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Ordonnancement de tâches sur une machine avec un
nombre variable
de processeurs

Résumé : Même si l’on part généralement du principe que les centres de calculs peuvent
toujours fonctionner à leur capacité maximale, des scénarios récents ont montré que la quantité
d’électricité pouvant être utilisée par les centres de calculs évolue au fil du temps. Par con-
séquent, le nombre de processeurs disponibles n’est plus une constante. Dans ce travail, nous
supposons que les tâches peuvent être sauvegardées avant un changement de ressource. En effet,
dans les scénarios que nous considérons, le fournisseur de ressources avertit l’utilisateur avant un
changement du nombre de processeurs. Il est donc possible d’anticiper et de faire une sauvegarde
avant que le changement ne se produise, de sorte qu’aucun travail ne soit jamais perdu. L’objectif
est alors de maximiser l’utilisation de la plateforme et/ou l’avancement minimum des tâches au
cours de la période suivante (temps entre deux changements du nombre de processeurs). Nous
modélisons le problème et concevons des solutions gloutonnes et des algorithmes de programma-
tion dynamique sophistiqués. Un ensemble complet de simulations basées sur des ensembles de
tâches réelles démontre la performance des algorithmes proposés. La meilleure solution maximise
l’utilisation de la plateforme tout en garantissant un haut niveau d’équité.

Mots-clés : Ordonnancement, capacité variable, rendement, programmation dynamique
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1 Introduction and related work

Most (if not all) work targeting the optimization of data centers assume implicitly that data
centers are always provided all the electricity they need to operate at their maximum capability.
Hence, at any time, all their components (processors, etc.) are powered on and can operate at
full power. There are, however, existing and emerging scenarios in which data centers sometimes
only receive a fraction of the electricity they require to work at full power, and this fraction
evolves with time. Therefore, in this work, we consider the problem of scheduling jobs in a data
center whose processing capability evolves with time.

Some countries suffer from systemic energy under-production, such as the Republic of South
Africa, which has experienced an energy crisis since 2007 [19]. Some other countries did experi-
ence temporary energy crises: in France, some industrial problems have led to risks of blackouts
in 2022-2023 [1], while some blackouts happened in the USA due to meteorological events in
2021-2022 [18]. In such cases, energy distributors usually resort to rolling blackouts, that is, to
“intentionally engineered electrical power shutdowns in which electricity delivery is stopped for
non-overlapping periods of time over different parts of the distribution region” [18]. Even if a
data center can be supplied all the energy it requires, data center managers may not want to
operate their centers at full power. This can happen, for instance, if energy prices are high and
data centers are run on a tight budget, or if the energy mix is highly carbonated and the data
centers are required to achieve a low carbon footprint [17].

From the user point of view, a platform whose energy supply evolves with time is seen as a
platform whose processing power evolves with time: its processing resources become volatile [20].
This problem is termed the variable capacity scheduling problem [21], and it has raised a lot of
interest both from resource providers, with the aim of reducing their costs, and from researchers,
with the goal of designing clever solutions to make the best usage of resources, as highlighted in
a recent workshop report [4].

Typically, when a resource must be turned off, the jobs that were being executed on that
resource have to stop their execution. If the user is not warned beforehand, this results in loosing
the work that was on-going on the resource [16]. However, in the scenarios described above, the
evolution of the energy supply can be predicted, at least to some extent: institutional rolling
blackouts are announced in advance, weather forecasts enable to predict solar and wind energy
production [5], and consumption patterns are well studied [6].

In this work, we focus on a setting where, when the energy supply decreases, there is no backup
and some processors must be shut down. However, we go beyond the classical approach that
terminates jobs, by allowing jobs to be checkpointed before a resource change, hence, avoiding
loosing the work already done. Indeed, the checkpoint/restart mechanism has been widely used
for platforms confronted to failures [8]: the whole state of a job is periodically checkpointed, so
that it is possible to recover from the last checkpoint when the platform is subject to a failure.
In the context of varying energy supply, a loss in power is equivalent to a failure of some of the
processors.

The main difference with classical studies in resilience is that we can predict, with a good
accuracy, the time at which a change in the number of processors will occur. Predictions turn
out to be very accurate in the near future [7]. Therefore, we assume that we know the date
of the next event, i.e., the next time at which we might loose or gain resources, even though
we do not have an exact knowledge of the number of processors that will be available after the
change. (This conservative assumption enables us to cover a wide range of realistic scenarios.)
Hence, it is possible to anticipate and take checkpoints before the change happens. To the best
of our knowledge, there is no related work that formalizes this problem and designs algorithms
to solve it. Some scheduling algorithms have been designed to account for variations in green
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6 J. Cendrier & A.Benoit & F. Vivien

energy, such as GreenSlot [10] and GreenPar [11]. However, the setting is very different as they
do not need to take checkpoints. Indeed, they assume that there is always some energy available
from the grid, even though it might come at a higher cost.

The proposed model considers that when an event occurs at time Ti (with 1 ≤ i ≤ m), the
user is informed of the time of the next event Ti+1, but there is no global knowledge of all future
events. An event may correspond to a loss or gain of processors, that may not exceed a total
number δ. Furthermore, the exact variation in the number of processors for event Ti is known
only at time Ti, together with the date of the next event. With this knowledge, we enforce that
we checkpoint jobs so that at least δ processors can be released just before Ti+1. Therefore, we
ensure that no work will be lost, even if δ processors must be shut off.

In this work, we initially assume that all jobs have an infinite execution time. We make this
(potentially surprising) assumption because scheduling strategies that decide which applications
are allocated processors and which are (temporarily) stopped influence the completion time of
applications. If we were to consider, in the theoretical part of this work, jobs with finite execution
times, we would have to study the interplay of these strategies and of the batch scheduling system.
To avoid doing this, we initially assume that jobs have infinite execution times. Later, we will
show how to extend the proposed algorithms to jobs with finite execution times, and we will
show that the conclusions derived for infinite jobs also hold for finite ones.

Our main contributions are the following:
• We formalize the problem with a set of infinite parallel jobs, each of them requiring a fixed

number of processors to be executed, and with the ability to take checkpoints and recover
after an interruption (Section 2);

• We define two objective functions in this setting. The goodput is platform-centric and
measures the platform utilization (without accounting for the time spent checkpointing
or recovering some jobs). The minimum yield is user-centric and aims at ensuring some
fairness between jobs, i.e., all jobs should get a chance to be executed approximately the
same amount of time (Section 3);

• The core contribution is Section 4, with the design of several sophisticated algorithms
using dynamic programming (DP), either to optimize one of the criteria, or to provide a
bi-criteria solution; the solutions returned by the algorithms are close to the optimal, and
we even prove the optimality for goodput maximization in the time interval before the next
event, when all jobs take the same time to checkpoint;

• In Section 5, we extend the model to deal with jobs of finite duration. We then need to
consider job arrivals and departures. Therefore, the objective functions are revisited, and
we also explain how to adapt the algorithms of Section 4;

• Extensive simulations are performed in Section 6 on jobs extracted from the Parallel Work-
loads Archive [12], in order to assess the performance of the algorithms. The bi-criteria
DP algorithm achieves impressive results, succeeding to reach high values of goodput while
ensuring a fair treatment of all jobs through the yield.

Finally, we conclude and discuss the limitations of the hypotheses of this work, as well as
future working directions, in Section 7.

2 Model

Application. We consider a set of m parallel (rigid) jobs J1, . . . , Jm, where job Jj uses exactly
pj processors, for 1 ≤ j ≤ m. Each job Jj can be checkpointed in time Cj , and its recovery
time is Rj . For consistency, job Jj needs to wait for the recovery time also the first time that
it is executed (e.g., because of the time required to load the application code and input data).

Inria



Scheduling Jobs Under a Variable Number of Processors 7

Therefore, we do not differentiate jobs that have already been executed and checkpointed from
new jobs.

Finally, let us denote Cmin = min1≤j≤m Cj , Cmax = max1≤j≤m Cj , Rmin = min1≤j≤m Rj ,
and Rmax = max1≤j≤m Rj . Note that if all jobs share the same checkpointing (resp. recovery)
time, this time is denoted by C (resp. R).

Platform. The jobs are executed on a parallel platform with Pmax processors, but these
processors are not all available at all time. Indeed, the aim of this paper is to consider scenarios
where the number of powered processors vary over time. From the user point of view, this is seen
as events where the number of available processors changes. The execution starts at time T1 with
a given number of processors, and then events of changes in the number of available processors
happen at dates T2, T3, . . . , Tn+1. We call a section the time interval defined by two of these
consecutive events. There are n such sections, and the i-th section is [Ti, Ti+1). The number of
processors is fixed during a section. Let Pi denote the number of processors available in the i-th
section. Pi cannot exceed the maximum number of processors of the platform Pmax, and cannot
go below Pmin, the number of processors that are always powered up; hence, Pmin ≤ Pi ≤ Pmax.
Furthermore, the change at each event is bounded by δ, i.e., we may not loose or gain more
than δ processors at each event: for 1 ≤ i ≤ n, we have |Pi+1 − Pi| ≤ δ. We can of course have
Pmin = 0 and δ = Pmax.

During section i, we can hence execute a set of jobs of indices J (i) ⊆ {1, . . . ,m}, such that∑
j∈J(i) pj ≤ Pi, by allocating exactly pj processors to each job Jj with j ∈ J (i). Note that job Jj

cannot run if allocated less than pj processors, hence it is allocated either pj or zero processors.
The knowledge of the scheduler is limited: we only know the date of the next event Ti+1, we

only know it at time Ti, but we do not know the exact number of processors that will be available
after the change. However, thanks to the bound δ, we can proactively checkpoint enough jobs to
ensure that no work will be lost, even in the worst possible scenario where δ processors are shut
off at the next section. We impose that enough jobs are checkpointed before each event, so that
we are in a setting in which we are never losing work.

Example. Figure 1 presents a toy example to illustrate the model. In this example, we have
five jobs taking 3, 3, 5, 7 and 8 processors respectively, and we have a total of 19 processors in
section i − 1, then 15 in section i, and finally 21 in section i + 1. In blue, we have the useful
work phases, in red the checkpoint phases, and in green the recovery phases. Finally, in yellow,
the processors are switched on but not working (idle phase). At the end of each section, some
jobs are checkpointed for a total of at least δ = 6 in the example. At time Ti, four processors
are powered off, so jobs J1 and J2 are stopped. Since there are two idle processors and no small
job able to run on these two processors, we decide to checkpoint J3 at time Ti, so that job J4
can run for the rest of section i instead of J3, using all available processors.

Checkpoints are also taken just before Ti+1, but since the number of processors finally in-
creases, new jobs are recovered and started in section i+ 1.

3 Objective functions

We consider two optimization objectives: a platform-centric one, the goodput, and a user-centric
one, the yield. In order to formally define these optimization objectives, we start by introducing
the notion of effective working time of a job in Section 3.1. We then define both objective
functions (Sections 3.2 and 3.3), and derive an upper bound for each of them in Section 3.4.
From these bounds, we also define the notions of relative goodput and relative yield.
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Figure 1: Toy example with δ = 6.

3.1 Preliminaries
We denote by lij the effective working time of job Jj during section i: this is the amount of time
during which job Jj was allocated pj processors but was not performing any checkpointing or
recovery in section i. This time is equal to the length of the corresponding blue area on Figure 1.
Note that if job Jj is not allocated any processor during section i, then lij = 0. We also denote
by lj(t) the amount of time from the beginning until time t during which job Jj was effectively
working. Hence, for t = Ti, lj(Ti) =

∑i−1
k=1 l

k
j .

A job is said to be active at a time t if it is allocated processors at that time (it is then either
executing, checkpointing, or recovering).

3.2 Goodput
A classical platform-centric objectif is to optimize the platform utilization or, conversely, to min-
imize the platform idleness. However, in our context, even though the platform is used while
checkpointing or recovering some jobs, there is no useful work done during checkpoints and re-
coveries. Hence, rather than considering the platform utilization, we focus on the goodput, which
only accounts for the effective work done by jobs [2, 21]. The goodput, given a time interval,
is the total effective work done by all jobs during that interval divided by the total processor
time that was available during this interval. The effective work done by job Jj during section i
is exactly lijpj . Then, the goodput for section i is:

Goodput i =

m∑
j=1

pj l
i
j

Pi × (Ti+1 − Ti)
.

Indeed, the total available processor time is equal to Pi times the section duration.
We can then write the expression for the optimization objective, that is, the goodput of the

whole execution, from the beginning up to the end of section n:

Goodput =

m∑
j=1

pj lj(Tn)

n∑
i=1

Pi × (Ti+1 − Ti)
. (1)

3.3 Yield
The different jobs compete for the processors. Optimizing the goodput may lead to job starvation,
that is, a job Jj never being allocated pj processors. Hence, we also want to consider a fair
optimization objective. A possible candidate would be the stretch or slowdown [3]. By definition,
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Figure 2: Upper bound on goodput when δ = 8.

the stretch takes values between one and infinity. An infinite stretch happens when a job suffers
from starvation, which can be the case in our context with some scheduling algorithms optimizing
the goodput. Hence, we rather consider the inverse of the stretch, or yield. The yield of a job Jj
at time t is the ratio of the total effective working time of Jj up to time t by the total effective
working time it would have had if it was the only job using the platform. If there was no
competition for resources, the job could have been executed during each section, unless there
were not enough processors to execute it. Formally, the yield of job Jj at time t is then:

Yield j(t) =
lj(t)∫ t

T1
1P (u)≥pj

du
, (2)

where the denominator computes the amount of time when there are at least pj processors
available (i.e., when job Jj could run if it was alone on the platform).

Then, we can compute the minimum yield among jobs at the end of section i:

minYield(Ti+1) = min
1≤j≤m

Yield j(Ti+1).

Finally, the goal is to maximize the minimum yield among jobs at the end of section n:

minYield = minYield(Tn+1) = min
1≤j≤m

Yield j(Tn+1). (3)

Note that a job with a yield of zero, which corresponds to an infinite stretch, is a job that
has never been executed during any section.

3.4 Upper bounds
We establish an upper bound for the goodput by considering that the entire workspace can be
used for useful work, with the exception of the following areas:

• At the start of each section, the new processors (when there are new ones) cannot be used
for useful work before some recovery takes place, which takes at least a time Rmin. This
results in a non-useful work area of size Rmin ×max{0, Pi − Pi−1} for section i.

• At the end of section i, min{δ, Pi − Pmin} processors must be checkpointed, and each
checkpoint lasts at least Cmin. This results in a non-useful work area of size Cmin ×
min{δ, Pi − Pmin}.

The maximum area of useful work is shown in blue on Figure 2. This gives us an upper bound
on the Goodput .

For the yield, we consider the same workspace than for the goodput, i.e., the total blue area in
Figure 2. We reshape this total area as a single rectangle, whose height is the sum of the number
of processors required by all jobs, i.e.,

∑m
i=1 pi (Figure 3). An upper bound on the minimum
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Figure 3: Upper bound on minimum yield.

yield is then obtained by dividing the length of this rectangle, Ty, by the total time available,
Tn+1−T1, which corresponds to the fairest scenario where each job ends up with the same yield.
Indeed, within the rectangle, all jobs can be executed simultaneously and run during a time Ty,
hence reaching a yield of Ty

Tn+1−T1
.

Note that it is unlikely that these bounds are achievable, since jobs need to be checkpointed
and restarted to ensure that no processor is left idle, and that processor allocation to job is fair
(for yield optimization). However, these bounds will allow us to assess the absolute performance
of algorithms in terms of goodput and yield. Indeed, the distance of an algorithm performance
to these upper bounds is an upper bound to its distance to the optimal performance. Hence, we
define the relative goodput Relative Goodput (resp. relative yield RelativeYield) of a heuristic
as the ratio of the goodput (resp. yield) it achieved, divided by the upper bound on the goodput
(resp. yield). The relative goodput (resp. yield) takes values between 0 and 1, and the higher
the better.

4 Algorithms

We start by introducing one greedy algorithm for each of the two considered objective func-
tions (Section 4.1). Then, we design dynamic programming algorithms to optimize for a single
objective function (Section 4.2) or for a combination of them (Section 4.3).

4.1 Greedy algorithms

4.1.1 Goodput optimization

We describe the greedy algorithm for goodput optimization, Algorithm GreedyGoodput, con-
sidering any section [Ti, Ti+1]. At time Ti, Algorithm GreedyGoodput restarts checkpointed
jobs as long as there are idle processors and jobs that can be restarted. The jobs are considered
by non-increasing values of the number of requested processors (pj). Note that some processors
may remain idle at the end of this step.

At the end of a section, recall that we impose that no work is ever lost, even in the case of the
largest possible decrease in the number of available processors. Hence, we need to make sure that
enough jobs are checkpointed. GreedyGoodput only checkpoints jobs at the end of a section,
and does it in an as late as possible manner, that is, so that each checkpoint completes exactly
at time Ti+1. In practice, GreedyGoodput selects jobs that will not be checkpointed. Jobs are
considered by non-increasing values of the number of requested processors (pj), and marked to
be kept running if this does not lead to using more than max{Pi − δ, Pmin} processors.

The pseudo-code for GreedyGoodput is available as Algorithm 1 in Section A of the Ap-
pendix.
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4.1.2 Yield optimization

Algorithm GreedyYield is a greedy algorithm that aims at maximizing the minimum yield
over all jobs. All jobs that were running during section i− 1 are checkpointed, and this is done
as late as possible so that their checkpoints all complete at time Ti. Then, all jobs are sorted by
non-decreasing yield at time Ti (ties are broken by non-increasing values of pj). Jobs are then
restarted in this order while there remain enough available processors.

4.2 Mono-criteria DP algorithms

We design sophisticated dynamic programming (DP) algorithms that aim at optimizing a single
criteria (Goodput or minYield) within a single section, since there is no a priori knowledge beyond
the actual section. We start with the goodput in Section 4.2.1, and prove that this DP algorithm
is optimal when all checkpoint times are identical in Section 4.2.2. We also propose a simpler
and faster version of this DP algorithm in Section 4.2.3. We then focus on the minimum yield
in Section 4.2.4.

4.2.1 Dynamic programming for Goodput optimization

We design a dynamic programming algorithm that aims at maximizing the goodput within
section i. At time Ti, we know which jobs were running during the previous section, as well
as which jobs were checkpointed prior to event Ti. We need to decide which jobs should be
checkpointed at the beginning of the section, and then which ones should be recovered and
executed for the remaining of the section, so that we can maximize the goodput during section
i. The total length of the current section is denoted by T = Ti+1 − Ti.

The section is divided in three phases. The first phase occurs between time Ti and a time
Ti + Cnf (to be defined) at which all the checkpoints complete. These checkpoints are done as
late as possible to be completed at time Ti + Cnf , hence some work can still be done before the
checkpoint by jobs with a time of checkpoint smaller than Cnf . Most of the work done during
section i is done during the second phase, which lasts until time Ti+1 −Cmax. Finally, the third
phase is where proactive checkpoints are taken before the next section change (it will become
clearer later why we do not need to be as precise for the start time of the third phase as we were
for the ending time of the first phase, using Cnf ). And at the beginning of both first and second
phases, if some available processors are idle, we try to allocate jobs to them, and start their
recovery as soon as possible. Since we also need to know the status of jobs during section i− 1,
we also consider a phase 0, which corresponds to the third phase of the previous section, section
i− 1.

In each phase, we distinguish the jobs depending on their status (active or idle, checkpointing
or not checkpointing, under recovery, etc.), so that we will be able to handle all possible cases and
maximize the goodput. Figure 4 illustrates the different job statuses and the possible transitions
between statuses.

In phase 0 (resp. phase 3), a job is either active (it is allocated pj processors), or idle (Idle).
In this first case, it might be checkpointed (Ckpt) or not (Run); if it is checkpointed, this is done
as late as possible so that its checkpoint ends exactly at time Ti (resp. Ti+1).

The situation is a bit more complicated in phase 1. First, note that some jobs might also
be checkpointed during this phase, as explained before and, hence, we still have the statuses
Idle, Ckpt, and Run for jobs, similarly to phase 0. It is also possible to resume some jobs that
were previously idle, by paying a recovery cost, and then either to checkpoint them at the end of
phase 1 (Rec+Ckpt) or not (Rec). Here again, checkpoints are taken at the end of the phase (as
late as possible), while recoveries are done at the beginning of the phase (as soon as possible).
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Run(0)

Ckpt(0)

Idle(0)

Run(1)

Ckpt(1)

Rec(1)

Rec+Ckpt(1)

Idle(1)

Run(2)

Rec(2)

Idle(2)

Run(3)

Ckpt(3)

Idle(3)

Figure 4: The different job statuses in the different phases and their transitions.

Finally, in phase 2, no checkpoint is taken; a job may be running during the whole phase (Run),
or after a recovery (Rec), or not be executed during this phase (Idle).

At the end of a phase, depending on its status, a job may gain a new status for the next
phase. This leads to the 15 different cases listed below and to the 15 different paths from a
source to a sink in the graph of Figure 4. The first three cases concern jobs that were executed
in section i−1 and not checkpointed (jobs in Run(0)). Hence, they must still be active in phase 1.
Next, we have six cases for jobs that were checkpointed at the end of phase 0 (jobs in Ckpt(0)),
which can either pursue their execution or be stopped. Finally, there are six cases for jobs that
were idle in section i− 1 (jobs in Idle(0)).

1. Jj ∈ Run(0)∪Run(1)∪Run(2)∪Run(3): The job is constantly executed and never checkpointed;

2. Jj ∈ Run(0) ∪ Run(1) ∪ Run(2) ∪ Ckpt(3): The job is constantly executed, and checkpointed
at the end of phase 3;

3. Jj ∈ Run(0) ∪ Ckpt(1) ∪ Idle(2) ∪ Idle(3): The job, that was not checkpointed at phase 0,
is checkpointed during phase 1 to become idle from phase 2 onwards;

4. Jj ∈ Ckpt(0)∪Run(1)∪Run(2)∪Run(3): The checkpointed job is executed in all phases, with
no checkpoint at the end;

5. Jj ∈ Ckpt(0) ∪ Run(1) ∪ Run(2) ∪ Ckpt(3): Similar to case (4), but with a checkpoint taken
at the end of phase 3;

6. Jj ∈ Ckpt(0) ∪Ckpt(1) ∪Idle(2) ∪Idle(3): The job does a little work during phase 1 before
taking another checkpoint, and finally becomes idle from phase 2 onwards;

7. Jj ∈ Ckpt(0) ∪ Idle(1) ∪ Rec(2) ∪ Run(3): The job becomes idle in phase 1, but is recovered
in phase 2 and then is executed until the end, with no checkpoint taken;

8. Jj ∈ Ckpt(0) ∪ Idle(1) ∪ Rec(2) ∪ Ckpt(3): Similar to case (7), but with a checkpoint taken
at the end of phase 3;

9. Jj ∈ Ckpt(0) ∪ Idle(1) ∪ Idle(2) ∪ Idle(3): The job becomes idle from phase 1 onwards;

10. Jj ∈ Idle(0) ∪ Rec(1) ∪ Run(2) ∪ Run(3): The job that was idle during phase 0 is recovered
during phase 1 and then it is executed; no checkpoint is taken at the end;

11. Jj ∈ Idle(0) ∪ Rec(1) ∪ Run(2) ∪ Ckpt(3): Similar to case (10), but with a checkpoint at the
end of phase 3;

12. Jj ∈ Idle(0) ∪ Rec+Ckpt(1) ∪ Idle(2) ∪ Idle(3): The job does a little work, but only during
phase 1 (after a recovery and before a checkpoint), and then becomes idle again;
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13. Jj ∈ Idle(0) ∪ Idle(1) ∪ Rec(2) ∪ Run(3): The job becomes active only during phase 2 (after
a recovery); no checkpoint is taken at the end;

14. Jj ∈ Idle(0) ∪ Idle(1) ∪ Rec(2) ∪ Ckpt(3): Similar to case (13), but with a checkpoint at
the end of phase 3;

15. Jj ∈ Idle(0) ∪ Idle(1) ∪ Idle(2) ∪ Idle(3): The job remains idle during the whole section.

Building upon these job statuses, the dynamic programming algorithm maximizes the amount
of useful work, called gain, that is done during the section. We consider all possible decisions
for job Jj , building upon decisions that can be taken for jobs J1, ..., Jj−1 and, hence, obtaining
the gain for scheduling jobs J1, . . . , Jj . This gain function depends on the number of processors
available at each phase, given the decisions already taken for jobs Jj+1, . . . , Jm:

• Π1 is the number of processors available for phase 1. At time Ti, some of the Pi available
processors are used by jobs that were active and running during phase 0. Hence, the initial
value of Π1 is: Π1 = Pi −

∑
Jj∈Run(0)

pj ;

• Π2 is the number of processors available for phase 2, initially Π2 = Pi;

• Π3 is the number of processors that can still be used to run jobs at the end of the section.
Initially, Π3 = max(Pi − δ, Pmin) since we need that at least min{δ, Pi − Pmin} processors
are not used right before Ti+1 to ensure that no work will be lost at time Ti+1.

We add a fourth parameter, Cnf , which determines the length of phase 1. There is a trade-off
between choosing a small Cnf that leaves little flexibility for which jobs can be checkpointed,
but allows for a longer phase 2 with useful work done, versus having a large Cnf that gives more
flexibility but a smaller phase 2.

We now write the gain function, Gj(Π1,Π2,Π3, Cnf ), which decides how to handle jobs
J1, . . . , Jj during section i. We introduce three sub-functions (with same parameters), which
correspond to the possible statuses of Jj during phase 0: GRun

j , GCkpt
j , and GIdle

j . The function
is expressed as:

Gj(Π1,Π2,Π3, Cnf ) =


GRun

j (Π1,Π2,Π3, Cnf ) if Jj ∈ Run(0)

G
Ckpt
j (Π1,Π2,Π3, Cnf ) if Jj ∈ Ckpt(0)

GIdle
j (Π1,Π2,Π3, Cnf ) if Jj ∈ Idle(0)

Hence, if job Jj was active in phase 0 and not checkpointed, GRun
j decides what is its best

scenario. There are three cases for GRun
j , as described above, which leads to the formula below:

G
Run
j (Π1,Π2,Π3, Cnf ) =

max


pjT + Gj−1(Π1,Π2 − pj ,Π3 − pj , Cnf ) (1)
pj(T − Cj) + Gj−1(Π1,Π2 − pj ,Π3, Cnf ) (2){

−∞ if Cj > Cnf

pj(Cnf − Cj) + Gj−1(Π1,Π2,Π3, Cnf ) otherwise (3)

Case (1) corresponds to a job running during the whole section; hence, a gain of pjT (the
job is executed on pj processors for a duration T ). We then add the gain that can be achieved
by jobs J1, . . . , Jj−1, with a recursive call to the gain function. Note that the values of Π2 and
Π3 decrease by pj , since the job uses pj processors during phase 2 and is not checkpointed in
phase 3. However, since the job was not checkpointed during phase 0, the value of Π1 remains
unchanged.

Case (2) is similar, except that the job is checkpointed at the end. Hence, the value of Π3

remains unchanged in the recursive call, and the gain is slightly lower because the job only works
during a total duration of T − Cj .
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14 J. Cendrier & A.Benoit & F. Vivien

Finally, in case (3), the job is only executed in phase 1 for a duration Cnf − Cj , before
becoming idle. This is possible only if there is enough time to perform the checkpoint, i.e., if
Cj ≤ Cnf .

We now explicit the expression for GCkpt
j , which considers the six cases when Jj has been

checkpointed during phase 0:
G

Ckpt
j (Π1,Π2,Π3, Cnf ) =

max



pjT + Gj−1(Π1 − pj ,Π2 − pj ,Π3 − pj , Cnf ) (4)
pj(T − Cj) + Gj−1(Π1 − pj ,Π2 − pj ,Π3, Cnf ) (5){

−∞ if Cj > Cnf

pj(Cnf − Cj) + Gj−1(Π1 − pj ,Π2,Π3, Cnf ) otherwise (6)

pj(T − Cnf − Rj) + Gj−1(Π1,Π2 − pj ,Π3 − pj , Cnf ) (7)
pj(T − Cnf − Rj − Cj) + Gj−1(Π1,Π2 − pj ,Π3, Cnf ) (8)
0 + Gj−1(Π1,Π2,Π3, Cnf ) (9)

Cases (4), (5) and (6) are similar to cases (1), (2) and (3) respectively, except that the job was
checkpointed during phase 0 and, because it is running during phase 1, it uses pj processors
during that phase. Therefore, Π1 must be decreased by pj . For cases (7) and (8), the job is idle
during phase 1; hence, we do not gain any goodput for a duration of Cnf . Then, a recovery must
be paid to restart the job in phase 2, and during phase 3, the job can be checkpointed or not.
Finally, there is no gain in case (9) since the job is idle throughout section i.

Next, we consider the last six cases, which correspond to Jj being idle during phase 0. The
expression for GIdle

j is:

G
Idle
j (Π1,Π2,Π3, Cnf ) =

max



pj(T − Rj) + Gj−1(Π1 − pj ,Π2 − pj ,Π3 − pj , Cnf ) (10)
pj(T − Rj − Cj) + Gj−1(Π1 − pj ,Π2 − pj ,Π3, Cnf ) (11){
−∞ if Cj + Rj > Cnf

pj(Cnf − Cj − Rj) + Gj−1(Π1 − pj ,Π2,Π3, Cnf ) otherwise (12)

pj(T − Cnf − Rj) + Gj−1(Π1,Π2 − pj ,Π3 − pj , Cnf ) (13)
pj(T − Cnf − Rj − Cj) + Gj−1(Π1,Π2 − pj ,Π3, Cnf ) (14)
0 + Gj−1(Π1,Π2,Π3, Cnf ) (15)

Here, cases (10), (11) and (12) are similar to cases (4), (5) and (6), except that a recovery must
be paid (and, hence, in case (12), we must have time to perform a recovery and then a checkpoint
during phase 1). Cases (13), (14) and (15) are similar to cases (7), (8) and (9).

The dynamic programming algorithm is initialized as follows:

• Gj(Π1,Π2,Π3, Cnf ) = −∞ if Π1 < 0, if Π2 < 0, or if Π3 < 0; this corresponds to cases
where we do not have enough processors in one of the phases;

• G0(Π1,Π2,Π3, Cnf ) = 0 if Π1 ≥ 0, Π2 ≥ 0, and Π3 ≥ 0; this corresponds to cases where
we have correctly scheduled all jobs without running out of processors; hence, a gain of 0
(with 0 jobs to be scheduled).

Finally, in order to maximize the goodput within the section, we try all possible values of Cnf ,
knowing that Cnf must be equal to the checkpointing time of a job running but not checkpointed
during phase 0.

max
Cnf ∈{Ck|Jk∈Run(0)}

{
Gm(Pi −

∑
Jj∈Run(0)

pj , Pi,max(Pi − δ, Pmin), Cnf )

}

The time complexity of this dynamic programming algorithm is in O(m2P 3
max). Indeed, there

are m jobs, up to m different values of Cnf , and we need to explore all values for the number
of processors Π1, Π2, Π3, which can each be as large as Pi and, hence, are bounded by Pmax.
The spatial complexity is in O(mP 3

max), as it is not necessary to maintain the whole gain table
when changing the value of Cnf . This dynamic programming algorithm explores all possible
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cases; hence, it has a large complexity. We denote it as DPGoodputSlow-Best-Cnf . In the
next section, we prove its optimality when checkpoint times are all equal, and introduce a faster
version for that particular case.

It may happen that there exist several different optimal solutions. For such a situation, we
have added two rules to attempt to choose a more favorable situation for the following sections.
When the same number of processors is used, it seems to us that the more jobs are running (and
therefore the smaller the jobs), the less expensive (in Goodput) it is to reorganize the processor
usage for the following section (smaller jobs means more flexibility on average). We therefore
chose, among the optimal solutions, the one with the highest number of active jobs during phase
2 and, if there are still equalities, the one with the highest number of checkpointed jobs at the
end of phase 3.

4.2.2 Goodput optimization with identical checkpoint times

In this section, we assume that all jobs have the same checkpointing time (Cj = C for 1 ≤ j ≤ m).
In this case, we can prove that the shape of an optimal solution actually follows the shape of
solutions returned by the DP algorithm: checkpoints are either taken at time Ti, hence in phase 1,
or at time Ti+1 − C, hence in phase 3.

Theorem 1. For any i, with 1 ≤ i ≤ n, let Oi be a schedule maximizing the goodput Goodput i

during section i, [Ti, Ti+1]. If all checkpoints last the same duration C, then under schedule Oi,
checkpoints only start at time Ti (to complete at time Ti + C) or at time Ti+1 − C (to complete
at time Ti+1).

Due to lack of space, the proof is only available in the Appendix (Section B). The core idea
is that any solution not following this form can be transformed into a better one. An immediate
corollary is the optimality of DPGoodputSlow-Best-Cnf ; indeed, DPGoodputSlow-Best-
Cnf builds a schedule that follows the shape described in Theorem 1, while choosing the best
from all possibilities for job statuses in the different phases.

Corollary 1. If all checkpoints last the same duration C, then DPGoodputSlow-Best-Cnf

builds an optimal schedule for the maximization of the goodput of the current section.

Since checkpointing times are all equal (to C), DPGoodputSlow-Best-Cnf can be simpli-
fied. First, there is no need to consider Cnf , as phase 1 necessarily lasts for a time C, as well as
phase 3. Also, cases (6) and (12) never happen since any checkpoint lasts for the whole duration
of phase 1.

When checkpoints have different durations, there exist scenarios where checkpoints (respec-
tively recoveries) in the first phase should not be done at the end (resp. beginning) of the phase.
For instance, we could allow a job to start slightly before the beginning of phase 2 (see Section C
of the Appendix for an example). Therefore, DPGoodputSlow-Best-Cnf is no longer optimal
when checkpoints have different durations. On the one hand, an optimal algorithm would have
a prohibitive complexity (we would need to consider all possible decisions at all time instants
before Cmax). On the other hand, the minimal solution produced by DPGoodputSlow-Best-
Cnf would have the same shape as the optimal solution for phases 2 and 3, and might only differ
in phase 1. Because phase 1 is never longer than Cmax, if the duration of the section is large
with respect to Cmax, DPGoodputSlow-Best-Cnf should achieve near optimal performance.

4.2.3 Faster dynamic programming algorithm for goodput optimization

We propose in this section a new dynamic programming algorithm with smaller time and space
complexity than DPGoodputSlow-Best-Cnf . A first simplification consists in only computing
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the solution for Cnf = Cmax, assuming that the improvement obtained by using a smaller value of
Cnf is not cost-effective in terms of additional computational time. This simplification reduces the
time complexity by a factor of m and reduces the achieved goodput by at most (Cmax−Cmin)Pmax.
We call this variant DPGoodputSlow.

In the following, we propose to further accelerate this dynamic programming algorithm with
some simplifications. The idea is to separate the choices made for the different phases and split
the algorithm into two disjoint dynamic programming algorithms. The first algorithm, DP1,
only considers phases 1 and 2 (and thus ignores phase 3), using the same job statuses as in
Figure 4. It achieves a gain denoted by G′. The second algorithm, DP2, decides which jobs to
checkpoint during phase 3; its gain function is denoted H.

Since DP1 only considers phases 1 and 2, there remain ten different cases, and we only need
to keep parameters Π1 and Π2. The reasoning is then similar to that for DPGoodputSlow-
Best-Cnf G. All cases are detailed in Section D.2 of the Appendix. The time complexity drops
from O(m2P 3

max) to O(mP 2
max). The space complexity also becomes O(mP 2

max). The gain of
DP1 during phase 2 is at least as large as that of DPGoodputSlow-Best-Cnf for that phase
(any solution of the later algorithm is a solution of the former).

DP2 will be called after the completion of DP1, that is, once decisions have been taken for
jobs in phases 1 and 2. Then, in order to maximize G′, there only remains to decide which jobs
to checkpoint during phase 3. Only jobs active during phase 2 may be checkpointed; hence, only
jobs in the set Ja = Run(2) ∪ Rec(2). Once again, we use parameter Π3 to count the number of
processors used by non checkpointed jobs. There are only two cases to consider: a job is either
checkpointed or it is not. The expression then becomes:

Hj(Π3) =




Hj−1(Π3) if Jj /∈ Ja

max

{
pjCmax +Hj−1(Π3 − pj)
pj(Cmax − Cj) +Hj−1(Π3)

otherwise

Indeed, if job Jj ∈ Ja is not checkpointed, Π3 decreases by pj , and the job works for the whole
duration of phase 3, i.e., pjCmax. Hence, there is an increase of gain of pjCmax. However, if the
job is checkpointed, Π3 remains the same and the gain is only pj(Cmax−Cj), since the job must
be checkpointed. We initialize DP2 with:

• Hj(Π3) = −∞ if Π3 < 0 (not enough processors available); and

• H0(Π3) = 0 if Π3 ≥ 0 (successful decisions taken for all jobs).

Finally, the objective is to maximize the gain Hm(max(Pi − δ, Pmin)). The time and space com-
plexity of DP2 is only O(mPmax). The loss in gain during phase 3 with respect to DPGood-
putSlow-Best-Cnf is at most CmaxPmax (the maximum gain of DPGoodputSlow-Best-Cnf

during that phase).
By running successively DP1 and then DP2, we obtain the DPGoodput and DPGoodput-

Best-Cnf algorithms depending on whether we only compute the solution for Cnf = Cmax or
not. These algorithms have a time and space complexity O(mP 2

max) and O(m2P 2
max) respectively.

The difference of the gain achieved by the two algorithms is at most (2Cmax − Cmin)Pmax.

4.2.4 Dynamic programming for Yield optimization

We now design a dynamic programming algorithm whose goal is to maximize the minimum yield
minYield i achieved at the end of the current section, section i. Although our main goal is to
maximize the minimum yield at the end of the execution (minYield , cf. Eq. (2)), because we
have no global knowledge of events, we design an algorithm that works section by section.
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To ensure that each job makes some progress during the current section, rather than having
some jobs remaining idle for the whole section, it might be worth to checkpoint jobs in the
“middle” of the section. However, this would induce many checkpoints and recoveries during
each section and, hence, loosing useful working time. Since the ultimate goal is to maximize
minYield at the end of the execution, we decide to restrict to solutions where checkpoints are
taken only at the beginning and at the end of sections (similarly to the dynamic programming
algorithms for goodput maximization), but where jobs with a small yield are executed with a
higher priority.

We follow an approach very similar to that of DPGoodput, and design two dynamic pro-
gramming algorithms, one for phases 1 and 2, and the one for phase 3. The resulting algorithm,
DPYield, is very similar to DPGoodput and can be found in Section D.3 of the Appendix.
Its time and space complexity are in O(mP 2

max).

4.3 Bi-criteria dynamic programming algorithms

We have designed three bi-criteria algorithms, building on the mono-criterion dynamic program-
ming algorithms. The first two algorithms enforce a target on one objective while optimizing the
other criteria. Finally, we modify DPGoodput-Best-Cnf to combine the yield and goodput
within a single gain function, hence, obtaining algorithm DPBiC–Best-Cnf .

4.3.1 TargetYield

This algorithm checks, at each section, whether the target bound on the minYield is achieved
by all jobs. At the end of the first section, for instance, the bound is probably not achieved since
some jobs had no opportunity to be executed yet. Then, when reaching section i, either the
yield of all jobs is above the target value minYield at time Ti and we run DPGoodput during
section i to improve the goodput as much as possible, or we run DPYield.

4.3.2 TargetGoodput

For the second algorithm, we rather consider a target bound on the goodput, and our goal is to
maximize the minimum yield while keeping the goodput above the bound. We then design a new
dynamic programming algorithm. This algorithm is similar to DPYield, but it introduces a
new variable, una (standing for UNused Area), which accounts for the amount of potential work
that is unused because of checkpoints, recoveries, or idle processors. Given the target goodput
and the execution so far, one can derive a threshold value for una: as long as una is below this
threshold, we are assured that the target bound on the goodput will be reached. The details of
this algorithm are available in Section D.4 of the Appendix. The time and space complexity of
this algorithm is O(mP 3

maxT ) (the increase of complexity is due to the una parameter).

4.3.3 Bi-criteria dynamic programming

In this algorithm, the goal is to maximize the two objective functions at the same time. To
do this, we slightly modify DPGoodput-Best-Cnf . We want to take into account the current
yield of each job in the gain function, so that a job with a high yield will see its gain reduced
relatively to a job with a low yield, which will see its gain increased. To do this, we use the
formula 2 − Yield j(Ti) , which takes values in the interval [1, 2]. Then, to increase or decrease
the weight of the yield in the gain function, we add a multiplicative parameter Y .
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DP1: G′. Each equation for the gain function G′ of DPGoodput-Best-Cnf of the shape:

G
′X
j (Π1,Π2, Cnf ) = pjEwtj(X , α, β, Cnf )

+G′
j−1(Π1 − αpj ,Π2 − βpj , Cnf )

is replaced by the equation:

G
′X
j (Π1,Π2, Cnf ) = pjEwtj(X , α, β, Cnf )(2−Yield j(Ti))

Y

+G′
j−1(Π1 − αpj ,Π2 − βpj , Cnf ),

where X ∈ {Run, Ckpt, Idle}, α, β ∈ {0, 1} and Ewtj is the potential Effective Working Time of
the job Jj in the condition determined by X , α, β and Cnf for this section.

Hence, we are multiplying the goodput contribution of the job in each scenario, denoted here
by Ewtj , by the value (2−Yield j(Ti))

Y , which is directly impacted by the yield of the job.
Finally, we are computing the first part of DPBiC–Best-Cnf , with the same initialization and
parameters as DPGoodput-Best-Cnf .

DP2: H. For this part, we make the same modification, with the following factor: (2 −
Yield j(Ti+1−Cmax))

Y , since the algorithm works on phase 3 and accounts for the yield achieved
at the end of phase 2, at time Ti+1 − Cmax.

Since the whole algorithm is similar to DPGoodput-Best-Cnf , we obtain the same time and
space complexity as the DPGoodput-Best-Cnf algorithm, i.e., the time and space complexity
are in O(m2P 2

max). We also introduce a variant DPBiC of DPBiC–Best-Cnf , that we make
explicit in the Appendix in Section D.5.

5 Adaptation to finite duration jobs

In this section, we adapt the algorithms to work in the more realistic framework of jobs with
finite durations. The model described in Section 2 must be slightly refined. Each job Jj now
has a release date rj , which is the time at which the job is submitted to the system and, hence,
is the earliest time at which the job can start to be executed. Jj now also has an execution
length Lj , which is the time it takes to complete its execution when it is always allocated pj
processors. Finally, we denote by ej the completion time of Jj , corresponding to the time at
which its effective working time becomes equal to its length: lj(ej) = Lj . Recall that we have
assumed that a job pays a recovery the very first time it is executed (to simulate the job startup
cost). We similarly assume that a job has to take a final checkpoint right after its completion
(to simulate sending back its results). We say that job Jj is alive between its release date and
its completion time; only alive jobs can be allocated processors.

In Section 5.1, we explain how to derive a new upper bound on the maximum minimum yield
in the presence of release dates. In Section 5.2, we present an adaptation of the algorithms for
jobs of finite durations.

5.1 New upper bound on the maximum minimum yield

As defined in Section 3.3, the yield of a job Jj corresponds to the time the job has been running
in the system, divided by the time it would have run if it were alone in the system. Therefore,
we need to rewrite Equation (2) in order to take into account the release date rj of Jj , and its
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completion time ej if it has already been reached. If Jj was not completed by the considered
time t, then ej = +∞. Thus, the yield of job Jj at time t is now:

Yield j(t) =
lj(t)

∫min{t,ej}
rj

1P (u)≥pj
du

.

The set of alive jobs changes over time because new jobs arrive and some jobs complete.
This forbids us to reuse the technique of Section 3.3 to derive a lower bound on the minYield .
We proceed indirectly with a linear program (in rational), which checks whether a given target
yield Y can be achieved by all jobs, and with a binary search to identify the maximum achievable
such target yield.

Let Y be a given target yield. If the completion time of job Jj is such that ej ≤ rj +
Lj

Y ,
then the yield of Jj is at least equal to Y . Therefore, we define for each Jj a deadline dj =

min
{
rj +

Lj

Y , Tn+1

}
. If dj = Tn+1, the job reaches the end of execution and we decrease its

length to Lj = (Tn+1−rj)Y to account for the fact that the work will stop at time Tn+1. Hence,
if each job can be completed by its own deadline, the minimum yield is at least equal to Y .
We now write a linear program (in rational) to check whether each job can be completed by its
deadline. Using the set of job release dates and deadlines, we subdivide the sections in a set of
subsections S such that release dates and deadlines only happen at subsection boundaries. For
any subsection ϕ ∈ S, we denote by S(ϕ) the section that includes ϕ (ϕ ⊂ [TS(ϕ), TS(ϕ)+1]), by
L(ϕ) its duration, by M(ϕ) its middle point, and by xj,ϕ the working time of job Jj during ϕ. The
middle point is used to characterize when a job cannot be executed during a whole subsection ϕ,
in which case the work must be set to xj,ϕ = 0: (rj ≥M(ϕ)) or (dj ≤M(ϕ))⇒ xj,ϕ = 0.

The following linear program, together with the above constraint, enables us to check whether
the target yield Y is achievable:





∀ϕ ∈ S,
m∑

j=1

pjxj,ϕ ≤ L(ϕ)PS(ϕ) (4)

∀1 ≤ j ≤ m,
∑

ϕ∈S

xj,ϕ = Lj (5)

∀1 ≤ j ≤ m,∀ϕ ∈ S, 0 ≤ xj,ϕ ≤ L(ϕ) (6)

Equation (4) states that the total work done by the jobs in a subsection cannot exceed the work
capacity of the subsection. Equation (5) states that each job must be completed. Equation (6)
states that the working time of a job during a subsection cannot exceed the duration of that
subsection.

Then, either this linear program admits a solution and the yield Y is achievable, or no solution
exists and the yield Y is not achievable.

The bound obtained this way will not be achievable in practice for several reasons. First, the
linear program approach considers neither checkpoints nor recoveries. Furthermore, in practice, a
new job may be released in the middle of a section, and to guarantee the minimum yield in such a
case, we would have to checkpoint active jobs to be able to start right away the new released jobs.
When adapting previous algorithms for finite duration jobs, we are still not allowing checkpoints
in the middle of a section, in order to avoid paying excessive checkpointing and recovery costs.

5.2 Processor reallocation at completion time
When a job Jj completes its execution during a section, the processors it was using become
unallocated. To avoid wasting computational capabilities, we reallocate them immediately. If the
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algorithm considered is a greedy algorithm, we greedily reallocate these processors (potentially
along with some other idle processors) to idle jobs. If the algorithm considered is a dynamic
programming algorithm, we do not run the dynamic programming algorithm, which could lead
to additional checkpoints and recoveries and, hence, negatively impact the goodput. Instead,
we allocate the idle processors using an exact subset-sum algorithm [9], which has a pseudo-
polynomial cost, to maximize the number of processors reallocated. Finally, if Jj was supposed
to be checkpointed at the end of the section, the jobs that are now running on its original
processors are checkpointed at the end of the section.

6 Simulations

We begin this section with a few remarks on the metrics used, and we present the workloads and
the simulation parameters in Section 6.1. Then, in Section 6.2, we present simulation results for
the case with infinite jobs, before moving to the case of finite duration jobs in Section 6.3. For
reproducibility purpose, all the equations, the codes and the data used in the simulations are
available in the Appendix and at https://doi.org/10.5281/zenodo.14917803.

6.1 Methodology

For the simulations, algorithms are run on a large number of sections. We report on the goodput
and the yield achieved at the end of the last section. We have established in Section 3 an upper
bound for each of the two objective functions, and introduced Relative Goodput (resp. Relative-
Yield), which is the ratio of the achieved absolute Goodput (resp. Yield) divided by the upper
bound of Section 3. The Relative Goodput (resp. RelativeYield) is always a value between 0
and 1, the higher the better. This relative value is an indicator of the absolute quality of the
performance: a Relative Goodput (resp. RelativeYield) of 0.8 means that the studied algorithm
achieves at least 80% of the performance of an optimal solution. Thanks to the use of relative
performance indicators, the evaluation depends less on the difficulty of the different instances,
and hence we can better highlight the differences between the algorithms.

6.1.1 Workloads

We generate workloads from traces taken from the Parallel Workloads Archive [12]. We have
chosen three workloads with significantly different distributions of the number of processors used
by jobs. The first workload (KIT ) comes from a year and a half recording from the ForHLR II
system located at the Karlsruhe Institute of Technology in Germany [13]. The second workload
(Thunder) comes from several months of recordings from a large Linux cluster called Thunder
installed at Lawrence Livermore National Laboratory [14]. The third workload (UniLu) comes
from three months of data from the Gaia cluster at the University of Luxembourg [15]. In the
first set of simulations, we consider jobs of infinite duration and the only data we are interested
in is the number of processors required by each job, whose distribution is presented on Figure 5.
The distribution of job execution times (with respect to the required number of processors) is
presented in the Appendix (Figure 24).

6.1.2 Parameters

In the simulations, we have independently varied almost all parameters. We list below either the
values they can take or their default values (their variations will then be made explicit in each
particular study):
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Figure 5: Number of processors required by each job.

• the number of sections is n = 400;

• the average duration of a section is set by default to avgT = 100; then, the duration of
each section is drawn uniformly between 0.8avgT and 1.2avgT ; furthermore, the cost of
checkpoints Cj are drawn uniformly in [5, 20], and the cost of the recovery Rj is equal
to Cj ; hence, varying avgT amounts at varying the relative cost of checkpoints (and of
recoveries) with respect to the duration of sections;

• the maximum number of processors is, by default, Pmax = 400;

• the minimum number of processors is Pmin = 0.2Pmax (to keep Yield calculations simple,
we do not allow jobs to use more than Pmin processors);

• the bound on the maximum variation in the number of processors between two consecutive
sections is δ = 0.1Pmax;

• the Load of the system, that is the ratio of the total required number of processors (
∑m

j=1 pj)
to Pmax, is set to Load = 2Pmax.

Finally, as some of the algorithms (or versions of them) may be too computationally and mem-
ory intensive, we only run them on smaller instances (called light simulation), setting Pmax = 100,
while the other parameters keep their default values.

6.2 Results
For each combination of parameters, we randomly generate ten instances and we report the
geometric mean of the achieved performance. The choice of the workload does not have a
significant impact on the performance of the different algorithms. Therefore, we report the
average performance over the three workloads. The performance detailed by workloads can be
found in Section E of the Appendix.

6.2.1 DPGoodput versus DPGoodputSlow

In this section, we compare the different dynamic programming algorithms defined in Section 4,
that is, the original version DPGoodputSlow-Best-Cnf , and its variants that have a phase 1
of fixed length Cmax (variants without the -Best-Cnf suffix), or that optimize separately phases
1 and 2, and phase 3 (variants without the Slow suffix). We compare their performance using
the light simulation parameters, since the slow DP algorithms have a high complexity.

Figure 6 presents the Relative Goodput achieved by the four algorithms for each of the three
traces. First, all algorithms achieve very similar performance and the quicker variant, DPGood-
put, can be safely used. In each case, the variant with -Best-Cnf achieves slightly better goodput
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Figure 6: Goodput achieved by the variants of DPGoodput.

than its counterpart. For the KIT trace, DPGoodput achieves slightly better performance than
DPGoodputSlow, which illustrates the fact that, although DPGoodputSlow delivers a so-
lution very close to the optimal one section by section, this does not guarantee that it achieves an
overall optimal. For the UniLu trace, the situation is reversed and DPGoodputSlow achieves
better performance. With the Thunder trace, the goodputs are undistinguishable.

Similarly, further simulations show that the goodputs achieved by DPBiC–Best-Cnf and
DPBiC are very close (see Section E.1 of the Appendix), and hence we only consider DPBiC in
what follows.

6.2.2 Pareto comparison of all algorithms

We now compare on Figure 7a all the algorithms with the light simulation parameters. We
use a smaller setting in order to be able to run the most expensive algorithms, including
TargetGoodput. We run TargetYield(Y) with Y ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65,
0.7, 0.75, 0.8, 0.85, 0.9}, TargetGoodput(G) with G ∈ {0.6, 0.65, 0.7, 0.75, 0.8, 0.84, 0.88, 0.92,
0.96, 1}, and DPBiC(X ) with X ∈ {0, 1, 2, 3, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 45}, as well
as the four single-criteria algorithms, GreedyGoodput, GreedyYield, DPGoodput and
DPYield. We also compare these algorithms, except TargetGoodput and TargetYield,
under the default simulation settings on Figure 7b. We highlight in both figures the point corre-
sponding to DPBiC(15), which is a middle value of the heuristic parameter offering an interesting
trade-off.

In these figures, the highest Relative Goodput is achieved by DPGoodput, whose perfor-
mance is (slightly) better than that of GreedyGoodput. For the RelativeYield , GreedyYield
achieves a slightly better performance than DPYield.

Then, the TargetYield and TargetGoodput algorithms, with all their possible parame-
ters, propose some trade-offs between the two objectives. TargetYield performs similarly to the
Yield -oriented algorithms when its Yield target is large. Its Relative Goodput quickly improves
when this constraint is relaxed, allowing it to compete with DPGoodput. TargetGoodput,
if very lightly constrained, matches the performance of Yield -oriented algorithms, as it then
aims to maximize the minYield . When it is constrained to have a slightly higher Goodput , its
RelativeYield improves and even dominates that of TargetYield. This is because, to achieve
a higher Goodput , it makes less drastic changes to the set of active jobs which, in the long run,
pays off because less time is wasted in checkpoints and recoveries.

This tendency reaches its peak with the DPBiC algorithm. This algorithm succeeds in
achieving a very high RelativeYield for a very small degradation of the Relative Goodput . DPBiC
almost succeeds in avoiding the Goodput versus minYield trade-off as it defines alone the Pareto
front. In the figures, we highlight the performance of DPBiC(15), which offers an excellent trade-
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Figure 7: Pareto comparison of the performance of the different algorithms.

off, achieving close to best relative min yield and goodput. In the remainder of the evaluations,
we will always consider DPBiC with this parameter value of 15.

6.2.3 Parameter variations

To check the stability of algorithm performance, we vary the five parameters we thought would
be the most impactful: avgT , Pmax, Pmin, δ, and Load .

Figure 8 reports algorithm performance when parameter avgT varies, Figure 9 when Pmax

varies, Figure 10 when Pmin varies, Figure 11 when δ varies, and Figure 12 when Load varies. We
now discuss these results, starting with general comments on Relative Goodput and Relative -
minYield .

Relative Goodput In all configurations, GreedyGoodput, DPGoodput, and DPBiC(15)
achieve extremely close and near optimal Relative Goodput . DPGoodput achieves the best
performance in each case.

GreedyYield and DPYield achieve worse performance (with GreedyYield being slightly
better). This is easily explained. Because these heuristics target the optimization of the mini-
mum yield, they guarantee that each job has access to processors. Roughly speaking, they all
implement a kind of weighted round-robin. Hence, they perform more checkpoints and recoveries
than the heuristics designed for goodput optimization, which leads to worse goodputs. DPYield
achieves even more checkpoints and recoveries because it can recover a job and checkpoint it both
during phase 1, something GreedyYield would never do. These heuristics nevertheless always
achieve at least 68% of the optimal relative goodput.

As a conclusion, all heuristics achieve very good Relative Goodput and the three best ones
have near-optimal performance. This is not very surprising. Indeed, any reasonable heuristic, in
the worst case, would spend the first Cmax units of time of a section checkpointing all jobs, then
the next Rmax units of times recovering jobs before using as many processors as possible until
the end of the section where it will once again spend Cmax units of time checkpointing all jobs.
Therefore, the goodput of any reasonable heuristic (using all processors) on section i is therefore
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Figure 8: Impact of the average section length.

not smaller than Ti+1−Ti−2Cmax−Rmax

Ti+1−Ti
. Hence, if checkpointing and recovery costs are rather

small with respect to section durations, the achieved Goodput will necessarily be high. Because
the Relative Goodput takes mandatory checkpoints and recoveries into account, the achieved
Relative Goodput should look even better.

Relative minYield Behaviors are more diverse for Relative minYield . GreedyGoodput and
DPGoodput achieve a Relative minYield of 0, on all instances. This means that at least one
job is victim of starvation, that is, is never executed, as already discussed in Section 3.

DPBiC(15) always achieves the best performance. Its Relative minYield is in most cases
above 0.8, meaning that it achieves a minimum yield that is at most 20% away from an upper
bound on the optimal, and thus at most 20% away from the optimal. This performance is due
to the high Goodput maintained by this algorithm, and thus to the greater amount of work
performed, which, when evenly distributed, leads to a higher minYield . GreedyYield and
DPYield achieve significantly worse but similar performance, with a Relative minYield usually
around 0.75.

The overall conclusion is that some heuristics achieve high-quality Relative minYield , but that
a heuristic that only targets Goodput optimization can achieve an abysmal Relative minYield .
On the contrary, all heuristics that target minYield optimization achieve good Relative Goodput .

Influence of avgT (Figure 8) When the average section duration increases, the Relative -
Goodput of all algorithms increases but this is more significant for the two worse algorithms,
GreedyYield and DPYield, whose performance becomes comparable to that of the best three
heuristics. This is because the total cost of checkpoints and recoveries in a section is bounded
and becomes negligible when the duration of the section increases. When the section duration is
small, decisions have a greater impact and differences between heuristics performance are more
pronounced.

For the same reason, the RelativeYield of GreedyYield and DPYield also increases with
the average section duration. This phenomenon also applies to DPBiC(15), although to a lesser
extent, as the number of checkpoints and recoveries performed by this algorithm is already
limited.

Influence of Pmax (Figure 9) Pmin, δ and Load are always defined as fixed-ration fractions
of Pmax. When Pmax increases, there is a slight increase in Relative Goodput and RelativeYield .
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Figure 9: Impact of the maximum number of processors.
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Figure 10: Impact of the minimum number of processors.

This is because when Pmax increases, the number of jobs in the system increases and, therefore,
the possibility to find a better solution.

Influence of Pmin (Figure 10) All algorithms have very stable performance, except for DP-
BiC(15), which suffers from a slight decrease of its Yield when Pmin is very small. This seems to
be a consequence of the experimental constraint to only have jobs using at most Pmin processors.
Therefore, for a same value of Pmax, there are more jobs when Pmin = 10 than when Pmin = 300,
and therefore more flexibility in obtaining a good minYield . This effect is not noticeable on
GreedyYield and DPYield.

Influence of δ (Figure 11) The computations of the upper bounds of the objective functions
take into account the fact that at each section start, the number of available processors varies
by an amount ∆ ≤ δ: they account for a loss of working time equal to δCmin (or slightly less
if the actual number of processors is close to Pmin), plus ∆Rmin when the number of processors
increases (∆ > 0). Yield -oriented algorithms tend to change the majority of their active jobs
at each start of section. When δ increases, a higher fraction of the cost of this change of active
jobs is “covered” by the computation of the upper bounds. This explains that the performance
of Yield -oriented algorithms improve for both objectives when δ increases.
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On the contrary, the way upper bounds are computed leads to a decrease in the Relative -
Goodput for Goodput-oriented algorithms and DPBiC. Indeed, upper-bound assumes (conserva-
tively) that each checkpoint (resp. recovery) lasts for the minimum duration Cmin (Rmin). When
δ increases, more jobs are checkpointed (resp. recovered) and the maximum checkpointing (resp.
recovery) cost of checkpointed (resp. recovered) jobs increases. Hence, there is an increased
gap between the bound and the actual performance of these algorithms. This is also true for
DPBiC(15) after the first phase where it benefits from a larger value of δ for the same reason
than the Yield -oriented algorithms.

As in the previous cases, an increase in Relative Goodput implies an increase in Relative -
minYield for the algorithms aiming to improve it.

Influence of Load (Figure 12) The Load is computed in relation to Pmax. Hence, when
Load = 1, this means that if the number of processors available is Pmax, then all jobs can be
active at the same time. When Load increases, Yield -oriented heuristics have more jobs to circle
through. Therefore, they pay more checkpoints and recoveries and both their Relative Goodput
and RelativeYield decrease. The Goodput-oriented heuristics achieve near-optimal Goodput : this
is already the case when Load = 1, and a larger Load means a larger number of jobs to choose
from and, thus, a higher probability to be able to use all processors.

Inria



Scheduling Jobs Under a Variable Number of Processors 27

DPBiC(15) maintains its goodput when Load increases. In this case, the number of jobs in
the system also increases. However, DPBiC(15) does not aim to systematically execute the jobs
with the lowest yields, but it rather gives the priority to jobs with a low yield. When there are
more jobs, there might be more jobs with a low yield, in which case DPBiC(15) may be less
likely to launch at each section the job with the lowest yield, hence a decrease in RelativeYield .

6.3 Finite duration jobs

We now want to assess whether the conclusions drawn with infinite jobs still hold in the more
realistic setting of jobs with a finite duration. The algorithms are adapted to this finite jobs
context as described in Section 5. The workloads are generated from the same traces than
previously, with the additional information of the job durations (which is included in the traces).
When generating the checkpoint and recovery costs of a job, we upper bound these values to
be at most one-tenth of the job execution time if they exceed 5 time units, and we set them
at this lower-bound of 5 time units otherwise. Mathematically speaking, if x is the randomly
generated checkpoint cost, we have Cj = max{5,min{x, Lj/10}}, hence having a checkpointing
cost of at least 5, and such that the cost is not too high for small jobs. Finally, we need to define
release dates for the jobs in order for the system load to reach the target Load . We consider
three variants, called Accumulation, FIFO and Smallest, whose characteristics are compared in
Section E.5 of the Appendix. We select the FIFO method for the rest of this section, as it gives
us the most stable load for all algorithms, ensuring that the load is achieved with jobs scheduled
in a FIFO-like order (see the Appendix for details).

6.3.1 Comparison between finite and infinite settings

On Figure 13a, we compare the algorithms while varying the average length of a section. For both
the Goodput and the Relative Goodput , there is no visible difference between the performance
achieved for the finite case and the infinite one. This is true for the average length of a section
(Figure 13a), but also for all other parameters (all figures for the other parameters can be found
in Section E.6 of the Appendix). In particular, jobs that finish in the middle of a section are
correctly replaced without noticeable impact on the performance.

On the contrary, the achieved minYield and Relative minYield are very different, and close
to 0 with finite jobs. This is due to the fact that a job released during a section will not be
allocated processors before the start of the next section (except if some jobs complete before the
end of the section while releasing enough processors). Hence, the Yield of that job – and the
minYield of the instance – will be zero at the end of the section. If this section is the last of
the whole simulation, the overall minYield will be null. Furthermore, if the released job is short,
the time it spends waiting for the beginning of the next section and the availability of processors
will significantly impact its yield, whatever its future allocation of processors. Hence, with finite
jobs, to be able to compare the performance of the different algorithms, we cannot just rely on
the minYield , and we rather consider the (cumulative) distribution of the yields, as presented
on Figure 13b.

We should be careful when comparing the cumulative distribution of the yields in the finite
and infinite case because, in the infinite case, the algorithms deal with the exact same set of jobs
throughout the simulation, which is obviously not the case with finite jobs. The increase of the
average section length mainly impacts the performance with finite jobs. There, the longer the
sections, the closer the performance of (similar) heuristics. This is, once again, because decisions
taken at the beginning and/or at the end of a section have less impact when the size of that
section is larger.
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(b) Cumulative distribution function for the Yield for the different average section lengths.

Figure 13: Comparison of the performance achieved when jobs are infinite (on the left) or finite
(on the right).
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Figure 14: Cumulative distribution function for the Yield and value of the Goodput achieved by
the different algorithms when jobs are infinite (on the left) or finite (on the right).

6.3.2 Yield evolution

Figures 14 and 15 present the cumulative distribution functions (CDF) for the yield of the
different algorithms, as well as their Goodput (the points on the right of each subgraph) under
the default simulation parameters. Because we want the smallest yields to be as large as possible,
the higher and the leftmost the CDF, the better. The leftmost point of a CDF is the minYield
of the considered algorithm.

Figure 14 shows that, for the infinite jobs case, more than 25% of the jobs are never exe-
cuted with DPGoodput, and this value increases to over 60% for GreedyGoodput. On the
contrary, for the three other algorithms, 95% of the jobs have roughly similar yields (comprised
between 0.15 and 0.30 for DPYield and GreedyYield, and between 0.20 and 0.35 for DPBiC).
Hence, the algorithms targeting the optimization of the minYield happen to be fair by achieving
comparable performance for most of the jobs. The conclusions for finite jobs are rather similar.
The main difference is that DPGoodput is far less unfair.

Finally, Figure 15 shows the influence of the X parameter of DPBiC(X ). DPBiC(0) is
exactly DPGoodput. The larger the value of X , the more fair the algorithm in both the
infinite- and finite-jobs cases, and the lower the Goodput . In the infinite case, we only wanted to
maximize the minYield , which led us to choose X = 15. In the finite case, the minYield can no
longer be guaranteed. If we only want to maximize the Yield of 90% of the jobs, we can achieve
that by setting X = 2. With DPBiC(2) we have the guarantee that all jobs will eventually be
executed but we are not over-optimizing the minYield at the detriment of the Goodput .

Overall, the behaviors of the different algorithms under the finite-jobs settings are quite
similar to their behaviors under the infinite-jobs one. This validates our approach. The main
difference is that the minYield metric is not pertinent in the case of finite jobs and one should
rather consider the distribution of the yields.
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Figure 15: Comparison of CDF of Yield of various DPBiC.

7 Conclusion

In this paper, we have addressed the problem of scheduling parallel rigid jobs onto a set of
processors subject to variations in their number, with the objective of optimizing both the
goodput and the minimum yield. The goal is to maximize platform utilization while keeping
some fairness between jobs. Jobs are allowed to take checkpoints before a change in the number
of processors; hence, we never loose work that was previously done.

We have formalized the problem, provided upper bounds to the objective functions, and
designed sophisticated dynamic programming algorithms, as well as greedy solutions, aiming at
optimizing both of the objectives in a setting with jobs of infinite duration. The simulation results
with a wide range of parameters, including both infinite and finite duration jobs, demonstrate
that the bi-criteria dynamic programming algorithm DPBiC achieves impressive results both in
terms of yield and goodput, in a great variety of scenarios. In particular, DPBiC(15) achieves a
great trade-off between the two objective functions.

This work provides a first step towards designing solutions with guaranteed performance,
by thoroughly analyzing the case of infinite jobs. The proposed algorithms have been shown
to be adaptable in models with release dates, and they could be further extended to jobs with
deadlines or priorities, building on the yield and release dates. Now that the performance of
the strategies has been demonstrated, another interesting research direction would be to relax
some of the hypotheses, for instance by considering moldable jobs, and accounting for non-exact
predictions, i.e., variation in the time of the next event. This initial study opens an avenue of
challenging problems in the context of data centers subject to variable capacity.
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A Pseudo-code for algorithm GreedyGoodput

We detail here the pseudo-code for algorithm GreedyGoodput (Algorithm 1). This algorithm
is designed to schedule jobs J1, . . . , Jm on the n sections that form the problem, with the aim
of maximizing goodput, in a greedy way. At the beginning of each section s, as long as there
are processors available and not in use, it considers the inactive jobs (in non-increasing order of
the number of processors required) and launches the recovery and then the execution of each job
as long as this is possible without exceeding the number of available processors. Then, starting
from line 9, it determines which active jobs will be checkpointed at the end of section s, to keep
at most only max{Ps − δ, Pmin} processors used at the end of the section.

Algorithm 1: GreedyGoodput

1 Rename jobs J1, . . . , Jj , . . . , Jm by non-increasing number of required processors, pj
2 used ← 0 /* Number of processors used */
3 for s = 1 to n do

/* Starting and recovering jobs at time Ts */
4 j ← 1
5 while used < Ps and j ≤ m do
6 if Jj is not active and used + pj ≤ Ps then

/* Job Jj will be recovered (and then executed) at Ts */
7 used ← used + pj

8 j ← j + 1

/* Checkpointing jobs before time Ts+1 */
9 used ← 0 /* Number of processors remaining in use during the next

section */
10 j ← 1
11 while used < max{Ps − δ, Pmin} and j ≤ m do
12 if Jj is active then
13 if used + pj ≤ max{Ps − δ, Pmin} then

/* Job Jj will remain active at the end of the section */
14 used ← used + pj
15 else

/* Job Jj will be checkpointed at time Ts+1 − Cj */

16 j ← j + 1

RR n° 9582



34 J. Cendrier & A.Benoit & F. Vivien

B Proof of Theorem 1
In this section, we prove Theorem 1, which establishes the optimality of algorithm DPGoodput
for the maximization of goodput in a single section when all checkpoints have the same duration.

Theorem 2. Let i be any section, with 1 ≤ i ≤ n, and assume that there exists a schedule for
sections 1 through i− 1 (if i > 1). Then, let Oi be a schedule maximizing the goodput Goodput i

during section i, [Ti, Ti+1]. If all checkpoints last the same duration C, then under schedule Oi,
checkpoints only start at time Ti (to complete at time Ti + C) or at time Ti+1 − C (to complete
at time Ti+1).

Proof. Let J s
O be the set of jobs that are allocated processors at the start of the section, that

is, right after time Ti. Let J e
O be the set of jobs that are allocated processors at the end of the

section, that is, right before time Ti+1. Let us denote by J ckpt
O ⊆ J e

O the set of jobs that are
checkpointed by O at the end of the section. Finally, let q be the maximum number of processors
used during (Ti, Ti+1). We have two cases to consider depending on the relationship between q
and

∑
j ∈J s

O
pj .

Case 1: q =
∑

j∈J s
O
pj . We now build a new schedule S as follows: J s

S = J e
S = J s

O, that
is, S does not checkpoint any job at the start of the section, then it executes throughout
the section the jobs that where initially active under O. And finally, S checkpoints at the
end of the section the jobs that were active under O at the beginning of the section and
that are either checkpointed by O or no longer active at the end of the section: J ckpt

S =

(J s
O \ J e

O)∪
(
J s
O ∩ J

ckpt
O

)
. Then, we check that there are at least as many free processors

under S than under O at time Ti+1:∑

j∈J ckpt
S

pj =
∑

j∈J s
O\J e

O

pj +
∑

j∈J s
O∩J ckpt

O

pj

≥
∑

j∈J e
O\J s

O

pj +
∑

j∈J s
O∩J ckpt

O

pj

≥
∑

j∈J ckpt
O \J s

O

pj +
∑

j∈J s
O∩J ckpt

O

pj =
∑

j∈J ckpt
O

pj

because, by hypothesis q =
∑

j∈J s
O
pj , implies

∑
j∈J s

O
pj ≥

∑
j∈J e

O
pj , which implies that∑

j∈J s
O\J e

O
pj ≥

∑
j∈J e

O\J s
O
pj .

S uses q processors throughout the section, the maximum used by O during the section.
Each job checkpointed by S during the section is only checkpointed once by S and is
checkpointed at least once by O. Finally, S only performs recoveries for jobs belonging to
J s
S = J s

O but not active right before time Ti. O also must perform recoveries for these
jobs. Therefore, the goodput of S during this section is not smaller than that of O and S
is thus optimal. It is then easy to see that if S started a checkpoint earlier than at time
Ti+1 − C, it would be suboptimal.

Case 2: q >
∑

j∈J s
O
pj . Let τ be the first instant under O at which q processors are used and

let Jmax
O be the set of simultaneously active jobs at that time,

∑
j∈Jmax

O
pj = q, and hence

Jmax
O ̸= J s

O. We now build a new schedule S as follows: S starts with jobs in J s
O active,

it checkpoints jobs in J s
O \ Jmax

O and these checkpoints end at time Ti + C; thereafter
S executes until time Ti+1 the set of jobs Jmax

O . Hence, J s
S = J s

O, J e
S = Jmax

O . All
checkpoints and recoveries executed between Ti and Ti+1 in S are executed at least once
in O between Ti and Ti+1 because O switches from the set J s

O to the set Jmax
O . Then,
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Ti + C ≤ τ because Jmax
O ̸= J s

O and so there is at least one job in O that needs to be
checkpointed (because O is optimal, if it does not use q processors from time Ti, this is
because this is impossible as long as some job has not been checkpointed). However, in S,
all the required checkpoints take place from the start, so S uses q processors from Ti + C
to Ti+1, whereas O does so only starting at time τ . Finally, the set of checkpointed jobs
at time Ti+1 is:

J ckpt
S =

(
Jmax
O ∩ J ckpt

O

)
∪ (Jmax

O \ J e
O) .

We need to check that there are at least as many free processors under S than under O at
time Ti+1. Let us consider any processor that is free under O at time Ti+1. If this processor
was unused at time τ under O, it is unused at time Ti+1 under S. If it was used at time τ
under O, either it was used by a job that is checkpointed at the end of the section by O or
it was used by a job no longer active at time Ti+1 by O. In both cases, this job starts to
be checkpointed at time Ti+1 − C by S.

To conclude, note that S is optimal for goodput optimization, because its goodput is not
smaller than that of O: its total idle time is not larger (it is equal to the idle time under
O up to time Ti + C ≤ τ , because O cannot use more than

∑
j∈J s

O
pj processors before

Ti + C, and it is not larger afterwards), and it only performs checkpoints and recoveries
that O performs.

In both cases, schedule S has a Goodput no smaller than the one of O and it only preform
checkpoints, if any, at the start and at the end of the section.
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C Checkpoints in phase 1

In this section, we focus on the case where checkpoints do not all have the same duration. We
know that when all checkpoints last the same duration, DPGoodputSlow-Best-Cnf is optimal.
The question is whether DPGoodputSlow-Best-Cnf is optimal in the general case and, if not,
whether it could have been possible to design an optimal algorithm.

Considering algorithms organized in three phases like DPGoodputSlow-Best-Cnf , we show
on an example that the time at which checkpoints are taken during the first phase influences the
goodput achieved, that there are cases where checkpoints should not all be taken at the earliest,
or all completed at the latest.

To compare different checkpoint configurations, we count the amount of idle time during
phase 1. There are two obvious policies: either all jobs in J s

S \ J e
S start their checkpoints at the

beginning of the section and we launch a job from the set J e
S each time enough processors become

available (see Figure 16a for an example), or jobs in J s
S \ J e

S all complete their checkpoints at
time Ti +Cnf . In the latter case, jobs with shorter checkpoint times continue their execution at
the beginning of the section (see Figure 16b for an example). However, neither of these policies
guarantees an optimal solution. Figure 16c presents another schedule for the same problem,
which achieves a smaller amount of idle time. We conjecture that the problem of when to take
checkpoints is NP-complete in the general case. Hence, for the dynamic programming algorithms,
we have chosen the second policy, which we believe to be the most stable (for minimizing idle
time) and easiest to implement.
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(a) All checkpoints are taken starting at time 0.
The total idle time is: 1×2+2×4+3×1 = 13.
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(b) All checkpoints are completed at the latest
(at time 4). The total idle time is: 3× 4 = 12.
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(c) Checkpoints are taken so as to minimize the
total idle time which is equal to: 1×2+2×4 =
10.

Figure 16: Checkpoints taken at the beginning (top left), at the end (top right), and in the
middle (bottom) of phase 1.
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D Dynamic programming formulas

We present in this section the different formulas used by the dynamic programming algorithms
DPGoodputSlow-Best-Cnf (section D.1), DPGoodput (section D.2), DPYield (section
D.3), TargetGoodput (section D.4) and DPBiC (section D.5). We reuse the notations defined
in the Section 4.2 of the main article.

Each of these dynamic programming algorithms aims at optimizing one objective function
(goodput, yield, etc.). However, there is no reason there exists a unique solution to their op-
timization problem. Therefore, when several solutions achieve the same performance for the
target objective function, we pick a solution which we believe will enable to achieve better per-
formance in practice. Among solutions achieving the same performance, we prefer solutions
handling smaller jobs (on average) because we believe smaller jobs gives us more flexibility when
building sets of jobs having a target total processor usage. Therefore, among solutions achieving
the same performance, we prefer first solutions using a larger number of active jobs at the end
of phase 3, and then solutions having a larger number of checkpointed jobs at the end of phase
3. Therefore, the equation below do not define scalar values but vectors of 2 or 3 elements.
These vectors are ordered lexicographically in order to define our preferred solution achieving
the optimal performance.

D.1 Equations for DPGoodputSlow-Best-Cnf

We write the gain function, Gj(Π1,Π2,Π3, Cnf ) = (w, a, c), which decides how to handle jobs
J1, . . . , Jj during section i. It is expressed as a triplet, the first value Gj(Π1,Π2,Π3, Cnf ).w is
the quantity of useful work, the second value Gj(Π1,Π2,Π3, Cnf ).a is the number of active jobs
at the end of phase 3, and the third value Gj(Π1,Π2,Π3, Cnf ).c is the number of checkpointed
jobs at the end of phase 3.

We denote by ⪯lex the lexicographic order on the triplets, and maxlex is the related maximum
operation.

We introduce three sub-functions (with same parameters), which correspond to the possible
statuses of Jj during phase 0: GRun

j , GCkpt
j , and GIdle

i . The gain function is expressed as:

Gj(Π1,Π2,Π3, Cnf ) =





GRun
j (Π1,Π2,Π3, Cnf ) if Jj ∈ Run(0)

GCkpt
j (Π1,Π2,Π3, Cnf ) if Jj ∈ Ckpt(0)

GIdle
j (Π1,Π2,Π3, Cnf ) if Jj ∈ Idle(0)

Hence, if job Jj was active during phase 0 and not checkpointed, GRun
j decides what is its best

scenario. There are three cases for GRun
j , as described in Section 4.2 of the paper, which leads to

the following formula:

GRun
j (Π1,Π2,Π3, Cnf ) =

maxlex





(pjT, 1, 0) +Gj−1(Π1,Π2 − pj ,Π3 − pj , Cnf ) (1)
(pj(T − Cj), 1, 1) +Gj−1(Π1,Π2 − pj ,Π3, Cnf ) (2){
(−∞, 0, 0) if Cj > Cnf

(pj(Cnf − Cj), 0, 0) +Gj−1(Π1,Π2,Π3, Cnf ) otherwise (3)

Then, we now explicit the expression for GCkpt
j , which comprises the six cases when Jj has been

RR n° 9582



38 J. Cendrier & A.Benoit & F. Vivien

checkpointed during phase 0:

GCkpt
j (Π1,Π2,Π3, Cnf ) =

maxlex





(pjT, 1, 0) +Gj−1(Π1 − pj ,Π2 − pj ,Π3 − pj , Cnf ) (4)
(pj(T − Cj), 1, 1) +Gj−1(Π1 − pj ,Π2 − pj ,Π3, Cnf ) (5){
(−∞, 0, 0) if Cj > Cnf

(pj(Cnf − Cj), 0, 0) +Gj−1(Π1 − pj ,Π2,Π3, Cnf ) otherwise (6)

(pj(T − Cnf −Rj), 1, 0) +Gj−1(Π1,Π2 − pj ,Π3 − pj , Cnf ) (7)
(pj(T − Cnf −Rj − Cj), 1, 1) +Gj−1(Π1,Π2 − pj ,Π3, Cnf ) (8)
(0, 0, 0) +Gj−1(Π1,Π2,Π3, Cnf ) (9)

Next, we consider the last six cases, which correspond to Jj being idle during phase 0. The
expression for GIdle

j is:

GIdle
j (Π1,Π2,Π3, Cnf ) =

maxlex





(pj(T −Rj), 1, 0) +Gj−1(Π1 − pj ,Π2 − pj ,Π3 − pj , Cnf ) (10)
(pj(T −Rj − Cj), 1, 1) +Gj−1(Π1 − pj ,Π2 − pj ,Π3, Cnf ) (11){
(−∞, 0, 0) if Cj +Rj > Cnf

(pj(Cnf − Cj −Rj), 0, 0) +Gj−1(Π1 − pj ,Π2,Π3, Cnf ) otherwise (12)

(pj(T − Cnf −Rj), 1, 0) +Gj−1(Π1,Π2 − pj ,Π3 − pj , Cnf ) (13)
(pj(T − Cnf −Rj − Cj), 1, 1) +Gj−1(Π1,Π2 − pj ,Π3, Cnf ) (14)
(0, 0, 0) +Gj−1(Π1,Π2,Π3, Cnf ) (15)

Finally, the dynamic programming algorithm is initialized as follows:

• Gj(Π1,Π2,Π3, Cnf ) = (−∞, 0, 0) if Π1 < 0, Π2 < 0, or Π3 < 0; this corresponds to cases
where we do not have enough processors in one of the phases;

• G0(Π1,Π2,Π3, Cnf ) = (0, 0, 0) if Π1 ≥ 0, Π2 ≥ 0, and Π3 ≥ 0; this corresponds to cases
where we have 0 jobs to be scheduled; hence, a gain of 0.

Finally, in order to maximize the goodput within the section, we try all possible values of Cnf ,
knowing that Cnf must be equal to the checkpointing time of a job running but not checkpointed
during phase 0.

maxlex
Cnf ∈{Ck|Jk∈Run(0)}


Gm


Pi −

∑

Jj∈Run(0)
pj , Pi,max(Pi − δ, Pmin), Cnf






The time complexity is in O(m2P 3
max) and the spatial complexity is in O(mP 3

max).

D.2 Equations for DPGoodput in two parts

From this section and onwards, all dynamic programming algorithms will be in two parts, as
explained in Section 4.2.3 of the article. Gain function G′ (respectively H) will take as its
value a couple where the first element always corresponds to that of our objective function and
the second element is the number of jobs active during phase 2 (respectively, the number of
checkpointed jobs during phase 3). Again, we apply a lexicographical order to these couples.

Gain function G′.
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G′
j(Π1,Π2) =





G
′Run
j (Π1,Π2) if Jj ∈ Run(0)

G
′Ckpt
j (Π1,Π2) if Jj ∈ Ckpt(0)

G
′Idle
j (Π1,Π2) if Jj ∈ Idle(0)

G
′Run
j (Π1,Π2) =

maxlex




(pj(T − Cmax), 1) +G′

j−1(Π1,Π2 − pj) (1){
(−∞, 0) if Cj > Cmax

(pj(Cmax − Cj), 0) +G′
j−1(Π1,Π2) otherwise (2)

G
′Ckpt
j (Π1,Π2) =

maxlex





(pj(T − Cmax), 1) +G′
j−1(Π1 − pj ,Π2 − pj) (3){

(−∞, 0) if Cj > Cmax

(pj(Cmax − Cj), 0) +G′
j−1(Π1 − pj ,Π2) otherwise (4)

(pj(T − 2Cmax −Rj), 1) +G′
j−1(Π1,Π2 − pj) (5)

(0, 0) +G′
j−1(Π1,Π2) (6)

G
′Idle
j (Π1,Π2) =

maxlex





(pj(T − Cmax −Rj), 1) +G′
j−1(Π1 − pj ,Π2 − pj) (7){

(−∞, 0) if Cj +Rj > Cmax

(pj(Cmax − Cj −Rj), 0) +G′
j−1(Π1 − pj ,Π2) otherwise (8)

(pj(T − 2Cmax −Rj), 1)G
′
j−1(Π1,Π2 − pj) (9)

(0, 0) +G′
j−1(Π1,Π2) (10)

The initializations are:

• G′
j(Π1,Π2) = (−∞, 0) if Π2 < 0 or Π1 < 0

• G′
0(Π1,Π2) = (0, 0) if Π2 ≥ 0, Π1 ≥ 0

The solution for section i is determined by:

G′
m


Pi −

∑

Jj∈Run(0)
pj , Pi


 .

The time and space complexity are in O(mP 2
max).

Gain function H.

Hj(Π3) =





Hj−1(Π3) if Jj /∈ Ja

maxlex

{
Hj−1(Π3 − pj) + (pjCmax, 0)
Hj−1(Π3) + (pj(Cmax − Cj), 1)

otherwise

The initializations are:

• Hj(Π3) = (−∞, 0) if Π3 < 0
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• H0(Π3) = (0, 0) if Π3 ≥ 0

The solution for section i is determined by:

Hm(max(Pi − δ, Pmin)).

The time and space complexity are in O(mPmax).

D.3 Equations for DPYield

Gain function G′.
The main difference with the dynamic program for goodput optimization is that the gain

function is now looking for the minimum yield. Rather than computing the yield, we actually
consider the time spent by each job to do useful work, since the minimum yield is defined by
the job that has spent the less time working in the case of infinite job. As a reminder, the total
time that job j has been doing useful work up to time Ti is denoted by lj(Ti). Here, for the
sake of readability, we write it lj . Also, let lmin = minj≤m(lj(Ti)) be the minimum amount of
useful work done by a job up to the beginning of section i. The dynamic program computes
(according to each considered case), the minimum over all jobs of the amount of useful work
done by a job at the end of the section. The aim is then to maximize this minimum. However, it
can happen that the minimum yield cannot evolve during a section (this is the case, for instance,
if the total processor requirement of jobs whose yield is minimum exceeds the total number
of available processors). Hence, we are looking to maximize first the platform utilization with
jobs whose Yield is the current minYield , and then we try to do that while using the highest
number of processors. So, once again, we have a triplet of values for the gain G, comprising the
minimum time spent doing useful work (among all jobs), the number of processors used for jobs
whose current yield is the minYield , and, finally, the number of processors used. To combine
two triplets together, we use the operator

⊕
, which is defined as follows:

∀(a1, b1, c1), (a2, b2, c2),
⊕

((a1, b1, c1), (a2, b2, c2)) = (min(a1, a2), b1 + b2, c1 + c2).

Then the equations for the dynamic program for Yield optimization are as follows:

G′
j(Π1,Π2) =





G
′Run
j (Π1,Π2) if Jj ∈ Run(0)

G
′Ckpt
j (Π1,Π2) if Jj ∈ Ckpt(0)

G
′Idle
j (Π1,Π2) if Jj ∈ Idle(0)

G
′Run
j (Π1,Π2) =

maxlex





⊕(
(lj + (T − Cmax), pj1lj=lmin

, pj), G
′
j−1(Π1,Π2 − pj)

)
(1){

(−∞, 0, 0) if Cj > Cmax⊕(
(lj + (Cmax − Cj), 0, 0), G

′
j−1(Π1,Π2)

)
otherwise (2)
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G
′Ckpt
j (Π1,Π2) =

maxlex





⊕(
(lj + (T − Cmax), pj1lj=lmin

, pj), G
′
j−1(Π1 − pj ,Π2 − pj)

)
(3){

(−∞, 0, 0) if Cj > Cmax⊕(
(lj + (Cmax − Cj), 0, 0), G

′
j−1(Π1 − pj ,Π2)

)
otherwise (4)

⊕(
(lj + (T − 2Cmax −Rj), pj1lj=lmin

, pj), G
′
j−1(Π1,Π2 − pj)

)
(5)

⊕(
(lj , 0, 0), G

′
j−1(Π1,Π2)

)
(6)

G
′Idle
j (Π1,Π2) =

maxlex





⊕(
(lj + (T − Cmax −Rj), pj1lj=lmin

, pj), G
′
j−1(Π1 − pj ,Π2 − pj)

)
(7){

(−∞, 0, 0) if Cj +Rj > Cmax⊕(
(lj + (Cmax − Cj −Rj), 0, 0), G

′
j−1(Π1 − pj ,Π2)

)
otherwise (8)

⊕(
(lj + (T − 2Cmax −Rj), pj1lj=lmin

, pj), G
′
j−1(Π1,Π2 − pj)

)
(9)

⊕(
(lj , 0, 0), G

′
j−1(Π1,Π2)

)
(10)

The initializations are:

• G′
j(Π1,Π2) = (−∞, 0, 0) if Π2 < 0 or if Π1 < 0

• G′
0(Π1,Π2) = (Tm+1, 0, 0) if Π2 ≥ 0 and Π1 ≥ 0, i.e., we successfully scheduled all jobs

and, hence, we set a larger time so that the minimum will be determined by the time spent
working by one of the j first jobs.

The solution for section i is determined by:

G
′

m(Pi −
∑

Jj∈Run(0)
pj , Pi).

The time and space complexity are in O(mP 2
max).

Gain function H.
Here, we use the same operator

⊕
but with pairs instead of triplets:

∀(a1, b1), (a2, b2),
⊕

((a1, b1), (a2, b2)) = (min(a1, a2), b1 + b2).

Hj(Π3) =





Hj−1(Π3) if Jj /∈ Ja

maxlex





⊕(
(lj(Ti+1 − Cmax) + Cmax, 0), Hj−1(Π3 − pj)

)

⊕(
(lj(Ti+1 − Cmax) + (Cmax − Cj), 1), Hj−1(Π3)

) otherwise

The initializations are:

• Hj(Π3) = (−∞, 0) if Π3 < 0

• H0(Π3) = (Tm+1, 0) if Π3 ≥ 0

The solution for section i is determined by:

Hm(max(Pi − δ, Pmin)).

The time and space complexity are in O(mPmax).

RR n° 9582



42 J. Cendrier & A.Benoit & F. Vivien

D.4 Equations for TargetGoodput

For this dynamic program, we use the gain function G′
j(Π1,Π2, una), where una denotes the

allowed amount of UNused Area (see Section 4.3.2 of the article). una evolves throughout the
computation of G′. In cases (2) and (4), we remove pjCj since the job is checkpointed and, thus,
this induces an UNused Area of size pjCj . In cases (5), (7) and (9), we remove pjRj since there
is a recovery. Finally, in case (8), we remove pj(Cj +Rj) since there is both a checkpoint and a
recovery. Let:

MW i = Pi(Ti+1 − Ti)− (max(0, Pi − Pi−1)Rmin +min(δ, Pi − Pmin)Cmin),

with P0 = 0, be the maximum amount of useful work that can be done during section i as
presented in Section 3.4 of the article. With a target goodput equal to tgp, the initial value of
una for section i is computed recursively with:

{
una1 = (1− tgp)MW1

unai = (1− tgp)MWi + unai−1 − (1− RG i−1)MWi−1

where RG i (Relative Goodput) is the amount of useful work done during section i divided by
MW i. In other words, for the first section, to reach a target goodput no smaller than tgp, we
should not have more than (1− tgp)MW1 of unused area. For the next sections, we account for
the non-used area that might have been consumed in the previous section, hence, accounting for
the surplus (unai−1 < (1−RG i−1)MWi−1 ) or deficit (unai−1 > (1−RG i−1)MWi−1 ) of unused
area during the preceding sections. The equations are then:

G′
j(Π1,Π2, una) =





G
′Run
j (Π1,Π2, una) if Jj ∈ Run(0)

G
′Ckpt
j (Π1,Π2, una) if Jj ∈ Ckpt(0)

G
′Idle
j (Π1,Π2, una) if Jj ∈ Idle(0)

G
′Run
j (Π1,Π2, una) =

maxlex





⊕(
(lj + (T − Cmax), pj1lj=lmin

, pj), G
′
j−1(Π1,Π2 − pj , una)

)
(1){

(−∞, 0, 0) if Cj > Cmax⊕(
(lj + (Cmax − Cj), 0, 0), G

′
j−1(Π1,Π2, una − pjCj)

)
otherwise (2)

G
′Ckpt
j (Π1,Π2, una) =

maxlex





⊕(
(lj + (T − Cmax), pj1lj=lmin , pj), G

′
j−1(Π1 − pj ,Π2 − pj , una)

)
(3){

(−∞, 0, 0) if Cj > Cmax⊕(
(lj + (Cmax − Cj), 0, 0), G

′
j−1(Π1 − pj ,Π2, una − pjCj)

)
otherwise (4)

⊕(
(lj + (T − 2Cmax −Rj), pj1lj=lmin

, pj), G
′
j−1(Π1,Π2 − pj , una − pjRj)

)
(5)

⊕(
(lj , 0, 0), G

′
j−1(Π1,Π2, una)

)
(6)
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G
′Idle
j (Π1,Π2, una) =

maxlex





⊕(
(lj + (T − Cmax −Rj), pj1lj=lmin , pj), G

′
j−1(Π1 − pj ,Π2 − pj , una − pjRj)

)
(7){

(−∞, 0, 0) if Cj +Rj > Cmax⊕(
(lj + (Cmax − Cj −Rj), 0, 0), G

′
j−1(Π1 − pj ,Π2, una − pj(Cj +Rj))

)
o/w (8)

⊕(
(lj + (T − 2Cmax −Rj), pj1lj=lmin

, pj), G
′
j−1(Π1,Π2 − pj , una − pjRj)

)
(9)

⊕(
(lj , 0, 0), G

′
j−1(Π1,Π2, una)

)
(10)

The initializations are:

• G′
j(Π1,Π2, una) = (−∞, 0, 0) if Π2 < 0 or if Π1 < 0 (same as for DPYield)

• G′
0(Π1,Π2, una) = (Tm+1, 0, 0) if Π2 ≥ 0 and Π1 ≥ 0 (same as for DPYield)

• G′
0(Π1,Π2, una) = (−∞, 0, 0) if una < Π2T + Π1Cnf (we take into account the number

of unused processors during phases 1 and 2 and the durations of those phases, and we
check that the remaining authorized una is large enough to compensate for these unused
processors).

The solution for section i is determined by:

G
′

m


Pi −

∑

Jj∈Run(0)
pj , Pi, unai


 .

Since una can take values in the interval [0, PmaxT ], there is an additional PmaxT factor in the
time and space complexity of TargetGoodput when compared to those of DPYield.

The second part of this algorithm is exactly the same as the second part of DPYield, with the
same gain function H. Therefore, overall, the time and space complexity of TargetGoodput
is O(mP 3

maxT ) (as it is still dictated by G′).

D.5 Equations for DPBiC

Gain function G′. For the sake of readability, let Yield j = Yield j(Ti).

G′
j(Π1,Π2) =





G
′Run
j (Π1,Π2) if Jj ∈ Run(0)

G
′Ckpt
j (Π1,Π2) if Jj ∈ Ckpt(0)

G
′Idle
j (Π1,Π2) if Jj ∈ Idle(0)

G
′Run
j (Π1,Π2) =

maxlex




(pj(T − Cmax)(2−Yield j)

Y , 1) +G′
j−1(Π1,Π2 − pj) (1){

(−∞, 0) if Cj > Cmax

(pj(Cmax − Cj)(2−Yield j)
Y , 0) +G′

j−1(Π1,Π2) otherwise (2)

RR n° 9582



44 J. Cendrier & A.Benoit & F. Vivien

G
′Ckpt
j (Π1,Π2) =

maxlex





(pj(T − Cmax)(2−Yield j)
Y , 1) +G′

j−1(Π1 − pj ,Π2 − pj) (3){
(−∞, 0) if Cj > Cmax

(pj(Cmax − Cj)(2−Yield j)
Y , 0) +G′

j−1(Π1 − pj ,Π2) otherwise (4)

(pj(T − 2Cmax −Rj)(2−Yield j)
Y , 1) +G′

j−1(Π1,Π2 − pj) (5)
(0, 0) +G′

j−1(Π1,Π2) (6)

G
′Idle
j (Π1,Π2) =

maxlex





(pj(T − Cmax −Rj)(2−Yield j)
Y , 1) +G′

j−1(Π1 − pj ,Π2 − pj) (7){
(−∞, 0) if Cj +Rj > Cmax

(pj(Cmax − Cj −Rj)(2−Yield j)
Y , 0) +G′

j−1(Π1 − pj ,Π2) otherwise (8)

(pj(T − 2Cmax −Rj)(2−Yield j)
Y , 1)G′

j−1(Π1,Π2 − pj) (9)
(0, 0) +G′

j−1(Π1,Π2) (10)

The initializations are:

• G′
j(Π1,Π2) = (−∞, 0) if Π2 < 0 or Π1 < 0

• G′
0(Π1,Π2) = (0, 0) if Π2 ≥ 0, Π1 ≥ 0

The solution for section i is determined by:

G′
m


Pi −

∑

Jj∈Run(0)
pj , Pi


 .

The time and space complexity are in O(mP 2
max).

Gain function H.

Hj(Π3) =





Hj−1(Π3) if Jj /∈ Ja

maxlex

{
(pjCmax(2−Yield j(Ti+1 − Cmax))

Y , 0) +Hj−1(Π3 − pj)
(pj(Cmax − Cj)(2−Yield j(Ti+1 − Cmax))

Y , 1) +Hj−1(Π3)
otherwise

The initializations are:

• Hj(Π3) = (−∞, 0) if Π3 < 0

• H0(Π3) = (0, 0) if Π3 ≥ 0

The solution for section i is determined by:

Hm(max(Pi − δ, Pmin)).

The time and space complexity are in O(mPmax).
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E Simulation results

In this section, we present numerous figures to complement the results presented in Section 6 of
the main article. We first compare the DPBiC and DPBiC–Best-Cnf algorithms in Section E.1.
Then, we present detailed versions of the figures included in Sections 6.2.2 and 6.2.3: we present
separate figures for different traces in Sections E.2 and E.3. In Section E.4, we compare the
computation of upper bounds of the maximum minimum yield presented in Sections 3.4 and 5.1
of the main article. Next, we present in Section E.5 the traces used for the finite jobs along with
the techniques used to extract data. Finally, we study in Section E.6 the impact of parameters
by comparing versions with infinite and finite jobs, as we did in Section 6.3.1 of the main article.

All figures are produced using the same methodology as described in Section 6.1 of the main
article for infinite jobs, and described in Section 6.3 of the main article for finite jobs.

E.1 Impact of the optimization of phase 1 for DPBiC

In this section, we compare the algorithm DPBiC(X ) to the algorithm DPBiC–Best-Cnf (X )
with the parameter X ∈ {2, 5, 7, 10, 15, 25, 45}, in order to study the impact of the optimization
of the length of phase 1.

DPBiC DPBiC-Best-Cnf
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Figure 17: Pareto comparison of the two DPBiC variants.

Figure 17 presents a Pareto comparison with both objective functions. We can see that all
the dots are extremely close, as was the case in Figure 6 of the main article. Therefore, in the
following, we will only show the versions with a fixed-length first phase, that is, DPBiC.

E.2 Pareto comparison

In this section, we present the same Pareto comparisons than presented in Section 6.2.2 of the
main article, except that we separate the results of the different traces.

Figure 18 presents two configurations of three Pareto comparisons. We can see approximately
the same dots or at least the same disposition of curves in relation to each other, in the subfigures
corresponding to the same parameter settings. Therefore, the origin of the jobs has no visible
impact on the conclusions taken from the simulations.
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GreedyGoodput

GreedyYield

DPGoodput

DPYield

TargetYield

TargetGoodput

DPBiC

DPBiC(15)

KIT Thunder UniLu

0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0

0.00

0.25

0.50

0.75

1.00

Relative Goodput

R
el
a
ti
ve

m
in
Y
ie
ld

(a) Light simulation.
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(b) Default simulation.

Figure 18: Pareto comparison of the performance of the different algorithms in light simulation
(left) and in default simulation (right).

Mean Min First decile First quartile Mediane Last quartile Last decile Max
2.09e− 04 3e− 06 5.8e− 05 1.45e− 04 2.86e− 04 3.85e− 04 4.89e− 04 7.42e− 04

Table 1: Statistics on a set of 330 instances on the difference between the bounds derived by the
two methods to derive an upper bound on the maximum minYield .

E.3 Impact of parameter variations for the different traces, with infi-
nite jobs

In this section, we present the same variations of each parameter as described in Section 6.2.3 of
the main article, but we separate the performance achieved for each trace.

Figure 19, 20, 21, 22 and 23 present the performance as a function of the parameter variation
for each of the traces and then the mean performance over all traces. Once again, there is no
significant difference between the different traces in the position of dots and even less in the
relative position of curves.

E.4 Comparison of the two upper bounds of the maximum minYield

In this section, we compare the values of the two upper bounds for maximum minYield derived
in Sections 3.4 and 5.1 of the main article. The first method is simpler. However, it cannot be
applied to finite duration jobs, whereas the second method can. We compare the results achieved
by the two computation methods with various parameters in the infinite setting.

In Table 1, we report statistics on the difference of the bounds obtained by the two methods
to compute an upper bound of the maximum minYield . These statistics are obtained on a set
of 330 instances obtained by varying the value of each of the parameters. We can see that the
maximum difference observed is very small (with respect to the value of the bound itself, which
varies between 0.1 and 0.9) and that, therefore, both bounds can be used for this purpose in the
case of infinite jobs. In the case of finite jobs, only the second method can be used. However, as
observed and explained in Section 6.3.1 of the main article, the minYield is generally close to 0
in the case of finite jobs and, hence, this calculation has not been used.
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Figure 19: Variation of avgT in trace KIT (top left), Thunder (top right), UniLu (bottom left)
and mean of all traces (bottom right), infinite.
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Figure 20: Variation of Pmax in trace KIT (top left), Thunder (top right), UniLu (bottom left)
and mean of all traces (bottom right), infinite.
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Figure 21: Variation of Pmin in trace KIT (top left), Thunder (top right), UniLu (bottom left)
and mean of all traces (bottom right), infinite.
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Figure 22: Variation of δ in trace KIT (top left), Thunder (top right), UniLu (bottom left) and
mean of all traces (bottom right), infinite.
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Figure 23: Variation of Load in trace KIT (top left), Thunder (top right), UniLu (bottom left)
and mean of all traces (bottom right), infinite.

E.5 Workloads for finite duration jobs

In this section, we present how we generate instances for the case with finite duration jobs.
First, we extract jobs from the same traces than previously. Then, we define different methods
for generating the required release dates of jobs. Finally, based on some observations, we choose
which method to use for the rest of the simulations.

E.5.1 Traces

We use the same traces than for infinite jobs to define the execution length and number of
processors of jobs.
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Figure 24: Heatmap of execution length in relation to processor usage of jobs for each of the
three traces.
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Figure 24 is the heatmap of job execution length in relation to the number of processors used,
for each trace, with logarithmic scales. We can see that in KIT , most jobs take more than 20
seconds (which is the time unit used) and up to more than 24 hours (whereas the complete size
of a simulation corresponds on average to just over 11 hours), with jobs requiring from 1 to 1,000
processors. In Thunder , there are many very short jobs using 4 processors (and none using fewer
processors) and relatively few jobs using more than a hundred processors. Finally, in UniLu,
most jobs last more than 5 minutes and use more than a dozen processors, and almost none use
more than 100 processors. So the three traces have very distinct profiles.

E.5.2 Generation of release dates in function of a target load

We define the load of the system at a given time as the total number of processors required by
the alive jobs (that is, those released and not yet completed) divided by the number of available
processors. We want to define the release dates of jobs in such a way as to maintain a stable load
over time, regardless of the algorithm in use. However, since different algorithms do not execute
the same jobs at the same time, the set of alive jobs in a given section depends on the algorithm
used which, in turn, impacts the load.

In addition, the release dates of jobs depend on the target load factor and of the method used
to maintain this target load. We have experimented with three methods for generating the release
dates of jobs, using the following general logic: at each section i, we have the amount of potential
useful work that can be done during the section, MWi (as previously defined in Section 3.4 of
the main article), and we want to update the work done by the set of yet-uncompleted jobs in
order to estimate which jobs may be completed during the section and, therefore, need to be
replaced by new jobs in order to maintain the desired load:

• Accumulation: In each section i, we compute ωi, the total work that all alive jobs could
do if each of them was allocated for the whole section its required number of processors.
If ωi < MWi , we generate new jobs to be alive during this section and add the work they
could do during that section to ωi, as long as ωi < MWi . We then check whether the total
number of required processors of alive jobs corresponds to the desired load. If this is not
the case, we generate new jobs to be alive during this section (and add their work to ωi).
When moving from one section to the next, we initialize ωi+1 with ωi −MWi .

• FIFO: For each section, we consider the jobs in their release date order, and we allocate
them the maximum possible work in the section as long as the total limit on the work
that can be done, MWi , is not exhausted. If there are not enough jobs to exhaust MWi ,
we release new jobs for this section. We then check that the total number of required
processors of the alive jobs corresponds to the desired load and, if not, we release new jobs
for this section.

• Smallest: Same principle as for FIFO, except that jobs are sorted in non-decreasing order
of the amount of remaining work (rather than by release dates) for the work allocation.

Once we have defined the job requirement for each section, we generate release dates by
drawing them uniformly in the preceding section.

E.5.3 Evaluation

In this section, we compare the different release date generation methods with the load obtained
afterwards with each of the algorithms.

Figure 25 shows the evolution of the number of available processors over time used for this
simulation.
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Figure 25: Evolution of the number of available processors.

Figure 26 shows the evolution of the current load, that is the total number of processors
required by the jobs in the system divided by the current number of available processors, for
each of the three different traces and then aggregated for all the traces. We note that the actual
load is almost never smaller than the target load.

Figure 27 shows the evolution of the maximum load, that is the total number of processors
required by the jobs in the system divided by the maximum number of available processors, for
each of the three different traces and then aggregated for all the traces. We remark that the
system appears to work as it should.

From these set of figures, it appears that the FIFO method is the most stable for achieving
a target load, even after many sections. This is therefore the method that we have been using
in the simulations.
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Figure 26: Evolution of the load with time for the traces KIT (top left), Thunder (top right),
UniLu (bottom left), and for all three traces (bottom right). Each row of each graph corresponds
to a target load, indicated on the right of each row and by the black line.

Inria



Scheduling Jobs Under a Variable Number of Processors 53

GreedyGoodput GreedyYield DPGoodput DPYield DPBiC 15

Accumulation FIFO Smallest

1
2

3

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

Section

∑
m j
=
1
(p

j
)/
P
m
a
x

Accumulation FIFO Smallest

1
2

3

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

Section

∑
m j
=
1
(p

j
)/
P
m
a
x

Accumulation FIFO Smallest

1
2

3

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

Section

∑
m j
=
1
(p

j
)/
P
m
a
x

Accumulation FIFO Smallest

1
2

3

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

0
2
4
6
8

0
2
4
6
8

0
2
4
6
8

Section

∑
m j
=
1
(p

j
)/
P
m
a
x

Figure 27: Evolution of the maximum load with time for the traces KIT (top left), Thunder
(top right), UniLu (bottom left), and for all three traces (bottom right). Each row of each graph
corresponds to a target load, indicated on the right of each row and by the black line.
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Figure 28: Impact of the variation of Pmax (left) and Pmin (right) for the comparison between
infinite settings (far left and center right) and finite settings (centerleft and far right)

E.6 Comparison of the impact of the variation of parameters for finite
and infinite jobs

In this section, we present a comparison between the perfomance achieved with infinite and finite
jobs when the different parameters vary, as was done in Section 6.2.3 of the main article, for all
main algorithms, and then only for DPBiC(X ) with the parameter X ∈ {0, 1, 2, 3, 5, 7, 15, 25, 45}.

Figures 28 and 29 present the comparison for the main algorithms. On the one hand, we
observe very little differences between the behavior for infinite and finite jobs for algorithms
Goodput and RGoodput . On the other hand, the observation made in Section 6.3.1 of the main
article remains valid: the minYield obtained with finite jobs is always close to 0. Then, if we
examine the cumulative distribution functions (CDF) of the Yield , the curves have a similar
profile between finite and infinite jobs. DPBiC achieves slightly better performance than Yield -
oriented algorithms (its curve is always above those of Yield -oriented algorithms). One can also
remark a greater fairness of the Yield for the Yield -oriented algorithms (most jobs achieve similar
yields), whatever the parameters.

Figures 30, 31, and 32 presents the performance of of DPBiC(X ) for different values of X .
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Figure 29: Impact of the variation of δ (left) and Load (right) for the comparison between infinite
settings (far left and center right) and finite settings (centerleft and far right)
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Figure 30: Impact of the variation of Pmax (left) and Pmin (right) with DPBiC algorithms for
the comparison between infinite settings (far left and center right) and finite settings (centerleft
and far right)
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Figure 31: Impact of the variation of δ (left) and Load (right) with DPBiC algorithms for the
comparison between infinite settings (far left and center right) and finite settings (centerleft and
far right)
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Figure 32: Impact of the variation of avgT with DPBiC algorithms.
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In general, as X increases, the Goodput decreases and the minYield increases. But in the case of
finite jobs, as the minYield is always close to 0, the statistic of interest for the Yield is once again
its cumulative distribution function. One can remark that, in each figure, the curves are initially
very similar (except when X = 0) and then the algorithms with a smaller value for X dominate,
as observed in the Section 6.3.2 of the main article. And so, once again, we can conclude that
choosing X = 2 could be a good trade-off between Goodput and Yield for finite duration jobs.
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