial detectors and shows how to decide which ones
to include and which ones to discard in a computing pattern that involves several segments.
Each segment ends with a partial detector, while the last segment ends with a perfect detector
followed by a (verified) checkpoint. Surprisingly, it is proven in [1] that partial detectors whose
precision is not 1 should always be discarded. A major difference with this work, beyond the
existence of a perfect detector, is that [1] assumes statistical independence of the detectors: if
the same detector is applied twice, at two different time-steps, then its recall and precision are
the same for both instances. On the contrary, we assume here that the error amplifies and is
detected with higher probability as the execution progresses.

3 Framework
This section details the framework and the objective function. We focus on a generic iterative
application, because it is easier to express every quantity in terms of numbers of iterations. In
particular, we account for the cost of every resilience mechanism (detector, checkpoint, recovery)
as a number of iterations. This makes the approach agnostic of the granularity of the application,
which can range from sequential to massively parallel, and of the nature of errors, either silent
or transient.

The application is subject to the occurrence of errors, which can be mitigated either by
replication or by applying a partial detector. We consider two main probability distribution laws
to model error rates and latency detections:

• Occurrence: A silent error may strike each iteration independently and with a fixed prob-
ability f (hence obeying a simple Bernoulli law of parameter f).

• Detection: When an error strikes during iteration I, it can be detected (by applying the
partial detector) only at iteration (I − 1) +X or after, where X is the detection distance,
or latency. X obeys a truncated Geometric distribution law: we have X = min(Y,D),
where Y is a random Geometric variable of parameter θ, and D is the maximum detection
latency. This leads to{

P (X = d) = P (Y = d) = (1− θ)d−1θ if 1 ≤ d < D

P (X = D) = P (Y ≥ D) = (1− θ)D−1
(3.0.1)

The support of X is the interval [1, D], and X = 0 elsewhere.
Again, once an error manifests, it never auto-corrects and keeps manifesting during the fol-

lowing iterations until it can be detected. This is like tossing a biased coin (with probability θ
for heads and 1 − θ for tails) every iteration during which or after the error struck, until the
first head is drawn, but we bound the maximum number of tossings to ensure correctness in the
worst case.

Table 1 helps get an insight on typical values for the maximum detection distance D. For an
efficient partial detector (θ = 0.9), distance detection never exceeds 10 in practice. For a poor
partial detector (θ = 0.2, capturing only 20% of errors), distance detection never exceeds 100 in
practice.

All the random variables for occurrence and detection are assumed to be independent. We
point out that the study can be easily conducted for different probability distribution laws, as
long as independence is preserved.

We further assume that the partial detector has precision 1 (no false alarm). This assumption
is only a simplification rather than an intrinsic limitation of partial detectors. Indeed, we can

Inria

Partial Detectors 9

θ min{d|P (X ≥ d) ≤ 10−6} min{d|P (X ≥ d) ≤ 10−9}
0.2 62 93
0.4 28 41
0.9 6 9

Table 1: Minimum distance to be detected with high probability as a function of θ.

extend the complicated derivation provided in Section 5 to account for the extra rollbacks,
recoveries and re-executions that would be caused by false alarms. Such an extended derivation
is set for future work.

The execution scheme partitions the application into segments of M iterations followed by
a checkpoint. We always apply the partial detector, whose cost is V iterations, before taking a
checkpoint, whose cost is C iterations. Note that: (i) we take that checkpoint only if no error
is detected; and (ii) the checkpoint may still not be verified because some error has struck and
remained undetected. However, some of the checkpoints are guaranteed to include no error; we
call such checkpoint a verified checkpoint. If an error is detected by the verification, the appli-
cation rolls back to the last verified checkpoint and pays a recovery, whose cost is R iterations,
before resuming the execution from that point on. The existence of a verified checkpoint is an
invariant of the execution scheme and is proven by induction (see details in Section 5.2). There
are no errors during verifications, checkpoints and recoveries.

Finally, the objective function is to minimize the expected slowdown S per iteration, which
characterizes the diminution of the application progress due to error mitigation. If the cost to
execute a segment of M iterations is cost(M), then the slowdown is S = cost(M)

M .

4 Replication
As discussed in Section 1, replication uses segments of M iterations followed by a checkpoint.
Each segment is executed several times, until the results of two execution attempts are identical.
The cost of the first attempt is M + C, while the cost of the following attempts is R +M + C
because each of them starts with a recovery. While we need to perform further attempts, we
have keep the checkpoints of all previous attempts in memory so that we can check whether the
results of two attempts are identical.

What is the expected number of attempts? This is the expected number of attempts until
two of them are successful, and it also corresponds to the number of checkpoints that have to
be stored. The number of attempts until one is successful obeys a Geometric distribution law
of parameter pS , the probability of executing a segment of M iterations without any error. We
have

pS = (1− f)M ,

and the expected number of attempts until one is successful is 1
pS

. The expected number of
attempts until two are successful is 2

pS
. Since the first attempt has cost M +C and the following

ones have cost R+M + C, the expected cost to execute a segment is

cost(M) = (M + C) +

(
2

pS
− 1

)
(R+M + C) =

2(R+M + C)

pS
−R,

and the expected slowdown is

S =
cost(M)

M
=

2(R+ C)

MpS
+

2

ps
− R

M
.

RR n° 9581

10 A.Benoit & T. herault & Y. Robert & A. Trémodeux

time

· · · I I V3 C3 I I I I I V2 C2 I I I I I V1 C1 I I I I I V0 C0 · · ·

verified checkpoint

k = 3 checkpoints in memory

M iterations

Segment S2

M iterations

Segment S1

M iterations

Segment S0

execution

start of execution

Figure 1: Example with k = 3 and M = 5.

With pS = (1− f)M , we let

g(M) =
2(R+ C)

M(1− f)M
+

2

(1− f)M
− R

M

and aim at minimizing g(M). Differentiating, we get

g′(M) =
(1− f)−M

M2

(
R((1− f)M − 2)− 2M ln(1− f)(C +R+M)− 2C

)
.

The optimal value Mrep
opt of M is such that g′(Mrep

opt) = 0. Unfortunately, this equation does
not have a closed-form solution when f , C and R are unknown parameters, even when R = C.
We need to resort to numerical methods to find the optimal value Mrep

opt when the values of the
parameters are given.

Note that the replication strategy has significant advantages: it is application-independent,
and its performance depends only on the statistical properties of the risk of errors. However, as
we will see in Section 6, it comes with a high cost, which may be prohibitive in practice.

5 Partial Detectors

5.1 Setting
In this section, we assess the use of the partial detector. We consider an execution scheme with k
segments and k checkpoints stored in memory. Each segment consists of M iterations, followed
by a verification and a checkpoint. Segment Si, 0 ≤ i ≤ k − 1, is followed by verification Vi and
checkpoint Ci. Figure 1 provides an illustration with k = 3 and M = 5.

First, there is some relation to enforce between M , k and the maximum detection latency
D for the execution scheme to be valid. We are currently executing segment S0 and aiming to
ensure that checkpoint Ck−1 (C2 in the example) is verified, so that we can overwrite C3 by C0

if verification V0 is successful. This requires that any error that may have struck within segment
Sk−1 (S2 in the example) is detected by V0 eventually, if it has not been detected by previous
verifications Vk−1, Vk−2, . . . , V1 earlier on. This requirement is fulfilled if we enforce that

(k − 1)M ≥ D − 1,

because an error that struck at the last iteration of segment Sk−1 is at distance (k−1)M+1 ≥ D
from the last iteration of segment S0, and it will be detected by V0 if it has not been detected
before. Given a value for M , we will use

k =

⌈
D − 1

M

⌉
+ 1 (5.1.1)

Inria

Partial Detectors 11

as the minimum number of checkpoints that must be kept in memory; this is also the minimum
number of segments for the execution scheme. Note that k ≥ 2 unless D = 1, which corresponds
to a perfect detector.

In the example, M = 5 and k = 3, hence we must have D ≤ 11. Conversely, for D = 11, the
values of M that lead to choosing k = 3 in the execution scheme are 5 ≤ M ≤ 9.

When executing the current segment S0, checkpoints C1 to Ck are in memory, and check-
point Ck is known to be verified, since all errors previous to Ck would have been detected by V1

at the latest. However, errors having struck segments Sk−1 to S1 may have remained undetected
up to verification V1 included.

Our objective is to determine the expected time needed to complete the M iterations of
segment S0 and to replace the oldest checkpoint Ck by a new one at the end of S0. Once V0 is
successful, we know for sure that Ck−1 is a verified checkpoint; but if V0 detects an error, we
have to roll back to Ck, the last verified checkpoint, and to re-execute all the k segments.

We start by computing the probability that an error is detected during a given verification.
Let Pi,j be the probability that an error that struck at the i-th iteration of the ℓ-th segment (for
1 ≤ i ≤ M and 0 ≤ ℓ ≤ k − 1) is detected at Vℓ−j (for 0 ≤ j ≤ ℓ). Hence, for j = 0, this is
the probability that the error is detected immediately at the end of the segment where it struck;
otherwise, it is the probability of detection after j other segments have been executed. We have

Pi,j = P
(
X ≤ jM + (M − i+ 1)

)
− P

(
X ≤ (j − 1)M + (M − i+ 1)

)
. (5.1.2)

To help understand Equation (5.1.2): (i) For i = 1 and j = 0, the error occurred at the very
beginning of the segment, and hence we detect it at the end of the segment with a probability
P (X ≤ M). (ii) In general, the distance between the iteration where the error occurred and the
next verification is M− i+1, and we then enforce the segment number by bounding X according
to jM .

We also introduce the notation for the probability to detect an error striking at iteration i in
segment ℓ to be detected after Vj−ℓ−j :

Pi,>j = P
(
X > jM + (M − i+ 1)

)
.

5.2 Expectations
Let E0 be the expected time required to process segment S0 entirely, and then to take a new
checkpoint C0 after a successful verification, hence deleting Ck from memory and moving on to
the next segment. By induction, Ck is a verified checkpoint when we start executing S0, but the
more recent k − 1 checkpoints are not yet verified. The objective is to compute E0.

Because different rollbacks may be needed to complete the process of segment S0, we introduce
Ej for 1 ≤ j ≤ k−1 as the expected time required to go all the way up to taking C0, but starting
at the first iteration of segment Sj (instead of the first iteration of segment S0 for E0), and
knowing that no error has been detected by the previous verifications Vj′ , where j′ ≥ j + 1:
hence, no error has been detected in the first segments before Cj+1 and the start of segment Sj .

The execution goes as follows: we execute S0 and V0. If V0 is successful, we take checkpoint
C0 and we are done. Otherwise, we roll back to Ck and re-execute all the last k segments,
recovering from Ck which is the only verified checkpoint. Now, during this re-execution, some
errors may strike, among which some may be detected. The execution progresses until an error
is detected, in which case we roll back to Ck.

Here is an execution scenario for the example with k = 3: to account time for E0, we execute
S0 for the first time. If V0 detects no error, we take C0 and we are done. Otherwise, we roll
back to C3, and start accounting time for E2: recover, execute segment S2 and take verification

RR n° 9581

12 A.Benoit & T. herault & Y. Robert & A. Trémodeux

V2. If V2 detects an error, roll back to C2 and call E2 recursively. Otherwise, start accounting
time for E1, starting segment S1. When taking verification V1, there are again two possibilities:
an error is detected, in which case we roll back to C3 and re-start from segment S2, or not, in
which case we start accounting time for E0, starting segment S0. The process goes on until C0

can be taken eventually.

First segment Sk−1. We start by considering the first segment Sk−1, just after the verified
checkpoint Ck. Let Q0 be the probability that either there is no error during the M iterations
of Sk−1, or that none of the errors that struck during these iterations are detected by Vk−1. In
other words, Q0 is the probability to go through Vk−1 (so to speak), checkpoint and proceed to
segment Sk−2:

Ek−1 = R+M + V recovery, computation and verification done in all cases
+Q0(C + Ek−2) no error in Sk−1 that is detected by Vk−1

+ (1−Q0)Ek−1 rollback and start over: detected error

Since Ck is correct by induction hypothesis, an error detected by Vk−1 can only have occurred
in Sk−1, not before. Hence:

Q0 =

M∏
i=1

(1− fPi,0).

Indeed, an error occurs at iteration i of Sk−1 with probability f , it is detected at Vk−1 with
probability Pi,0 (current segment), hence there is a probability 1−fPi,0 that there were no error
nor any detected error from iteration i. Note that Q0 can actually be used for any segment, since
it only considers errors occurring during the segment and detected at the end of that segment.

Next segments Sj, 1 ≤ j ≤ k− 2. We extend the formula to any Ej as follows, for j ≥ 1 (the
case E0 is slightly different):

Ej = M + V computation and verification done in all cases

+

(
k−1−j∏
ℓ=0

Qℓ

)
(C + Ej−1) no error that is detected by Vj , move to Sj−1

+

(
1−

k−1−j∏
ℓ=0

Qℓ

)
Ek−1 rollback and start over from first segment: detected error

Here is how we compute the different probabilities. In order to be able to move to the next
segment Sj−1, we now need to consider several cases:

• No error in Sj has been detected by Vj at the end of the segment: this happens with
probability Q0 as defined above.

• We must however also look for errors that may come from previous segments, and hence
generalize the formula. Qℓ is the probability that there is no error coming from the ℓ-
th previous segment that is detected by Vj , for 0 ≤ ℓ ≤ k − 2. Hence, for ℓ = 1, we
are looking at errors coming from the segment just before Sj (hence in Sj+1). For each
previous segment, there are three possibilities for any of the M possible error locations:

– There is no error, with a probability (1− f).

Inria

Partial Detectors 13

– There is an error that is not detected by Vj , but that will be detected later. By
conditional definition of Ej , the error was not detected before either (with Vj′ , where
j′ > j), and hence this is the probability fPi,>ℓ (there is an error, it is detected later).

– Finally, there might have been an error that is detected by the current verification Vj ,
and this comes with a probability fPi,ℓ.

All probabilities must therefore be normalized by the sum of the probabilities of the three
cases, which is (1− f) + f(Pi,>ℓ + Pi,ℓ). For ℓ = 0, this sums to 1 since the error is either
detected at the end of the current segment (Pi,0) or later (Pi,>0), and therefore we obtain
the previous formula of Q0 again.

We finally obtain the general expression for Qℓ:

Qℓ =

M∏
i=1

(
1− fPi,ℓ

(1− f) + f(Pi,>ℓ + Pi,ℓ)

)
.

• By combining all possible locations of errors that remain undetected at Vj , coming from
the current segment Sj or previous ones (up to k− 1− j previous segments), we obtain the
probability that no error is detected at Vj and that we can move forward to Sj−1, expressed
as
∏k−1−j

ℓ=0 Qℓ.

Last segment E0. Finally, for E0, when we consider faults from segment Sk−1, they are
necessarily detected by V0, which slightly changes the computation of probabilities to complete.
Indeed, the expression of Qk−1 further considers that any error at Sk−1 will necessarily be
detected at most at V0, because the distance of detection D is exceeded. Again, because of
the conditional expression of E0, we know that no error in Sk−1 has been detected before, and
therefore, either there was no error (probability (1−f)), or the error is detected at V0 (probability
Pi,k−1). Hence, we write:

Qk−1 =

M∏
i=1

(
1− fPi,k−1

(1− f) + f(Pi,k−1)

)
.

We point out that this is the same formula as above because Pi,>k−1 = 0 (remember that the
distance detection is upper bounded by D).

We can finally write E0, which is the quantity that we aim at minimizing, i.e., the time to
progress to the next segment, add a new checkpoint and delete checkpoint Ck:

E0 = M + V computation and verification done in all cases

+

(
k−1∏
ℓ=0

Qℓ

)
C no error that is detected at V0, we checkpoint

+

(
1−

k−1∏
ℓ=0

Qℓ

)
Ek−1 rollback and start over from the start: detected error

We check that this is indeed the same expression as for Ej with 1 ≤ j ≤ k− 2 if we let E−1 = 0,
which is comforting.

RR n° 9581

14 A.Benoit & T. herault & Y. Robert & A. Trémodeux

5.3 Recurrence formulas
We show by induction that we have the following formulas:

Theorem 1. Letting E−1 = 0, and Φj =
∏j

ℓ=0 Qℓ for 0 ≤ j ≤ k − 1, we have:

Equation (Aj): Ek−1 = Ek−j + ujC + vj(M + V) + wjR for 1 ≤ j ≤ k
Equation (Bj): Ek−j = Ek−j−1 + ajC + bj(M + V) + cjR for 1 ≤ j ≤ k

where
u1 = v1 = w1 = 0
a1 = 1, b1 = c1 = 1

Φ0

uj = uj−1 + aj−1 for 2 ≤ j ≤ k
vj = vj−1 + bj−1 for 2 ≤ j ≤ k
wj = wj−1 + cj−1 for 2 ≤ j ≤ k

aj = 1 +
(

1
Φj−1

− 1
)
uj for 2 ≤ j ≤ k

bj =
1

Φj−1
+
(

1
Φj−1

− 1
)
vj for 2 ≤ j ≤ k

cj =
(

1
Φj−1

− 1
)
wj for 2 ≤ j ≤ k

Proof. We have u1 = v1 = w1 = 0 directly from Equation (A1). We have shown before that

Ek−1 = R+M + V +Q0(C + Ek−2) + (1−Q0)Ek−1,

which we rewrite into
Ek−1 = Ek−2 + C +

1

Q0
(R+M + V).

Since Φ0 = Q0 by definition, we derive that a1 = 1 and b1 = c1 = 1
Φ0

, which shows Equations (A1)
and (B1).

Assume now by induction that both Equations (Am) and (Bm) hold for 1 ≤ m ≤ j−1. First,
we plug Equation (Bj−1), namely

Ek−j+1 = Ek−j + aj−1C + bj−1(M + V) + cj−1R

into Equation (Aj−1), namely

Ek−1 = Ek−j+1 + uj−1C + vj−1(M + V) + wj−1R,

which leads to

Ek−1 = Ek−j + (uj−1 + aj−1)C + (vj−1 + bj−1)(M + V) + (wj−1 + cj−1)R

hence Equation (Aj) holds with uj = uj−1 + aj−1, vj = vj−1 + bj−1 and wj = wj−1 + cj−1.
Now, we have shown before that

Ek−j = M + V +Φj−1(C + Ek−j−1) + (1− Φj−1)Ek−1,

which we rewrite using Equation (Aj) into

Ek−j = Ek−j−1+

(
1 + (

1

Φj−1
− 1)uj

)
C+

(
1

Φj−1
+ (

1

Φj−1
− 1)vj

)
(M+V)++

(
(

1

Φj−1
− 1)wj

)
R.

We obtain Equation (Bj) with aj = 1 +
(

1
Φj−1

− 1
)
uj bj = 1

Φj−1
+
(

1
Φj−1 − 1

)
vj and cj =(

1
Φj−1 − 1

)
wj .

Inria

Partial Detectors 15

We derive a closed-form expression for E0:

Corollary 1. E0 = akC + bk(M + V) + ckR, where

ak = 1 +
(

1
Φk−1

− 1
)
uk

bk = 1
Φk−1

+
(

1
Φk−1

− 1
)
vk

ck =
(

1
Φk−1

− 1
)
wk

uk = 1 +
∑k−3

m=0

∏m
ℓ=0

1
Φk−2−l

vk =
∑k−2

m=0

∏m
ℓ=0

1
Φk−2−l

wk =
∏k−2

ℓ=0
1
Φℓ

Proof. Using Theorem 1, we have u1 = 0, u2 = 1, and for 3 ≤ j ≤ k:

uj = uj−1 + aj−1 = uj−1 +

(
1 + (

1

Φj−2
− 1)uj−1

)
= 1 +

1

Φj−2
uj−1.

We get u3 = 1 + 1
Φ1

, u4 = 1 + 1
Φ2

+ 1
Φ1Φ2

, hence, by direct induction, the formula for j ≥ 3:

uj = 1 +

j−3∑
m=0

m∏
ℓ=0

1

Φj−2−l
.

Similarly, we have v1 = 0, v2 = 1
Φ0

and for 3 ≤ j ≤ k:

vj = vj−1 + bj−1 = vj−1 +

(
1

Φj−2
+

(
1

Φj−2
− 1

)
vj−1

)
=

1

Φj−2
(1 + vj−1).

We get v3 = 1
Φ1

+ 1
Φ0Φ1

, hence, by direct induction, the formula for j ≥ 3:

vj = 1 +

j−2∑
m=0

m∏
ℓ=0

1

Φj−2−l
.

Finally, we have w1 = 0, w2 = 1
Φ0

and for 3 ≤ j ≤ k:

wj = wj−1 + cj−1 = wj−1 +

(
1

Φj−2
− 1

)
wj−1 =

1

Φj−2
wj−1.

We get w3 = 1
Φ0Φ1

, hence, by direct induction, the formula for j ≥ 3:

wj =

j−2∏
ℓ=0

1

Φℓ
.

This concludes the proof.

5.4 Minimization
We aim at minimizing the expected slowdown S = E0

M , for all possible values of M . For each value
of M , the value of k is given by Equation (5.1.1) and is large enough to guarantee correctness.
We do this with a simple exhaustive loop:

RR n° 9581

16 A.Benoit & T. herault & Y. Robert & A. Trémodeux

Mpar
opt = 0; kopt = 0;S = ∞

for M = 1 to UB
k =

⌈
D−1
M

⌉
+ 1

Eiter = E0

M = ak
C
M + bk(1 +

V
M) + ck

R
M

if Eiter < S then
Mpar

opt = M ; kopt = k;S = Eiter

We choose the upper bound UB experimentally, using a very large value. Indeed, if there are
(almost) no errors, we should use two arbitrarily long segments. Using the computation of E0

above, the loop returns the best number of checkpoints, and the best number of iterations per
segment, that minimizes the expected time per iteration.

6 Evaluation

In order to evaluate the different models, we have implemented a set of discrete events simulations
that follow the protocols described above. The simulations are written in C, and are publicly
available for reproducibility purposes at https://gitlab.inria.fr/therault/partial-detector-code.
Each execution that we simulate is 100,000 iterations long, and as per our models above, C, V,R
are all measured in terms of iterations. For each set of parameters, we simulate 10,000 executions
and measure for each the total time of execution (walltime, in number of iterations), the number
of errors, rollbacks, and the number of checkpoints taken. We then compute the mean and the
variance of these values. Errors are injected following the model described in Section 3.

We have set the following parameters for the simulations: C and R are both equal and set to
3 iterations to account for the overheads in communications and I/O; V is set to 1 iteration, as
verification is usually a fast operation (see [24] and the references therein). The other parameters
of the simulation are varied to evaluate their respective impacts on the performance. f , the
probability of occurrence of an error during an iteration, ranges between 10−4 (producing only
a handful of errors during the 100,000 iterations of an execution) and 8.6 · 10−3 (leading up to
4,500 errors during the execution); we consider all values for θ (probability of detecting an error
during a verification phase) between 10% and 90%; as suggested by Table 1, we consider values
of D ranging from 10 to 100.

In order to validate the model, we evaluate the protocols for all values of M , and set k using
Equation (5.1.1). We compare the optimal value for (k,Mpar

opt) predicted by the model with the
experimental value.

6.1 Validation

Figure 2 shows, for a specific configuration (D = 80, θ = 0.4), the optimal interval between
checkpoints for the Partial Detector strategy (Mpar

opt , on the left axis), and the walltime of a run
of 100,000 iterations (on the right axis), as calculated by the theoretical model and as measured
by the simulations. The goal of this figure is to validate that both the mathematical model
and the simulation reach the same measurement on the key metrics. The walltime predicted
by the model is slightly smaller than the walltime measured during simulations for very high f
(when the frequency of errors is high), but the difference remains under 5%. Conjointly, Mpar

opt

according to the theoretical model is different by 1 iteration from the value extracted from the
simulations, on a small range of low f values. These small differences are due to rounding errors
in the simulation framework.

Inria

https://gitlab.inria.fr/therault/partial-detector-code

Partial Detectors 17

0.000 0.002 0.004 0.006 0.008
f

20

30

40

50

60

70

80

M
pa

r
op

t

D = 80, = 0.4

100000

125000

150000

175000

200000

225000

250000

275000

W
al

lti
m

e
(it

er
at

io
ns

)

Mpar
opt Simulated

Mpar
opt Theoretical

Walltime Simulated
Walltime Theoretical

Figure 2: Comparison between the optimal values of (k,Mpar
opt), and the walltime, predicted by

the model and the simulations.

RR n° 9581

18 A.Benoit & T. herault & Y. Robert & A. Trémodeux

6 13 21 30 38 46 54 62 70
M

0

100000

200000

300000

400000

500000

W
al

lti
m

e
(it

er
at

io
ns

)

D = 70, = 0.4

0

2

4

6

8

10

12

k

f=0.0001
f=0.00015
f=0.000225
f=0.0003375

f=0.00050625
f=0.000759375
f=0.00113906
f=0.00170859

f=0.00256289
f=0.00384434
f=0.0057665

f=0.00864976
Mpar

opt

k

Figure 3: Simulated mean walltime for θ = 0.4 and D = 70, varying the risk of error (f) and the
number of iterations between two checkpoints (M).

6.2 Parameter exploration

Figure 3 shows the simulated mean walltime for θ = 0.4 and D = 70, varying the risk of error
(f) and the number of iterations between two checkpoints (M). For each value of f , we consider
all possible values of M between C (number of iterations to take a single checkpoint) and D
(maximum latency to detect an error). For each M , we set k, the number of checkpoints to keep,
according to Equation (5.1.1). First, we observe that simulations with a low f (f ≤ 0.00113906),
taking more checkpoints than the minimal two or using an interval between checkpoints lower
than D is detrimental to performance. Errors are so rare in this situation (low f), and the chance
that they are detected right away is so high (θ = 0.4, D = 70), that the most efficient strategy
consists in waiting as long as possible before introducing a verification and a checkpoint.

When the risk of error increases, however, we see that the optimal strategy changes. The
walltime figure then looks like a step-wise function, with steps happening every time M divides
D into equal intervals. The low points of this step-wise function define a parabolic curve that
accepts a minimal value of the walltime for various couples (k,Mpar

opt) that are identified in the
figure. For example, when f = 0.00864976, k = 6,M = 14 defines a low point, where the
walltime is at 266,027 (so 2.66 times slower than the execution without faults nor fault tolerance
enabled).

Figure 4 shows the number of errors observed during the simulations under the same condi-
tions. We can see that in the worst case considered, the system could sustain close to 2,000 errors

Inria

Partial Detectors 19

10 20 30 40 50 60 70
M

0

1000

2000

3000

4000

Fa

ilu
re

s

D = 70, = 0.4

f=0.0001
f=0.00015
f=0.000225
f=0.0003375

f=0.00050625
f=0.000759375
f=0.00113906

f=0.00170859
f=0.00256289
f=0.00384434

f=0.0057665
f=0.00864976
Mpar

opt

Figure 4: Number of errors observed during the simulations for θ = 0.4 and D = 70, varying the
risk of error (f) and the number of iterations between two checkpoints (M).

RR n° 9581

20 A.Benoit & T. herault & Y. Robert & A. Trémodeux

20 40 60 80 100
D

100000

150000

200000

250000

300000
W

al
lti

m
e

(it
er

at
io

ns
)

= 0.4, best (k, Mpar
opt) combination

f=0.0001
f=0.00015
f=0.000225
f=0.0003375

f=0.00050625
f=0.000759375
f=0.00113906

f=0.00170859
f=0.00256289
f=0.00384434

f=0.0057665
f=0.00864976
Dopt

Figure 5: Impact of the detection bound (D) on the walltime for θ = 0.4, varying the risk of
error (f).

(distributed over a 100,000 compute iterations) while exhibiting the slowdown of 2.66 described
above. With the wrong strategy, for example keeping the interval between two checkpoints at D,
under the same conditions the slowdown would have been of 4 for a total of about 3,000 errors
occurring during the execution.

Figure 5 shows the impact of the detection bound (D) on the walltime for θ = 0.4, varying
the risk of error (f). All curves show a parabolic behavior, with an optimal that depends on
D. For experiments where the risk of error is low, a high D value turns out more efficient than
a lower D value, which is to be expected as errors being rare, longer working periods allow to
reduce the overheads due to forced (and useless) checkpoints. Three of the curves shown in
this figure are limited to values of D that are suboptimal (D = 100), and even higher values
of D could be explored. These curves represent the runs in which errors are the most unlikely
to occur. For more volatile experiments, when f has a high value and many errors impact the
system, a lower D value is optimal. However, D is not a parameter that the user can choose for
performance reasons, but is strongly constrained by the properties of the partial detector. It is
possible, depending on the detector properties, that D becomes higher than the optimal value. If
this is the case, this figure also shows that performance can be significantly impacted, for highly
volatile systems.

Figure 6 shows the impact of the detection probability (θ) on the walltime for D = 10, varying
the risk of error (f). The figure shows that θ has no measurable impact on the performance,
even for very low values of D (10 iterations). The same behavior is observed for higher values
of D. This is because even for very unreliable error detectors (θ = 0.1 for example), the vast

Inria

Partial Detectors 21

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
theta

140000

145000

150000

155000

160000

165000

W
al

lti
m

e
(it

er
at

io
ns

)

D = 10, best (k, Mpar
opt) combination

f=0.0001
f=0.00015
f=0.000225
f=0.0003375

f=0.00050625
f=0.000759375
f=0.00113906

f=0.00170859
f=0.00256289
f=0.00384434

f=0.0057665
f=0.00864976

opt

Figure 6: Impact of the detection probability (θ) on the walltime for D = 10, varying the risk of
error (f).

RR n° 9581

22 A.Benoit & T. herault & Y. Robert & A. Trémodeux

20 40 60 80 100
M

100000

200000

300000

400000

500000

600000

700000

800000

900000

W
al

lti
m

e
(it

er
at

io
ns

)

0.0001
0.00015
0.000225
0.0003375

0.00050625
0.000759375
0.00113906

0.00170859
0.00256289
0.00384434

0.0057665
0.00864976
Mrep

opt

Figure 7: Walltime for replication, as a function of the interval between two checkpoints (M)
and the risk of error (f).

majority of errors are detected before the bound D is reached. Thus, finding a tight D bound
is critical for performance, much more than estimating closely the value of θ. Of course, both
parameters are linked in real systems, and a low θ value will imply a high D bound, while a high
θ value allows to consider lower values of D with a high probability.

6.3 Comparison with replication

Figure 7 shows the walltime for the replication strategy, as a function of the interval between
two checkpoints (M) and the risk of error (f). As for the partial detector strategy, the walltime
exhibits a parabolic behavior, with an optimal value M rep

opt that depends on f . The figure shows
the location of this optimal value for each different value of f . As f decreases, M rep

opt increases,
and more importantly, the walltime decreases to asymptotically reach a factor two when f is low
enough and almost no errors hit the system. By construction, the replication strategy cannot be
more efficient than this limit, as each segment must be executed at least twice to validate the
result. This is the cost to pay to have a generic and perfect error mitigation mechanism.

Figure 8 shows the best interval between two checkpoints in the case of the replication strategy
(M rep

opt), compared between the simulation results and the theoretical model. Additionally, the
second axis shows how many checkpoints need to be kept in the worst cases. The figure shows
that the theoretical model is very close to the simulation results, for values of f bigger than
0.00050625. For f < 0.00050625, the simulation artificially bounded the maximum value of

Inria

Partial Detectors 23

0.000 0.002 0.004 0.006 0.008
f

25

50

75

100

125

150

175

200

M

0

2

4

6

8

10

M
ax

im
um

 n
um

be
r o

f c
he

ck
po

in
ts

 st
or

ed

Mrep
opt by simulation

Mrep
opt(f)

Max. number of checkpoints stored

Figure 8: Best interval between two checkpoints for replication, compared between the simulation
results and the theoretical model. Second axis shows how many checkpoints are required in the
worst simulation.

M rep
opt to D (as it was done in the case of the partial detector strategy), and the minimum value

is observed in simulations for that bound, while the model predicts much higher values of M rep
opt .

The figure also shows that the number of checkpoints required in the worst simulation is relatively
small, with a maximum of 10 checkpoints required in the worst case thatwe have considered.

Figure 9 compares the performance of the replication strategy with the partial detector strat-
egy for a few values of D and θ. As we have observed that θ does not have a significant impact
on the performance, we have chosen to show only the results for θ = 0.4. The figure shows that
the replication strategy is less efficient than the partial detector strategy in a large range of D
and f values. Only when errors are very frequent (for f = 0.008, executions typically experience
more than 4,000 errors to execute the 100,000 iterations), and the error detector is so unreliable
that the bound for the maximum number of iterations to detect an error is 100, the replication
strategy becomes more efficient.

7 Conclusion

This work is the first study devoted to comparing replication with the use of partial detectors
with bounded latency. We have formalized the problem, and provided a detailed analysis of
the optimal schemes for both approaches. Given the application and platform parameters, we
derived the optimal number of iterations that should be executed between two checkpoints, as
well as the number of checkpoints to keep in memory in the case of partial detectors.

Next, we have assessed and compared the performance of both strategies through a com-
prehensive set of Monte-Carlo simulations. Simulated results perfectly match the theoretical

RR n° 9581

24 A.Benoit & T. herault & Y. Robert & A. Trémodeux

0.000 0.002 0.004 0.006 0.008
f

100000

150000

200000

250000

300000

350000

W
al

lti
m

e
(it

er
at

io
ns

)

Replication
Partial Detector, D = 20

Partial Detector, D = 40
Partial Detector, D = 60

Partial Detector, D = 80
Partial Detector, D = 100

Figure 9: Comparison of the walltime of replication with partial detection for various values of
D.

predictions, and illustrate the gain that results from using non-trivial patterns in terms of num-
ber of segments and number of iterations. More importantly, the simulations demonstrate that
the use of partial detectors can massively outperform replication, allowing the application to
complete within a significantly smaller time (typically, twice faster in the presence of few errors).
Furthermore, the number of checkpoints that need to be stored to guarantee that we can always
recover from a verified checkpoint is fixed with partial detectors, while it is unclear how many
checkpoints will have to remain in memory when using replication.

While we have focused in this work on partial detectors with a perfect precision, our future
work will extend the analysis to partial detectors whose precision is strictly lower than 1, i.e.,
with some false positives. We would need to account for the extra rollbacks, recoveries and re-
executions that would be caused by the false alarms, even though there was no actual error, since
we cannot take the risk of loosing the only verified checkpoint. An experimental validation with
some iterative numerical application (the Preconditioned Conjugate Gradient method would be
an ideal candidate) would also further demonstrate the usefulness of partial detectors.

References

[1] L. Bautista-Gomez, A. Benoit, A. Cavelan, S. Raina, Y. Robert, and H. Sun. Coping with
recall and precision of soft error detectors. JPDC, 98:8–24, 2016.

[2] L. Bautista Gomez and F. Cappello. Detecting silent data corruption through data dynamic
monitoring for scientific applications. SIGPLAN, 49(8):381–382, 2014.

Inria

Partial Detectors 25

[3] L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith. Unprotected comput-
ing: A large-scale study of dram raw error rate on a supercomputer. In SC ’16: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 645–655, 2016.

[4] A. Benoit, A. Cavelan, Y. Robert, and H. Sun. Assessing general-purpose algorithms to
cope with fail-stop and silent errors. ACM TPC, 3(2), 2016.

[5] A. R. Benson, S. Schmit, and R. Schreiber. Silent error detection in numerical time-stepping
schemes. Int. J. High Performance Computing Applications, 2014.

[6] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello. Lightweight silent data
corruption detection based on runtime data analysis for HPC applications. In HPDC. ACM,
2015.

[7] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. Algorithm-based fault tolerance applied
to high performance computing. J. Parallel Distrib. Comput., 69(4):410–416, 2009.

[8] G. Bronevetsky and B. de Supinski. Soft error vulnerability of iterative linear algebra
methods. In ICS. ACM, 2008.

[9] Z. Chen. Online-ABFT: An online algorithm based fault tolerance scheme for soft error
detection in iterative methods. In Proc. PPoPP, pages 167–176, 2013.

[10] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart dumps.
FGCS, 22(3):303–312, 2006.

[11] T. Herault and Y. Robert, editors. Fault-Tolerance Techniques for High-Performance Com-
puting. Springer Verlag, 2015.

[12] M. Heroux and M. Hoemmen. Fault-tolerant iterative methods via selective reliability.
Research report SAND2011-3915 C, Sandia Nat. Lab., 2011.

[13] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix operations.
IEEE Trans. Comput., 33(6):518–528, 1984.

[14] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cosmic rays don’t strike twice: under-
standing the nature of DRAM errors and the implications for system design. SIGARCH
Comput. Archit. News, 40(1):111–122, 2012.

[15] S. Li, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello. Resilient error-bounded lossy
compressor for data transfer. In SC’94, SC ’21. ACM, 2021.

[16] G. Lu, Z. Zheng, and A. A. Chien. When is multi-version checkpointing needed? In Proc.
3rd Workshop on Fault-tolerance for HPC at extreme scale (FTXS), pages 49–56, 2013.

[17] R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy to improve computer
reliability. IBM J. Res. Dev., 6(2):200–209, 1962.

[18] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski. Design, modeling, and
evaluation of a scalable multi-level checkpointing system. In SC’10: Proceedings of the
2010 ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–11. IEEE, 2010.

RR n° 9581

26 A.Benoit & T. herault & Y. Robert & A. Trémodeux

[19] T. O’Gorman. The effect of cosmic rays on the soft error rate of a DRAM at ground level.
IEEE Trans. Electron Devices, 41(4):553–557, 1994.

[20] P. Sao and R. Vuduc. Self-stabilizing iterative solvers. In ScalA ’13, 2013.

[21] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Fault tolerant preconditioned conju-
gate gradient for sparse linear system solution. In ICS. ACM, 2012.

[22] M. Snir and et al. Addressing failures in exascale computing. Int. J. High Perform. Comput.
Appl., 28(2):129–173, 2014.

[23] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf, and
S. Gurumurthi. Memory errors in modern systems: The good, the bad, and the ugly. In
20th Int. Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 297–310. ACM, 2015.

[24] A. Tremodeux, E. Agullo, A. Benoit, L. Giraud, T. Herault, and Y. Robert. Fault-tolerant
numerical iterative algorithms at scale. Technical Report RR-9567, Inria Lyon, 2025.

[25] J. W. Young. A first order approximation to the optimum checkpoint interval. Comm. of
the ACM, 17(9):530–531, 1974.

[26] J. Ziegler, M. Nelson, J. Shell, R. Peterson, C. Gelderloos, H. Muhlfeld, and C. Montrose.
Cosmic ray soft error rates of 16-Mb DRAM memory chips. IEEE Journal of Solid-State
Circuits, 33(2):246–252, 1998.

[27] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin. IBM experiments
in soft fails in computer electronics. IBM J. Res. Dev., 40(1):3–18, 1996.

Inria

RESEARCH CENTRE
Centre Inria de Lyon

Bâtiment CEI-2, Campus La Doua
56, Boulevard Niels Bohr - CS 52132
69603 Villeurbanne

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Related work
	Background
	Partial detectors
	Recall and precision

	Framework
	Replication
	Partial Detectors
	Setting
	Expectations
	Recurrence formulas
	Minimization

	Evaluation
	Validation
	Parameter exploration
	Comparison with replication

	Conclusion

