
LIP RESEARCH REPORT RR-LIP-2010-18 1

Static Strategies for Worksharing with
Unrecoverable Interruptions

Anne Benoit, Member, IEEE, Yves Robert, Fellow, IEEE, Arnold L. Rosenberg, Fellow, IEEE,
and Frédéric Vivien, Member, IEEE

Abstract—One has a large workload that is “divisible”—its constituent work’s granularity can be adjusted arbitrarily—and one has
access to p remote computers that can assist in computing the workload. How can one best utilize these computers? Complicating this
question is the fact that each remote computer is subject to interruptions (of known likelihood) that kill all work in progress on it. One
wishes to orchestrate sharing the workload with the remote computers in a way that maximizes the expected amount of work completed.
Strategies are presented for achieving this goal, by balancing the desire to checkpoint often—thereby decreasing the amount of
vulnerable work at any point—vs. the desire to avoid the context-switching required to checkpoint. Schedules must also temper the
desire to replicate work, because such replication diminishes the effective remote workforce. The current study demonstrates the
accessibility of strategies that provably maximize the expected amount of work when there is only one remote computer (the case
p = 1) and, at least in an asymptotic sense, when there are two remote computers (the case p = 2); but the study strongly suggests
the intractability of exact maximization for p ≥ 2 computers, as work replication on multiple remote computers joins checkpointing as
a vehicle for decreasing the impact of work-killing interruptions. We respond to that challenge by developing efficient heuristics that
employ both checkpointing and work replication as mechanisms for decreasing the impact of work-killing interruptions. The quality of
these heuristics, in expected amount of work completed, is assessed through exhaustive simulations that use both idealized models
and actual trace data.

Index Terms—Fault-tolerance, Fault-aware scheduling, Divisible load, Risk function, Probabilities

F

1 INTRODUCTION

Technological advances and economic constraints have
engendered a variety of modern computing platforms
that allow a person who has a massive, compute-
intensive workload to enlist the help of others’ com-
puters in executing the workload. The resulting coop-
erating computers may belong to a nearby or remote
cluster (of “workstations”; cf. [2]), or they could be geo-
graphically dispersed computers that are available under
one of the increasingly many modalities of Internet-
based computing—such as Grid computing (cf. [3], [4],
[5]), global computing (cf. [6]), or volunteer computing
(cf. [7]). In order to avoid unintended connotations con-
cerning the organization of the remote computers, we
avoid evocative terms such as “cluster” or “grid” in
favor of the generic “assemblage.”

Advances in computing power never come without
cost. The new “collaborative” platforms add various
types of uncertainty to the list of concerns that must be
addressed as one prepares a computational workload for
allocation to the available computers. When one allocates
work over the Internet, for instance, one must prepare
for computers to produce results much more slowly
than anticipated, even, possibly, failing ever to complete

A portion of this research appeared at the 23rd IEEE International Parallel
and Distributed Processing Symposium [1].

• A. Benoit, Y. Robert, and F. Vivien are with the École normale supérieure
de Lyon and the Université de Lyon, France.

• A. Benoit and Y. Robert are with the Institut Universitaire de France.
Their research was supported in part by the ANR StochaGrid project.

• A. Rosenberg is with Colorado State University, USA. His research was
supported in part by US NSF Grants CNS-0842578 and CNS-0905399.

• F. Vivien is with INRIA, France.

their allocated work. The current paper follows in the
footsteps of sources such as [8], [9], [10], [11], [12], [13],
which present analytic studies of algorithmic techniques
for coping with uncertainty in computational settings.
Whereas most of these sources address the uncertainty
of the computers in an assemblage one computer at a
time, we view the assemblage here as a “team” wherein
one computer’s shortcomings can be compensated for by
other computers, most notably if we judiciously replicate
work, i.e., allocate some work to more than one computer.

The problem we study. We have a large computa-
tional workload whose constituent work is divisible, in
the sense that one can subdivide chunks of work into
arbitrary granularities (cf. [14]). We also have access to
p ≥ 1 identical “remote” computers to help us compute
the workload via worksharing, a modality of collaborative
computing in which the owner of the workload allocates
work to remote computers that are available; cf. [15].
In the current paper we only study homogeneous as-
semblages of remote computers, in order to concentrate
only on the problem of coping with uncertainty within
an assemblage. We hope to focus in later work on the
added complexity of coping with uncertainty within a
heterogeneous assemblage.

We address here the most draconian type of uncer-
tainty that can plague an assemblage of computers,
namely, vulnerability to unrecoverable interruptions that
kill all work currently in progress on the interrupted
computer. We strive to cope with such interruptions—
whether they arise from hardware failures or from a
loaned/rented computer’s being reclaimed by its owner,
as during an episode of cycle-stealing (cf. [8], [10], [13],

LIP RESEARCH REPORT RR-LIP-2010-18 2

[16], [17]). The two tools that we employ to cope with
these interruptions are checkpointing, which saves already
completed work so that it will not be killed by an inter-
ruption, and work replication, which allocates some work
to more than one remote computer. The only extrinsic
resource to help us use these tools judiciously is our
assumed a priori knowledge of the risk of a computer’s
having been interrupted—which we assume is the same
for all computers.1

The goal of our study. We strive to maximize the
expected amount of work that gets computed by the assemblage
of computers, no matter which, or how many, computers
get interrupted. We call a schedule that achieves this goal
optimal. Thus, we are positing that, within our applica-
tion, even partial output is meaningful. The annotation
of metagenomics data is a timely such application: one
has a large number of DNA fragments to classify (as
eukaryotes, prokaryotes, etc.). One ideally wants to have
all the DNA fragments processed, but the result of the
classification is meaningful even if the annotation is
fragmentary—which just artificially augments the “un-
known” category.

The challenges. The challenges of scheduling a work-
load on interruptible remote computers can be described
in terms of two dilemmas. (1) Sending work to re-
mote computers in small chunks lessens vulnerability
to interruption-induced losses, but it also increases the
impact of per-work-unit overhead and minimizes the
opportunities for “parallelism” within the assemblage
of remote computers. (2) Replicating work lessens our
vulnerability to interruption-induced losses, but it also
minimizes the expected productivity advantage from
having access to many remote computers. (The pros and
cons of work replication are discussed at length in [18].)

Approaches to the challenges. (1) “Chunking” our
workload. We strive to balance overhead costs with
the risk of interruptions, thereby coping with the first
dilemma, by allocating work to each remote computer
as a sequence of carefully sized chunks.2 This approach,
which is advocated in [10], [13], [16], [17], allows each
remote computer to checkpoint according to some sched-
ule, thereby protecting its work from the threat of work-
killing interruptions. (2) Replicating work. We strive to
give all chunks of work a high likelihood of being
computed successfully, despite the second dilemma, by
using the (known) probability of interruptions to choose
when and where to allocate some chunks of work to
more than one remote computer.

Because the costs of checkpointing and of communi-
cating with remote computers are typically high in time
and overhead, we limit such activities by orchestrating
work allocation (and replication) in an a priori, static

1. As in [10], [13], [16], our scheduling strategies can be adapted
to use statistical, rather than exact, knowledge of the risk of
interruption—albeit at the cost of weakened performance guarantees.

2. We use the generic “chunk” instead of “task” to emphasize tasks’
divisibility (which precludes atomic tasks).

manner, rather than dynamically, in response to ob-
served interruptions. While we thereby duplicate work
unnecessarily when there are few interruptions among
the remote computers, we thereby prevent our computer,
which is the server in the studied scenario, from becom-
ing a bottleneck when there are many interruptions.

Summary. We assume: that we know the instanta-
neous probability that a remote computer will have
been interrupted by time t; that this probability is the
same for all remote computers and that it increases with
the amount of time that a computer has been available
(whether working or not). These assumptions, which we
share with [10], [13], [16], seem to be necessary in order
to derive scheduling strategies that provably maximize
the expected amount of work completed. As noted ear-
lier, the challenge of allowing individual computers to
differ in power or to have different probabilities of being
interrupted must await a sequel to the current study.

Main results. Our early work on this topic is reported
somewhat sketchily in the conference report [1]. The cur-
rent paper is dedicated to fleshing out and extending the
(analytical) portion of that report that deals with one and
two remote computers; we also expand in an analogous
way on the portion of [1] that deals (experimentally)
with arbitrary numbers of remote computers, and we
extend our heuristics to handle arbitrary interruption-
risk models. Our results that deal with one remote
computer appear in Section 3. We describe the one-
computer schedules from [1] that are exactly optimal
in work production for the interruption-risk model in
which risk increases linearly with time, both for scenarios
that assess per-chunk overheads and those that do not.
We end Section 3 with a schedule that is asymptotically
optimal in work production for one remote computer
under arbitrary interruption-risk models. The main focus
of the current paper expands on and extends the study in
[1] regarding worksharing with two remote computers.
The difficulty of this extension forces us to focus only
on scenarios that do not assess per-chunk overheads—
what we call the free-initiation model; however, one can
convert our free-initiation results to results for scenarios
that do assess per-chunk overheads, that are predictably
close to optimal in work production (see Theorem 1 in
Section 2.2.4). The difficulty of the two-computer case
also forces us, in certain situations, to settle for schedules
that are asymptotically optimal. Our main results provide
the following insights into the worksharing problem for
two remote computers.
• Scheduling guidelines. Theorem 5 provides guidelines

for crafting optimal schedules for any worksharing
scenario in which the risk of a computer’s being
interrupted never decreases with time.

• Asymptotically optimal schedule, under arbitrary risk.
Theorem 6 provides, for each integer n > 0, a two-
computer schedule Σ(n) that deploys the workload
in n chunks. Under any interruption-risk model, the
expected work production of the schedules Σ(n)

LIP RESEARCH REPORT RR-LIP-2010-18 3

tends to the optimal limit as n grows without bound.
(We term this asymptotic optimality.)

• Exactly optimal schedule, under linear risk, with single-
chunk deployment. Theorem 7 describes a schedule
that deploys work in a single chunk to the two
remote computers, in a “symmetric” manner (in a
sense explained in the theorem). When the risk of
interruption grows linearly with time, the schedule
is exactly optimal among symmetric schedules.

• Asymptotically optimal schedule, under linear risk, with
multi-chunk deployment. Algorithm 1 produces, for
any given n > 0, n-chunk worksharing schedules
that are analyzed in Theorem 8. Depending on the
size of the workload, the algorithm’s schedules are
either exactly or asymptotically optimal when the
risk of interruption grows linearly with time.

After the study of the two-computer case, we turn to
two complementary studies of simple, well-structured
heuristics for sharing work with arbitrary numbers of
remote computers that are subject to unrecoverable in-
terruptions. Section 5 is devoted to developing strategies
that allow one to craft such heuristics. The strategies
are instantiated in six heuristics that produce schedules
whose structures derive from differing intuitions about
how to complete a lot of work in expectation, despite
the risk of interruption. The schedules produced by
the greedy heuristic are found to dominate the other
heuristics’ schedules in expected work production, albeit
at the cost of a bit more computation. The second phase
of the current study (Section 6) extends our study of
the linear risk function by comparing the schedules
produced by the best of the preceding six heuristics
against those produced by four simple heuristics. We
determine via simulations which heuristics perform bet-
ter on workloads of varying sizes, varying numbers of
remote computers, varying checkpointing granularity,
varying checkpointing overheads, and varying degrees
of work replication. As in Section 5, the so-called greedy
heuristic is found to dominate the others. Section 7 takes
our study beyond the linear risk model by adapting our
new heuristics for use with arbitrary risk functions. The
adapted heuristics are then evaluated using actual traces.
Finally we conclude in Section 8.

Related work. The literature contains relatively few
rigorously analyzed scheduling algorithms for interrupt-
ible “parallel” computing in assemblages of comput-
ers. Among those we know of, only [8], [10], [13],
[16], [17] deal with an adversarial model of interruptible
computing. One finds in [8] a randomized scheduling
strategy which, with high probability, completes within
a logarithmic factor of the optimal fraction of the initial
workload. In [10], [13], [16], [17], the scheduling problem
is viewed as a game against a malicious adversary who
seeks to interrupt each remote computer in order to kill
all work in progress. (Also, [1] is a preliminary version of
the current paper.) Among the experimental sources, [19]
studies the use of task replication on a heterogeneous

desktop grid whose constituent computers may become
definitively unavailable; the objective is to eventually
process all work. In a similar context, [20] aims at
minimizing both the completion time of applications and
the amount of resources used.

There is a large literature on scheduling divisible
workloads on assemblages of computers that are not
vulnerable to interruptions. We refer the reader to [14]
and its myriad intellectual progeny; another good start
is [21]—a thorough study of divisible load scheduling
on star and tree networks—or [22]. Also on the subject
of divisibl workloads, it is shown in [22], [23] how a
linear model, such as our free-initiation model, can lead
to absurd schedules involving infinitely many infinitely
small chunks; we cope with this issue in Section 3.1.1.

We do not enumerate here the many studies of compu-
tation on assemblages of remote computers, which focus
either on systems that enable such computation or on
specific algorithmic applications. However, we point to
[24] and [25] as exemplars of the two types of studies.

2 THE TECHNICAL FRAMEWORK

We supply the technical details necessary to turn the
informal discussion in the Introduction into a frame-
work in which we can develop and rigorously validate
scheduling guidelines.

2.1 The Computation and the Computers
We have W(ttl) units of divisible work to execute on an
assemblage of p ≥ 1 identical computers. Each computer
is vulnerable to unrecoverable interruptions that “kill” all
work in progress on it. All computers share the same
instantaneous probability of being interrupted, which we
know exactly. This probability increases with the amount
of time the computer has been operating—whether it has
been computing or not.

As discussed in the Introduction, the danger of losing
work in progress when an interruption incurs mandates
that we not just divide our workload into W(ttl)/p equal-
size allocations and deploy one chunk on each computer
in the assemblage. Instead, we “protect” our workload
as best we can, by:
• partitioning it into chunks of possibly different sizes;

“chunk” is our term for a unit of work that we
allocate to a computer;

• prescribing a schedule for allocating chunks to com-
puters;

• allocating some chunks to more than one computer,
as a divisible-load analogue of work replication.

As noted in the Introduction, we treat intercomputer
communication as a resource to be used very sparingly.
Specifically, in order to avoid having our computer be-
come a communication bottleneck, we orchestrate chunk
replication in an a priori, static manner—rather than
dynamically, in response to observed interruptions. This
conservative strategy may duplicate work unnecessarily
when there are few or no interruptions.

LIP RESEARCH REPORT RR-LIP-2010-18 4

2.2 Modeling Interruptions and Expected Work

2.2.1 The interruption model

Within our study, all computers share the same risk
function, i.e., the same instantaneous probability, Pr(w),
of having been interrupted by the end of “the first w
time units.” We measure time via work units that could
be completed “successfully” if there is no interruption.
In other words, “the first w time units” is the period
of time that a computer would need to complete w
units of work if it started working on them when the
entire worksharing episode begins, and it succeeded in
completing them. This time scale, which is shared by
all computers, thus uses the start of the worksharing
episode as the baseline moment for measuring time and
risk. Recall that Pr(w), which we assume that we know
exactly, cannot decrease as w increases.

It is useful to generalize the preceding measure of
risk by allowing many baseline moments. We denote
by Pr(s, w) the probability that a computer has not been
interrupted during the first s “time units” but has been
interrupted by “time” s + w. Thus, Pr(w) = Pr(0, w),
and Pr(s, w) = Pr(s+w)−Pr(s). We let3 κ ∈ (0, 1] be a
constant that weights our probabilities. We illustrate the
role of κ as we introduce the risk function which is our
main focus in the current study.

Linearly increasing risk. The risk function that is
the main focus of our study is the linear risk function
Pr(w) = κw. It is the most natural model of risk in the
absence of further information: the risk of a remote com-
puter’s being interrupted grows linearly with the time
that the computer has been available, or equivalently, to
the amount of work it could have done. The relevant
probability density function is then dPr = κdt when
t ∈ [0, 1/κ] and 0 otherwise, so that

Pr(s, w) = min

{
1,

∫ s+w

s

κdt

}
= min{1, κw}.

The constant 1/κ recurs often in our analyses, since it
can be viewed as the time by which an interruption
is certain to have occurred, i.e., will have occurred
with probability 1. To enhance legibility of the rather
complicated expressions that populate our analyses, we
denote the quantity 1/κ by X .

We point out that the linear risk model is very relevant
to cycle-stealing episodes. Consider the following sce-
nario: on Friday evening, a PhD student has a large set of
simulations to run. S/he has access to a set of computers
from the lab, but each computer can be reclaimed at
any instant by its owner. In any case, everybody will
be back to work on Monday 8am. What is the student’s
best strategy? How much simulation data should s/he
send to, and execute on, each available computer?

3. As usual, we use parentheses to denote open boundaries for real
intervals and brackets to denote closed boundaries.

2.2.2 Expected work production
We use risk functions to help us find an efficient way to
chunk work for, and allocate work to, the remote com-
puters, with the goal of maximizing the expected amount
of work completed by the assemblage. Let W(cmp) be
the random variable whose value is the number of work
units that the assemblage completes successfully under
a given scheduling regimen. Our goal is to maximize the
expected value of W(cmp).

We perform our study using two cost models as
we contemplate how to schedule large workloads. The
models differ in how they assess chunk execution-times
as functions of chunk sizes, in the light of the two
classes of costs incurred during each communication
or checkpointing, viz. the costs that are proportional to
the size of a chunk and those that are fixed constants.
When chunks are very large, the fixed costs are negligible
compared to the size-proportional ones. This suggests
that one can safely ignore the fixed costs. But one must
be careful! If one ignores the fixed costs, then there is
never a disincentive to deploying the workload in4 n+1
chunks rather than n; in fact, this increases the expected
work production! However, increasing the number of
chunks tends to make chunks smaller—which increases
the significance of the fixed costs! We deal with this
dilemma by recognizing two cost models and striving
for optimal schedules under each.

1) The free-initiation model accounts for only the size-
proportional costs of worksharing. Because it fo-
cuses on situations wherein the fixed costs are negli-
gible compared to the size-proportional ones, it does
not assess a per-chunk fixed cost.

2) The charged-initiation model accounts for both the
fixed and the size-proportional costs of workshar-
ing. It thus reflects in greater detail the costs in-
curred by real computing systems.

The free-initiation model. Our results under this
model approximate reality well when we allocate work
in large chunks. This occurs, for instance, when large
fixed costs for each communication or checkpointing
event lead us to have each remote computer do a
substantial amount of work between successive events,
in order to amortize these costs. In such situations, we
keep chunks large by placing a bound on the number of
scheduling “rounds,” in order to counteract this model’s
tendency to increase the number of “rounds” indefi-
nitely. Importantly also: knowing the expected value of
W(cmp) under the free-initiation model affords us easy
bounds on the corresponding expected value under the
charged-initiation model (see Theorem 1 in Section 2.2.4).
Such bounds are quite valuable whenever the charged-
initiation model is prohibitively difficult to analyze di-
rectly.

Within the free-initiation model, we denote the ex-
pected value of W(cmp) under a given schedule Σ, with
workload W(ttl), by E(f)(W(ttl),Σ), the superscript “f”

4. Throughout, n denotes a positive integer.

LIP RESEARCH REPORT RR-LIP-2010-18 5

denoting “free”(-initiation). The value of this expectation
is

E(f)(W(ttl),Σ) =

∫ ∞
0

Pr(W(cmp) ≥ u under Σ) du.

The charged-initiation model. This model is much
harder to analyze than the free-initiation model, even
when there is only one remote computer. In compensa-
tion, this model often allows one to determine analyti-
cally the best numbers of chunks and of “rounds,” even
when there are multiple remote computers. Under this
model, the overhead for each additional chunk is a fixed
cost, ε work units, that is added to the cost of computing
each chunk. ε could represent, e.g., the setup time for a
communication or the overhead of a checkpoint.

We denote by E(c)(W(ttl),Σ) the expected value, un-
der this model, of W(cmp), for a given regimen Σ and
workload W(ttl); the superscript “c” denotes “charged”
(-initiation). This expectation is

E(c)(W(ttl),Σ) =

∫ ∞
0

Pr(W(cmp) ≥ u+ ε) du.

2.2.3 Observing the model on one remote computer

In this section, we consider the single computer case both
for the free-initiation model and the charged-initiation
one, and explain how to optimize the expected work-
production.

The free-initiation model. We calculate E(f)(W(ttl),Σ)
for an arbitrary risk function Pr, for three cases wherein
Σ deploys the entire workload on a single computer.
To enhance legibility, let the phrase “under Σ” within
the expression “Pr(W(cmp) ≥ u under Σ)” be specified
implicitly by context.

Deployment in one chunk. Regimen Σ1 allocates the
entire workload W(ttl) in a single chunk; we have

E(f)(W(ttl),Σ1) = W(ttl)

(
1− Pr(W(ttl))

)
. (1)

Deployment in two chunks. Regimen Σ2 partitions the
workload into two chunks of respective sizes ω1 > 0
and ω2 > 0, where ω1 + ω2 = W(ttl):

E(f)(W(ttl),Σ2) =
∫ ω1

0
Pr(W(cmp) ≥ u)du

+
∫ ω1+ω2

ω1
Pr(W(cmp) ≥ u)du

= ω1(1− Pr(ω1)) + ω2(1− Pr(ω1 + ω2)).

Deployment in n chunks. Regimen Σn partitions the
workload into n chunks of respective sizes ω1 > 0,
ω2 > 0, . . . , ωn > 0, where ω1 + · · ·+ ωn = W(ttl):

E(f)(W(ttl),Σn) =

∫ ω1

0

Pr(W(cmp) ≥ u)du + · · ·

+

∫ ω1+···+ωn−1+ωn

ω1+···+ωn−1

Pr(W(cmp) ≥ u)du

= ω1(1− Pr(ω1)) + · · · (2)
+ ωn(1− Pr(ω1 + · · ·+ ωn)).

The charged-initiation model. Mimicking the devel-
opment for the free-initiation model: When the en-
tire workload is deployed as a single chunk, we have
E(c)(W(ttl),Σ1) = W(ttl)

(
1− Pr(W(ttl) + ε)

)
, and when

it is deployed as two chunks of respective sizes ω1 and
ω2, we have E(c)(W(ttl),Σ2) = ω1(1 − Pr(ω1 + ε)) +
ω2(1 − Pr(ω1 + ω2 + 2ε)). In general, E(c)(W(ttl),Σn)
is the charged-initiation analogue of the free-initiation
expectation E(f)(W(ttl),Σn).

Optimizing expected work-production. The ultimate
goal of our study is to learn how to craft schedules Σ
that maximize E(f)(W(ttl),Σ) (or E(c)(W(ttl),Σ)). As a
first step toward crafting optimal schedules, we observe
that under many risk functions—including the linear
risk function—the remote computers are certain to have
been interrupted no later than a known eventual time.
In such situations, one might get more work done,
in expectation, by not deploying the entire workload:
one could increase the expectation by making the last
deployed chunk even a tiny bit smaller than needed
to deploy all W(ttl) units of work. (We observe this in
Theorem 2 for the free-initiation model and in Theorem 4
for the charged-initiation model.) Thus, when scheduling
a single remote computer,
• select n chunk sizes that sum to at most W(ttl),
• select from our workload n chunks having these

respective sizes,
• schedule the deployment of these chunks

in a way that maximizes the expected amount of
work that is completed. We formalize this goal for
the free-initiation model via the function E

(f)
n (W(ttl)) =

max{ω1(1 − Pr(ω1)) + · · · + ωn(1 − Pr(ω1 + · · · + ωn))},
where the maximization is over all n-tuples {ω1 ≥
0, . . . , ωn ≥ 0} such that ω1 + · · ·+ ωn ≤W(ttl).

2.2.4 Relating the models
One can bound the expected work completed under the
charged-initiation model via the analogous quantity for
the free-initiation model—which is one justification for
our focus on the simpler model. The reader can verify the
following for the case with one remote computer (p = 1)
by direct calculation from (2) and its charged-initiation
analogue. The theorem remains valid in the general case
(with several computers).

Theorem 1: (Relating the models) Let E(c)
n (W(ttl)) (resp.,

E
(f)
n (W(ttl))) denote the optimal n-chunk expected value

of W(cmp) under the charged-initiation model (resp., the
free-initiation model) under an arbitrary risk function Pr.
For any collection of p remote computers,

E(f)
n (W(ttl)) ≥ E(c)

n (W(ttl)) ≥ E(f)
n (W(ttl))− nε. (3)

Proof: The lefthand inequality in (3) being obvious,
we focus just on the righthand inequality, which turns
out to be subtler than one might expect.

Let Σ be an optimal schedule for p remote computers
and risk function Pr under the free-initiation model. Σ
deploys the workload W(dpl) in n chunks, W1, . . . , Wn,

LIP RESEARCH REPORT RR-LIP-2010-18 6

of respective sizes ω1 > 0, . . . , ωn > 0. For j ∈ [1, p],
Σ(j, k) denotes the kth chunk executed on computer j
under Σ. In other words, computer j executes chunks in
the order Σ(j, 1), Σ(j, 2), . . . , Σ(j, n).5

Note that distinct chunks may overlap; i.e., we may
haveWi∩Wj 6= ∅ even when i 6= j. We therefore partition
W(dpl) into {X1, . . . ,Xm} so that, for any Xi and Wj ,
either [Xi ⊆ Wj] or [Xi∩Wj = ∅]. Thus, for all i ∈ [1,m], if
Σ schedules any part of Xi on computer j, then the latter
attempts to compute Xi in its entirety. Let Πi be the set
of computers that Xi is scheduled on. For j ∈ Πi, σ(j, i)
is the rank of the first chunk scheduled on computer j
that contains Xi; formally σ(j, i) = min{k|Xi ⊂ Σ(j, k)}.

Define schedule Σ′ from Σ as follows. For each i in
[1, n], let ω′i = max{0, ωi − ε}, and let W ′i be any size-ω′i
subset ofWi. Σ′ deploys chunksW ′1, . . . ,W ′n in the exact
manner that Σ deploys chunks W1, . . . , Wn on those
same computers, except that null chunks are skipped
(to avoid the cost ε). We account for these zero-length
chunks in the following equations, via the function

1ω′i =

{
1 if ω′i 6= 0

0 if ω′i = 0.

We then define X ′i , Π′i and σ′(j, i) as we did Xi, Πi and
σ(j, i), except that we now insist that each X ′i be a subset
of some Xk; we thus refine the partition X to the partition
X ′. Let Xτ(i) be the element of X that contains X ′i . Finally,
let I ′ be the largest subset of X ′ such that:

∀i ∈ I ′, {j | X ′i ⊂ W ′j} = {j | Xτ(i) ⊂ Wj}.

If X ′i does not belong to I ′, there exists a chunk Wj

such that some piece of work in Xτ(i) belongs to Wj but
not to W ′j : X ′i ⊂ Wj \W ′j , ∪i/∈I′X ′i ⊂ ∪ni=1Wi \W ′j , and

∑
i/∈I′
|X ′i | =

∣∣∣∣∣ ⋃
i/∈I′
X ′i

∣∣∣∣∣ ≤
∣∣∣∣∣
n⋃
i=1

Wi \W ′j

∣∣∣∣∣ ≤
n∑
i=1

|Wi \W ′j | ≤ nε.

Since Σ′ implicitly specifies a (≤ n)-chunk schedule
under the charged-initiation model, its expected work
production cannot exceed that of the best (≤ n)-chunk
schedule regimen under the charged-initiation model:

E(c)
n (W(ttl)) ≥ E(c)(W(ttl),Σ

′).

5. Clearly, having each computer attempt all n chunks cannot de-
crease the overall expectation.

However,

E(c)(W(ttl),Σ
′)

=

m′∑
i=1

|X ′i |

1−
∏
j∈Π′i

Pr

σ′(j,i)∑
k=1

(ω′Σ(j,k) + ε1ω′
Σ(j,k)

)


=

m′∑
i=1

|X ′i |

1−
∏
j∈Π′i

Pr

σ′(j,i)∑
k=1

1ω′
Σ(j,k)

(ω′Σ(j,k) + ε)


=

m′∑
i=1

|X ′i |

1−
∏
j∈Π′i

Pr

σ′(j,i)∑
k=1

1ω′
Σ(j,k)

ωΣ(j,k)


≥

m′∑
i=1

|X ′i |

1−
∏
j∈Π′i

Pr

σ′(j,i)∑
k=1

ωΣ(j,k)


≥
∑
i∈I′
|X ′i |

1−
∏
j∈Π′i

Pr

σ′(j,i)∑
k=1

ωΣ(j,k)


=
∑
i∈I′
|X ′i |

1−
∏

j∈Πτ(i)

Pr

σ(j,τ(i))∑
k=1

ωΣ(j,k)


= E(f)(W(ttl),Σ)

−
∑
i/∈I′
|X ′i |

1−
∏

j∈Πτ(i)

Pr

σ(j,τ(i))∑
k=1

ωΣ(j,k)


≥ E(f)(W(ttl),Σ)−

∑
i/∈I′
|X ′i |

= E(f)(W(ttl),Σ)−

∣∣∣∣∣ ⋃
i/∈I′
X ′i

∣∣∣∣∣
≥ E(f)

n (W(ttl))− nε

which yields the righthand bound.

3 SCHEDULING ONE REMOTE COMPUTER

This section derives optimal or asymptotically schedules
when there is only a single remote computer.

3.1 Scheduling under the Free-Initiation Model
Under the free-initiation model, we are able to derive
rather strong results: an exactly optimal worksharing
schedule under the linear risk function (Section 3.1.1)
and an asymptotically optimal one for arbitrary risk
functions (Section 3.1.2).

3.1.1 An optimal schedule for the linear risk model
Even this simplest of the scenarios we study has compli-
cating subtleties. The risk of losing work because of an
interruption molds our scheduling strategies, even when
there is only one remote computer and when additional
chunks of work—which betoken additional communi-
cations and/or checkpoints—incur no cost. When we
instantiate the expectations derived in Section 2.2.2 with
the linear risk function, we discover the following. When
W(ttl) ≤ 1/κ, the expected amount of work achieved
when one deploys the entire workload as a single chunk
is E(f)(W(ttl),Σ1) = W(ttl) − κ(W(ttl))

2. The analogous

LIP RESEARCH REPORT RR-LIP-2010-18 7

quantity when one deploys the workload as two chunks,
of respective sizes ω1 > 0 and ω2 > 0, with ω1 + ω2 =
W(ttl), is E(f)(W(ttl),Σ2) = W(ttl) − W 2

(ttl)κ + ω1ω2κ. It
follows that

E(f)(W(ttl),Σ2)− E(f)(W(ttl),Σ1) = ω1ω2κ > 0.

Thus, for any fixed total workload, one increases the
expectation of W(cmp) by deploying the workload as
two chunks rather than one—no matter how one sizes
the chunks. In fact, this trend continues indefinitely: the
expectation of W(cmp) for the optimal schedule strictly
increases with the number of chunks allowed (The-
orem 2). This fact identifies a weakness of the free-
initiation model: the (unattainable) “optimal” strategy
would deploy infinitely many infinitely small chunks.
We formalize and flesh out this observation.

Theorem 2 ([1]): (Optimal schedule: free initiation, linear
risk) One wishes to deploy W(ttl) units of work to a single
computer in at most n chunks, for some n > 0.
The goal. To maximize the expectation of W(cmp).
The unique optimal regimen. We deploy only W(dpl) =

min
{
W(ttl),

n
n+1X

}
units of work,6 and we let each

chunk comprise W(dpl)/n units of work.
In expectation, this regimen completes E

(f)
n (W(ttl)) =

W(dpl) − 1
2 (1 + 1/n)W 2

(dpl)κ units of work.
Proof: Let us partition the W(ttl)-unit workload into

n + 1 chunks, of respective sizes ω1 ≥ 0, . . . , ωn ≥ 0,
ωn+1 ≥ 0, with the intention of deploying the first n of
these chunks.

(a) Our assigning the first n chunks nonnegative,
rather than positive sizes affords us a convenient
way to talk about “at most n chunks” using
only the single parameter n. (b) By creating
n+ 1 chunks rather than n, we allow ourselves
to hold back some work in order to avoid
what would be a certain interruption of the nth
chunk. Formally, exercising this option means
making ωn+1 positive; declining the option—
thereby deploying all W(ttl) units of work—
means setting ωn+1 = 0.

Each specific such partition specifies an n-chunk sched-
ule Σn. Our challenge is to choose the sizes of the
n + 1 chunks in a way that maximizes E(f)(W(ttl),Σn).
To simplify notation, let Z = ω1 + · · · + ωn denote the
portion of the entire workload that we actually deploy.

Extending the reasoning from the cases n = 1 and
n = 2, one obtains easily from (2) the expression

E(f)(W(ttl),Σn) = ω1(1− ω1κ) + ω2(1− (ω1 + ω2)κ)

+ · · ·+ ωn(1− (ω1 + · · ·+ ωn)κ)

= Z − Z2κ+

 ∑
1≤i<j≤n

ωiωj

κ. (4)

Standard arguments show that the bracketed sum in
(4) is maximized when all ωi’s share the common

6. Recall that the episode is certain to be interrupted by time X .

value Z/n, in which case, the sum achieves the value
1

n2

(
n

2

)
Z2κ. Since maximizing the sum also maximizes

E(f)(W(ttl),Σn), simple arithmetic yields:

E(f)(W(ttl),Σn) = Z − n+ 1

2n
Z2κ.

Viewing this expression for E(f)(W(ttl),Σn) as a function
of Z, we note that the function is unimodal, increas-
ing until Z =

n

(n+ 1)κ
and decreasing thereafter.

Setting this value for Z, gives us the maximum value
for E(f)(W(ttl),Σn), i.e., the value of E(f)

n (W(ttl)). The
theorem follows.

Note. Many risk functions, such as the linear risk
function, have “built-in” ends to worksharing episodes,
because there is an amount of work, call it V , by whose
completion, the computer is certain to have been inter-
rupted; i.e., the probability of its having been interrupted
is 1. For such risk functions, one can improve the equal-
chunk schedule Σ(n) by choosing chunk sizes based on
V instead of on W(ttl). This phenomenon is visible in
Theorem 2 and recurs in our study.

3.1.2 Asymptotic optimality under arbitrary risk
The following notation is useful throughout the paper.
Say that our workload consists of W(ttl) units of work
that we somehow order linearly. We denote by 〈a, b〉
the sub-workload obtained by eliminating: the initial a
units of work and all work beyond the initial b units.
For illustration: 〈0,W(ttl)〉 denotes the entire workload,
〈0, 1

2W(ttl)〉 denotes the first half of the workload, and
〈 12W(ttl),W(ttl)〉 denotes the last half of the workload.

We show now that, for one remote computer, a sched-
ule that deploys equal-size chunks is asymptotically opti-
mal, no matter what the risk function. Throughout, we
employ the phrase “asymptotically optimal” to mean
that the expectation of W(cmp) of the schedule being dis-
cussed tends to the expectation of an optimal schedule
as n grows without bound.

Theorem 3: (Asymptotically optimal schedule: free initia-
tion, arbitrary risk) One wishes to deploy W(ttl) units of
work to a single remote computer in at most n chunks,
for some n > 0.
The goal. To maximize the expectation of W(cmp).
An asymptotically optimal schedule, Σ(n). One partitions the
overall workload into n equal-size chunks W1, · · · ,Wn:

For each i ∈ [1, n]

Assign:
[
Wi ←

〈
i− 1

n
W(ttl),

i

n
W(ttl)

〉]
Proof: We denote by Opt(n) an optimal regimen

using (at most) n chunks. Under regimen Opt(n), we
denote the chunks W ′1, ..., W ′n, and we denote by ω′i
the size of chunk W ′i . Without loss of generality, we can
assume that, for any i in [1..n], chunk W ′i is equal to〈∑i−1

k=1 ω
′
k,
∑i
k=1 ω

′
k

〉
.

LIP RESEARCH REPORT RR-LIP-2010-18 8

Let us consider any strictly positive integer m. We are
going to compare the performance of the scheduling reg-
imens Opt(n) and Σ(m). For that purpose, we introduce
three more notations. First, we denote by α the size of a
chunk of Σ(m): α =

W(ttl)

m . Then, for any i ∈ [1..m − 1],
let s(i) be the index of the first chunk of Σ(m) which
starts no sooner than the end of the ith chunk of Opt(n).
Formally:

s(i) = 1 +

⌈∑i
k=1 ω

′
k

α

⌉
.

Symmetrically, for any i ∈ [1..m], let p(i) be the index
of the last chunk of Σ(m) which ends no later than the
beginning of the ith chunk of Opt(n). Formally:

p(i) =

⌊∑i−1
k=1 ω

′
k

α

⌋
.

If at least one chunk of Σ(m) is fully included in W ′i ,
s(i− 1) is the index of the first such chunk, and p(i+ 1)
the index of the last such chunk.

The overall expectation of W(cmp) for Opt(n) is:

E(W(ttl), Opt(n)) =

n∑
i=1

ω′i

1− Pr

 i∑
j=1

ω′j

 . (5)

Let us now consider any chunk W ′i of Opt(n) (that is,
any i ∈ [1..n]). Its contribution to the overall expectation
is:

ei = ω′i

1− Pr

 i∑
j=1

ω′j

 . (6)

If ω′i < 2α, obviously ei < 2α. Otherwise, ω′i ≥ 2α and
there exists at least one chunk of Σ(m) which is included
in the chunk W ′i . Then, p(i+ 1) ≥ s(i− 1) (we extend s
by letting s(0) = 0). We can then establish:

ω′i =

i∑
j=1

ω′j −
i−1∑
j=1

ω′j

=

 i∑
j=1

ω′j − p(i+ 1)α


+ (p(i+ 1)α− (s(i− 1)− 1)α)

+

(s(i− 1)− 1)α−
i−1∑
j=1

ω′j


< α+ (p(i+ 1)− s(i− 1) + 1)α+ α.

Using this result and Equation (6) we can bound the
value of ei:

ei < (2α+ (p(i+ 1)− s(i− 1) + 1)α)

1− Pr

 i∑
j=1

ω′j


≤ 2α+

p(i+1)∑
j=s(i−1)

α

1− Pr

 i∑
j=1

ω′j


≤ 2α+

p(i+1)∑
j=s(i−1)

α (1− Pr (jα)) .

The last inequation holds because p(i+ 1)α is no greater
than

∑i
j=1 ω

′
j and because Pr is a non decreasing func-

tion.
We can now rewrite Equation (5):

E(W(ttl), Opt(n))

=
∑

1≤i≤n
ω′i<2α

ei +
∑

1≤i≤n
ω′i≥2α

ei

<
∑

1≤i≤n
ω′i<2α

2α+
∑

1≤i≤n
ω′i≥2α

2α+

p(i+1)∑
j=s(i−1)

α (1− Pr (jα))


≤ 2nα+

m∑
j=1

α (1− Pr (jα))

≤ 2n

m
W(ttl) + E(W(ttl),Σ(m)).

Therefore, for any positive integers n and m:

E(W(ttl), Opt(n))− 2n

m
W(ttl)

< E(W(ttl),Σ(m)) ≤
E(W(ttl), Opt(m)). (7)

E(W(ttl), Opt(n)) is obviously a nondecreasing, upper-
bounded (by W(ttl)), sequence and it thus converges. By
replacing n by b

√
mc in Equation (7), one easily sees

that the sequence E(W(ttl),Σ(m)) is converging with the
same limit.

3.2 The Charged-Initiation Model, with Linear Risk
The charged-initiation analogue of Theorem 2 is drasti-
cally more difficult to deal with. The following result is
strikingly similar to an analogous result in [10], despite
substantive differences between our model and theirs.

Theorem 4 ([1]): (Optimal schedule: charged initiation,
linear risk) One wishes to deploy W(ttl) units of work to
a single computer in at most n chunks, for some integer
n > 0, when X ≥ ε.
The goal. To maximize E(c)

n (W(ttl)).
The unique optimal schedule. Let
n1 =

⌊
1
2 (1 + 8

εX)
1
2 − 1

2

⌋
; n2 =

⌊
1
2 (1 + 8

εW(ttl))
1
2 + 1

2

⌋
.

The unique regimen:
1) deploys the work in m = min{n, n1, n2} chunks;
2) gives the first chunk size

ω1,m = W(dpl)/m+ (m− 1)ε/2
where

W(dpl) = min

{
W(ttl),

m

m+ 1
X −mε/2

}
. (8)

3) inductively, gives the (i+ 1)th chunk size
ωi+1,m = ωi,m − ε.

In expectation, this schedule completes

E(c)
n (W(ttl)) = W(dpl) −

m+ 1

2m
W 2

(dpl)κ

− m+ 1

2

(
W(dpl) −

(m− 1)m

12
ε

)
εκ (9)

LIP RESEARCH REPORT RR-LIP-2010-18 9

units of work.
Note that E(c)

n (W(ttl)) is maximal for any value of n
not smaller than min{n1, n2}.

Proof: We proceed by induction on the number n
of chunks we want to partition our W(ttl) units of work
into. We denote by E(c)

opt(W(ttl), n) the maximum expected
amount of work that a schedule can complete under such
a partition.

Focus first on the case n = 1. When work is allocated
in a single chunk, the maximum expected amount of
total work completed is, by definition:

E(c)
opt(W(ttl), 1) = max

0≤ω1,1≤W(ttl)

E(c)(ω1,1) where

E(c)(ω1,1) = max
0≤ω1,1≤W(ttl)

ω1,1(1− (ω1,1 + ε)κ).

We determine the optimal size of ω1,1 by viewing this
quantity as a variable in the closed interval [0,W(ttl)] and
maximizing E(c)(ω1,1) symbolically. We thereby find that
E(c)(ω1,1) is maximized by setting

ω1,1 = min

{
W(ttl),

1

2κ
− ε

2

}
,

so that

E(c)
opt(W(ttl), 1) =


1

4κ
− ε

2
+
ε2

4
κ if W(ttl) >

1

2κ
− ε

2
,

W(ttl) −W 2
(ttl)κ−W(ttl)εκ otherwise.

(Note that ω1,1 has a non-negative size because of the
natural hypothesis that X ≥ ε.)

We now proceed to general values of n by induc-
tion. We begin by assuming that the conclusions of the
theorem have been established for the case when the
workload is split into n ≥ 1 positive-size chunks. We
also assume that n is no greater than min{n1, n2}. In
other words, we assume that any optimal solution with
at most n chunks used n positive-size chunks.

As our first step in analyzing how best to deploy n+1
positive-size chunks, we note that the only influence the
first n chunks of work have on the probability that the
last chunk will be computed successfully is in terms of
their cumulative size.

Let us clarify this last point, which follows from
the failure probability model. Denote by An
the cumulative size of the first n chunks of
work in the expectation-maximizing (n + 1)-
chunk scenario; i.e., An =

∑n
i=1 ωi,n+1. Once

An is specified, the probability that the remote
computer will be interrupted while working on
the (n+ 1)th chunk depends only on the value
of An, not on the way the An units of work have
been divided into chunks.

This fact means that once one has specified the
cumulative size of the workload that comprises the first
n chunks, the best way to partition this workload into
chunks is as though it were the only work in the system,
i.e., as if there were no (n + 1)th chunk to be allocated.

Thus, one can express Eopt(W(ttl), n + 1) in terms of
An (whose value must, of course, be determined)
and Eopt(An, n), via the following maximization.
Eopt(W(ttl), n+ 1) =

max
{
Eopt(An, n)

+ωn+1,n+1 (1− (An + ωn+1,n+1 + (n+ 1)ε)κ)} ,
where the maximization is over all values for An in
which

An > 0
(allowing for the n previous chunks)

ωn+1,n+1 ≥ 0
(allowing for an (n+ 1)th chunk)
An + ωn+1,n+1 ≤ W(ttl)

(because the total workload has size W(ttl))
An + ωn+1,n+1 + (n+ 1)ε ≤ X

(reflecting the risk and cost models)

The last of these inequalities acknowledges that the
remote computer is certain to be interrupted (with prob-
ability 1) before it can complete the (n + 1)th chunk
of work, if its overall workload is no smaller than
X − (n+ 1)ε.

We now have two cases to consider, depending on the
size of An.

Case 1: An <
n

n+ 1
X − n

2
ε.

By assumption, the expectation-maximizing regimen
deploys An units of work via its first n chunks. By in-
duction, expression (9) tells us that the expected amount
of work completed by deploying these An units is

E(c)
opt(An, n) =

An −
n+ 1

2n
A2
nκ−

n+ 1

2
Anεκ+

(n− 1)n(n+ 1)

24
ε2κ.

Let W(dpl) denote the total work that is actually allocated:
W(dpl) = An+ωn+1,n+1. In the following calculations, we
write ωn+1,n+1 as W(dpl) − An, in order to represent the
(n + 1)-chunk scenario entirely via quantities that arise
in the n-chunk scenario.

We focus on

E(1)(An, ωn+1,n+1)

= Eopt(An, n) + (W(dpl) −An)
(
1−

(
W(dpl) + (n+ 1)ε

)
κ
)

=
(
An − n+1

2n A
2
nκ− n+1

2 Anεκ+ (n−1)n(n+1)
24 ε2κ

)
+(W(dpl) −An)

(
1−

(
W(dpl) + (n+ 1)ε

)
κ
)

=
(
W(dpl) + n+1

2 ε
)
Anκ− n+1

2n A
2
nκ

+W(dpl)(1− (W(dpl) + (n+ 1)ε)κ) + (n−1)n(n+1)
24 ε2κ.

For a given value of W(dpl), we look for the best value
for An using the preceding expression. We note first that

∂E(1)(An, ωn+1,n+1)

∂An
= −n+ 1

n
Anκ+W(dpl)κ+

n+ 1

2
εκ.

We note next that, for fixed W(dpl), the quantity
E(1)(An, ωn+1,n+1) begins to increase with An and then

LIP RESEARCH REPORT RR-LIP-2010-18 10

decreases. The value for An that maximizes this expec-
tation, which we denote A(opt)

n , is

A(opt)
n = min

{
W(ttl),

n

n+ 1
W(dpl) +

n

2
ε

}
.

When W(ttl) ≤ (n/(n + 1))W(dpl) + 1
2nε, A

(opt)
n = W(ttl),

meaning that the (n+1)th chunk is empty, and the sched-
ule does not optimize the expected work. (In the charged-
initiation model an empty chunk decreases the overall
probability). Consequently, we focus for the moment on
the case

A(opt)
n =

n

n+ 1
W(dpl) +

n

2
ε (10)

(thereby assuming that W(ttl) ≥ (n/(n+1))W(dpl) + 1
2nε).

Therefore, we have

E(1)(A(opt)
n , ωn+1,n+1) =

− n+ 2

2(n+ 1)
W 2

(dpl)κ+W(dpl) −
n+ 2

2
εW(dpl)κ

+
n(n+ 1)(n+ 2)

24
ε2κ.

We maximize E(1)(A
(opt)
n , ωn+1,n+1) via the preceding

expression by viewing the expectation as a function of
W(dpl). We discover that E(1)(A

(opt)
n , ωn+1,n+1) is maxi-

mized when

W(dpl) = W
(opt)
(dpl) = min

{
n+ 1

n+ 2
X − n+ 1

2
ε,W(ttl)

}
. (11)

For this case to be meaningful, the (n + 1)th chunk
must be nonempty, so that A(opt)

n < Z; i.e., Z > 1
2n(n +

1)ε. Therefore, we must simultaneously have:
1) (n + 1)/(n + 2)X − 1

2 (n + 1)ε > 1
2n(n + 1)ε, so

that X > 1
2 (n + 1)(n + 2)ε, which requires that

n ≤
⌊

1
2

(√
1 + 8X/ε− 3

)⌋
.

2) W(ttl) > 1
2n(n + 1)ε, which requires that n ≤⌊

1
2

(√
1 + 8W(ttl)/ε− 1

)⌋
.

We can now check the sanity of the result.

W
(opt)
(dpl) + (n+ 1)ε ≤ n+ 1

n+ 2
X − n+ 1

2
ε+ (n+ 1)ε < X,

because of the just established condition 1
2 (n + 1)(n +

2)ε < X . We also have,

A
(opt)
n = n

n+1W(dpl) + n
2 ε

≤ n
n+1

(
n+1
n+2X −

n+1
2 ε
)

+ n
2 ε

= n
n+2X

< n
n+1X −

n
2 ε

because 1
2 (n+ 1)(n+ 2)ε < X . Therefore, the solution is

consistent with the defining hypothesis for this case—
namely, that An <

n

n+ 1
X − n

2
ε.

Before moving on to case 2, we note that the value
(10) does, indeed, extend our inductive hypothesis. To
wit, the optimal total amount of allocated work, W (opt)

(dpl) ,
has precisely the predicted value, and the sizes of the

first n chunks do follow a decreasing arithmetic progres-
sion with common difference ε (by using the induction
hypothesis). Finally, the last chunk has the claimed size:

ωn+1,n+1 = W
(opt)
(dpl) −A

(opt)
n =

1

n+ 1
W

(opt)
(dpl) −

n

2
ε.

We turn now to our remaining chores. We must derive
the expectation-maximizing chunk sizes for the second
case, wherein An is “big.” And, we must show that the
maximal expected work completion in this second case
is always dominated by the solution of the first case—
which will lead us to conclude that the regimen of the
theorem is, indeed, optimal.

Case 2: An ≥
n

n+ 1
X − n

2
ε.

By (8), if the current case’s restriction on An is an
inequality, then An cannot be an optimal cumulative n-
chunk work allocation. We lose no generality, therefore,
by focusing only on the subcase when the defining
restriction of An is an equality:

An =
n

n+ 1
X − n

2
ε.

For this value of An, call it A?n, we have
Eopt(W(ttl), n+ 1) =

max
(
Eopt(A

?
n, n)

+ωn+1,n+1 (1− (A?n + ωn+1,n+1 + (n+ 1)ε)κ)) ,
where the maximization is over all values of ωn+1,n+1

in the closed interval [0, W(ttl) −A?n].
To determine a value of ωn+1,n+1 that maximizes

Eopt(W(ttl), n+ 1) for A?n, we focus on the function

E(2)(An, ωn+1,n+1)

= Eopt(An, n)

+ ωn+1,n+1 (1− (An + ωn+1,n+1 + (n+ 1)ε)κ)

=
(
An − n+1

2n A
2
nκ− n+1

2 Anεκ+ (n−1)n(n+1)
24 ε2κ

)
+ ωn+1,n+1 (1− (An + ωn+1,n+1 + (n+ 1)ε)κ)

= −κω2
n+1,n+1 +

(
−n+2

2 κε+ 1
n+1

)
ωn+1,n+1

+
n((n+1)2(n+2)ε2κ2−12(n+1)εκ+12)

24(n+1)κ .

Easily,

∂E(2)(An, ωn+1,n+1)

∂ωn+1,n+1
= −2κωn+1,n+1−

n+ 2

2
κε+

1

n+ 1
.

Knowing A?n exactly, we infer that the value of ωn+1,n+1

that maximizes the expectation E(2)(A?n, ωn+1,n+1) is

ωn+1,n+1 = min
{

1
2(n+1)X −

1
4 (n+ 2)ε,

W(ttl) −
n

n+ 1
X − n

2
ε

}
.

The second term dominates this minimization whenever

W(ttl) ≥
2n+ 1

2n+ 2
X +

n− 2

4
ε;

LIP RESEARCH REPORT RR-LIP-2010-18 11

therefore, if W(ttl) is large enough—as delimited by the
preceding inequality—then

E(2)(A?n, ωn+1,n+1) =

2n2 + 2n+ 1

4(n+ 1)2
X − 2n2 + 3n+ 2

4(n+ 1)
ε

+
(n+ 2)(2n2 + 5n+ 6

48
κε2,

When W(ttl) does not achieve this threshold, then

E(2)(A?n, ωn+1,n+1) =−W 2
(ttl)κ

+

(
n− 2

2
κε+

2n+ 1

n+ 1

)
W(ttl)

+
(n2 + 3n+ 14)nκε2

24

− n2

n+ 1
ε− n

2(n+ 1)
X.

For the found solution to be meaningful, the (n+ 1)th
chunk must be nonempty, i.e., ωn+1,n+1 > 0. This has
two implications.

1) X > (n+1)(n+2)
2 ε, which is true as long as n ≤⌊

1
2

(√
1 + 8X/ε− 3

)⌋
.

2) W(ttl) − (n/(n + 1))X − 1
2nε > 0, which im-

plies W(ttl) > 1
2n(n + 1)ε because X ≥ W(ttl).

This inequality on W(ttl) is true as long as n ≤⌊
1
2

(√
1 + 8W(ttl)/ε− 1

)⌋
.

Because X > 1
2 (n + 1)(n + 2)ε, we have

An + ωn+1,n+1 + (n+ 1)ε

≤ n
n+1X −

n
2 ε+ 1

2(n+1)κ −
1
4 (n+ 2)ε+ (n+ 1)ε

≤ X.
For both Case 1 and Case 2, if either condition[

n ≤
⌊

1

2

(√
1 + 8X/ε− 3

)⌋]
or [

n ≤
⌊

1

2

(√
1 + 8W(ttl)/ε− 1

)⌋]
does not hold, then there is no optimal schedule with
(n + 1) nonempty chunks. (We will come back later to
the case where one of these conditions does not hold.) If
both conditions hold, then Case 1 always has an optimal
schedule, but Case 2 may not have one.

To complete the proof, we must verify that the optimal
regimen always corresponds to Case 1 (as suggested by
the theorem), never to Case 2 (whenever Case 2 defines
a valid solution). We accomplish this by considering two
cases, depending on the size W(ttl) of the workload.
We show that the expected work completed under the
regimen of Case 1 is never less than under the regimen
of Case 2.

Case A: W(ttl) ≥
n+ 1

n+ 2
X − n+ 1

2
ε.

Under this hypothesis, and under Case 1, the work-
load that is actually deployed has size

W(dpl) =
n+ 1

n+ 2
X − n+ 1

2
ε,

so that, in expectation,

E(1)(W(ttl), n+ 1) =

W(dpl) −
n+ 1

2n
W 2

(dpl)κ−
n+ 1

2
W(dpl)εκ

+
(n− 1)n(n+ 1)

24
ε2κ

=
n+ 1

2(n+ 2)
X − n+ 1

2
ε+

(n+ 1)(n+ 2)(n+ 3)

24
ε2κ.

units of work are completed. Moreover, because

n+ 1

n+ 2
X − n+ 1

2
ε ≤ 2n+ 1

2n+ 2
X +

n− 2

4
ε,

the most favorable value for E(1)(W(ttl), n + 1) under
Case 2 lies within the range of values for the current
case. Because the value of E(1)(W(ttl), n + 1) is constant
whenever

W(ttl) ≥
n+ 1

n+ 2
X − n+ 1

2
ε,

we can reach the desired conclusion by just showing that
this value is no smaller than:
E(2)

(
2n+ 1

2n+ 2
X +

n− 2

4
ε, n+ 1

)
. Thus, we need only fo-

cus on the specific value

W(ttl−lim) =
2n+ 1

2n+ 2
X +

n− 2

4
ε

for W(ttl). For this value, we have:

E(2)(W(ttl−lim), n+ 1) =

−W 2
(ttl−lim)κ+

(
n− 2

2
κε+

2n+ 1

n+ 1

)
W(ttl−lim)

+
(n2 + 3n+ 14)nκε2

24
− n2

n+ 1
ε− n

2(n+ 1)
X

=
2n2 + 2n+ 1

4(n+ 1)2
X − 2n2 + 3n+ 2

4(n+ 1)
ε

+
(n+ 2)(2n2 + 5n+ 6)

48
ε2κ.

By explicit calculation, we finally see that

E(1)(W(ttl), n+ 1)− E(2)(W(ttl−lim), n+ 1)

=

(
4 + (n4 + 6n3 + 13n2 + 12n+ 4)κ2ε2

)
n

16(n+ 1)2(n+ 2)κ

− (4n2 + 12n+ 8)κεn

16(n+ 1)2(n+ 2)κ

=

(
4 + (n+ 1)2(n+ 2)2κ2ε2 − 4(n+ 1)(n+ 2)κε

)
n

16(n+ 1)2(n+ 2)κ

=
((n+ 1)(n+ 2)κε− 2)

2
n

16(n+ 1)2(n+ 2)κ

≥ 0.

Case B: W(ttl) ≤
n+ 1

n+ 2
X − n+ 1

2
ε.

LIP RESEARCH REPORT RR-LIP-2010-18 12

In this case, the regimen of Case 1 deploys all W(ttl)

units of work, thereby completing, in expectation,

E(1)(W(ttl), n+ 1) =

W(ttl) −
n+ 1

2n
W 2

(ttl)κ−
n+ 1

2
W(ttl)εκ

+
(n− 1)n(n+ 1)

24
ε2κ.

units of work. Moreover,
n+ 1

n+ 2
X − n+ 1

2
ε ≤ 2n+ 1

2n+ 2
X +

n− 2

4
ε,

so that the regimen of Case 2 also deploys all W(ttl) units
of work, thereby completing, in expectation,

E(2)(W(ttl), n+ 1) =

−W 2
(ttl)κ+

(
n− 2

2
κε+

2n+ 1

n+ 1

)
W(ttl)

+
(n2 + 3n+ 14)nκε2

24
− n2

n+ 1
ε− n

2(n+ 1)
X.

units of work.
Explicit calculation now shows that

E(1)(W(ttl), n+ 1)− E(2)(W(ttl), n+ 1)

=
n

2(n+ 1)
W 2

(ttl)κ−
n

n+ 1
(1 + (n+ 1)εκ)W(ttl)

+
n

2(n+ 1)
(1 + 2nκε− (n+ 1)κ2ε2)X.

Viewed as a function of W(ttl), this difference is, thus,
unimodal, decreasing up to its global minimum, which
occurs at W(ttl) = X+(n+1)ε, and increasing thereafter.
The largest value of W(ttl) allowed by the current case
is

W(ttl−max) =
n+ 1

n+ 2
X − n+ 1

2
ε,

so this is also the value on which the difference
E(1)(W(ttl), n+1)−E(2)(W(ttl), n+1) reaches its minimum
within its domain of validity. Thus, we need only focus
on the behavior of the difference at the value W(ttl) =
W(ttl−max). At this value,

E(1)(W(ttl−max), n+ 1)− E(2)(W(ttl−max), n+ 1) =

n(5n+ 1)ε2κ

8
+

(n− 1)nε

2(n+ 1)(n+ 2)
+

n

2(n+ 1)(n+ 2)2κ
.

This quantity is obviously positive, which means that
E(1)(W(ttl−max), n+ 1) > E(2)(W(ttl−max), n+ 1).

We thus see that, for workloads of any size W(ttl),
one completes at least as much expected work via the
schedule of Case 1 as via the schedule of Case 2.

In summation, if

n ≤ min


⌊

1

2

(√
1 + 8X/ε− 3

)⌋
⌊

1

2

(√
1 + 8W(ttl)/ε− 1

)⌋ (12)

then Case 1 specifies the optimal schedule that uses
no more than n + 1 chunks. Of course, this inequality

translates to the conditions of the theorem (where it is
written for n chunks instead of n+ 1).

Note that if n exceeds either quantity in the mini-
mization of (12), then one never improves the expected
amount of work completed by deploying the workload
in more than n chunks. This is another consequence of
our remark about An at the beginning of this proof. If
there exists a value of m for which there exists a schedule
S that uses ≥ n + 1 nonempty chunks, then replacing
the first n + 1 chunks in this solution with the optimal
solution for n chunks, using a workload equal to the first
n+ 1 chunks of S, yields a schedule that, in expectation,
completes strictly more work than S.

About arbitrary risk. Even with one single computer,
we could obtain only asymptotic optimality results un-
der arbitrary risk with the free-initiation model (see
Section 3.1.2). Using Theorem 1, we can still derive an
asymptotic optimal schedule for the charged-initiation
model.

4 SCHEDULING TWO REMOTE COMPUTERS
WITH FREE INITIATION

When scheduling a single remote computer, one needs
not cope with many of the hardest aspects of scheduling
many remote computers, notably those involving repli-
cating and ordering work. In contrast, when scheduling
two remote computers, one does have to cope with such
issues. Accordingly, our work in this section allows us
to derive principles that guide us as we address the
general case of p remote computers in the next section.
We focus in this section only on the free-initiation model,
in order to simplify the problem of work replication. By
Theorem 1, the optimal schedules we derive are asymp-
totically optimal under the charged-initiation model.

We begin this section with a result that narrows
the search for optimal schedules by identifying three
characteristics that we may insist on in any candidate
optimal schedule for two remote computers (Section 4.1).
We then observe these characteristics “in action” as we
derive explicit schedules that are asymptotically optimal
under arbitrary risk functions (Section 4.2). We finally
refine the latter schedules for the linear risk model,
developing schedules that are always at least asymp-
totically optimal and are exactly optimal under certain
circumstances (Section 4.3). A major message from this
section is that it is much harder to share work optimally
with multiple computers than with a single computer.
We therefore devote the next section, which deals with
scheduling arbitrary numbers of remote computers, to
a quest for well-structured heuristics whose quality is
established experimentally.

4.1 Guidelines for Crafting Optimal Schedules

Say that we are scheduling two remote computers, P1

and P2. Say further that for j = 1, 2, we deploy nj chunks
of work, call them Wj,1, . . . , Wj,nj , on computer Pj , and

LIP RESEARCH REPORT RR-LIP-2010-18 13

that Pj must schedule its chunks in the indicated order.
We do not assume any a priori relation between how
P1 and P2 break their allocated work into chunks; in
fact, work that is allocated to both P1 and P2 (what we
later call “replicated” work) may be chunked differently
on the two computers. Absent more information about
the risk function that governs the current worksharing
episode, we are not yet ready to prescribe what is the
best way to schedule the work on P1 and P2; however,
we are able to provide valuable guidelines for this
scheduling.

W1,2 W1,3

W2,3 W2,2 W2,1

W1,1

Fig. 1. The shape of an optimal schedule for two computers;
see Theorem 5 with n1 = n2 = 3. The top row displays P1’s
chunks, the bottom row P2’s. Vertically aligned parts of chunks
correspond to replicated work; shaded areas depict unallocated
work (e.g., none of the work inW2,1 is allocated to P1).

Theorem 5: (Guidelines: nondecreasing risk) We want to
schedule a pair of computers, P1 and P2, whose common
probability of being interrupted never decreases as a
computer processes more work. Given any schedule Σ
for the computers, there exists a schedule Σ′ that, in
expectation, completes as much work as Σ does and that
enjoys the following characteristics (cf. Fig. 1).

1) Maximal work deployment. Σ′ deploys as much of the
overall workload as possible.
In particular, the workloads that Σ′ deploys to P1

and P2 can overlap only if their union is the entire
overall workload.

2) Local-work prioritization. Σ′ has P1 (resp., P2) process
all of the allocated work that is not replicated on
P2 (resp., on P1) before it processes any replicated
work.

3) “Mirroring” of replicated work. Σ′ has P1 and P2

process their copies of replicated work “in opposite
orders.”
In detail, say that, for j = 1, 2, computer Pj chops its
allocated work into chunksWj,1, . . . ,Wj,nj . Say that
there exist chunk-indices a1 and b1 > a1 for P1, and
a2 and b2 > a2 for P2 such that: chunks W1,a1 and
W2,a2 both contain copies of a replicated “piece of
work” A, and chunks W1,b1 and W2,b2 both contain
copies of a replicated “piece of work” B. Then if Σ′

has P1 execute A before B, then Σ′ has P2 execute
B before A.

Note that, because our schedules are chunk-oriented,
the phrase “having P1 execute A before B” really means
having P1 execute chunk W1,a1 before chunk W1,b1 ;
similarly, “having P2 execute B before A” really means
having P2 execute chunk W2,b2 before chunk W2,a2 .

Proof: The strategy. We devise a cut-and-paste argu-
ment for each of the theorem’s three characteristics in
turn. Each time, we begin with an arbitrary schedule Σ

that does not have that characteristic, and we show how
to alter Σ to a schedule Σ′ that does have the characteris-
tic and that, in expectation, completes as much work as
does Σ. In order to achieve the required alterations, we
must refine our description of workloads. Specifically,
we now describe the overall workload via a partition
X = {X1, . . . ,Xm} of pieces of work, that has the following
property. For j = 1, 2, each piece Xi ∈ X is either
included within a chunk of Pj , or it is disjoint from each
chunk of Pj . We define, for j = 1, 2 and i = 1, . . . ,m, the
indicator

δj(i) =



0 when Xi ∈ X does not intersect
any chunk of Pj

1 when Xi is contained within a chunk
of Pj , say, chunk σj(i)

— so that Xi ⊂ Wj,σj(i)

We now specify the expectation, E , of W(cmp) under
this new specification of the deployment of chunks to P1

and P2. The probability that piece Xi ∈ X is computed
successfully is:
• 0 if Xi is not allocated to either P1 or P2;
• 1− Pr

(∑σk(i)
j=1 ωk,j

)
if Xk is allocated only to Pk

i.e., if δk(i)(1− δk′(i)) = 1, where {k, k′} = {1, 2};
• 1 − Pr

(∑σ1(i)
j=1 ω1,j

)
Pr
(∑σ2(i)

j=1 ω2,j

)
if Xi is allo-

cated to both P1 and P2; i.e., if δ1(i)δ2(i) = 1.
We thus have

E =

m∑
i=1

|Xi| · Ξi (13)

where

Ξi = δ1(i)δ2(i)

1− Pr

σ1(i)∑
j=1

ω1,j

Pr

σ2(i)∑
j=1

ω2,j


+ δ1(i)(1− δ2(i))

1− Pr

σ1(i)∑
j=1

ω1,j


+ (1− δ1(i))δ2(i)

1− Pr

σ2(i)∑
j=1

ω2,j

 .

The alterations. We now look at each of our three char-
acteristics in turn, performing the following process for
each. We begin with a schedule Σ(0) that, in expectation,
completes E(0) units of work. Say, for induction, that we
now have a schedule Σ(r) that completes E(r) units of
work. We describe how to alter Σ(r) to obtain a schedule
Σ(r+1) that, in a sense, comes closer to enjoying the
current characteristic and that, in expectation, completes
E(r+1) ≥ E(r) units of work. We prove that a finite
sequence of such alterations converts Σ(0) to a schedule
Σ that enjoys the characteristic.

Maximal work deployment. Say that schedule Σ deploys
some portion of the overall workload to both P1 and P2,
while it leaves some other piece unallocated to either:
• the doubly allocated portion is a piece Xi ∈ X ;

LIP RESEARCH REPORT RR-LIP-2010-18 14

• the unallocated work is a piece Xj ∈ X .
To alter schedule Σ, we wish somehow to swap some
doubly allocated work for an equal amount of unallo-
cated work. This is easy when |Xi| = |Xj |. Otherwise,
we achieve this goal as follows.

1) If |Xj | < |Xi|, then we invoke divisibility to subdi-
vide Xi into one piece, A, of size |Xj | and another of
size |Xi| − |A|. We swap B = Xj for A in the chunk
of P1 that contains Xi.

2) If |Xj | > |Xi|, then we invoke divisibility to subdi-
vide Xj into one piece, B, of size |Xi| and another of
size |Xj |−|B|. We swap B for A = Xi in the relevant
chunk of P1.

In case 1, Σ(r+1) has no more unallocated work and the
maximal deployment rule is in force. In case 2, Σ(r+1)

has one fewer piece of doubly allocated work. It follows
that a finite sequence of alterations convert Σ(0) into a
schedule that practices maximal work deployment. We
henceforth assume that Σ practices maximal work deployment.

Local-work prioritization. Assume that under optimal
schedule Σ, there exist Xi,Xj ∈ X such that:

1) Σ allocates Xi to P1 but not to P2; i.e., δ1(i)(1 −
δ2(i)) = 1;

2) Σ allocates Xj to both P1 and P2; i.e., δ1(i)δ2(i) = 1;
3) Σ attempts to execute Xj before Xi on P1: symboli-

cally, σ1(i) ≥ σ1(j).
We alter Σ to obtain a new schedule that comes closer to
prioritizing local work. And, we do so in a way that (a)
at least matches Σ’s expected work production and (b)
guarantees that a finite sequence of alterations produce
a schedule that practices local work prioritization. We
proceed as follows.

We codify the set of violations of local work prioriti-
zation via the set V that identifies every triplet of chunks
that violate local work prioritization.

V =

(k, k′, l)

∣∣∣∣∣∣∣∣∣
W1,k ∩W2,k′ 6= ∅ (replicated work)
W1,l \

⋃n2

l′=1W2,l′ 6= ∅ (local work)
k < l (replicated starts before local)
k ∈ [1, n1], k′ ∈ [1, n2], l ∈ [1, n1]


To choose the alteration to apply to Σ at this step, we
take any triplet (k, k′, l) ∈ V whose first component, k,
is minimal among all the first components of elements
of V , and whose third component, l, is maximal among
all the third components of elements of V (one veri-
fies easily that such an element always exists). From
the perspective of P1, we thus focus on the earliest-
scheduled chunk containing a replicated piece of work
that is scheduled before the latest-scheduled chunk that
contains an unreplicated piece of work.

(1) Say first that |W1,l \
⋃n2

l′=1W2,l′ | ≤ |W1,k ∩W2,k′ |.
In this case, we alter Σ by swapping the piece of work
A = W1,l \

⋃n2

l′=1W2,l′ from W1,l with an arbitrarily
chosen like-sized subset B of W1,k ∩W2,k′ in W1,k. After
the swap, V no longer contains any element of the
form (α, β, l), because chunk W1,l now contains only
replicated work. Furthermore, by choice of k, chunks

W1,1 throughW1,k−1 contain only work for P1 that is not
replicated on P2. Thus, the swap reduces the number of
violations.

(2) Say alternatively that |W1,l\
⋃n2

l′=1W2,l′ | > |W1,k∩
W2,k′ |. In this case, we alter Σ by swapping the piece of
work B = W1,k ∩ W2,k′ from W1,k with an arbitrarily
chosen like-sized subset A of W1,l \

⋃n2

l′=1W2,l′ in W1,l.
After the swap, V no longer contains any element of the
form (k, k′, α). Furthermore, by definition of k, chunks
W1,1 through W1,k−1 contain only work for P1 that is
not replicated on P2. Thus, this swap also reduces the
number of violations.

Clearly, at most |V| alterations are needed to convert
Σ to a schedule that practices local-work prioritization
on computer P1. Because each alteration affects only the
scheduling on P1, we can now apply an analogous
sequence of alterations that focus on violations by com-
puter P2. After this second round of alterations, we have
finally converted Σ to a schedule that practices local
work prioritization on both computers. We henceforth
assume that Σ practices local-work prioritization.

“Mirroring” of replicated work. Say that, under schedule
Σ, there are two partition elements, Xi and Xj , such that:

1) Σ allocates both Xi and Xj to both P1 and P2; i.e.,
δ1(i)δ2(i) = δ1(j)δ2(j) = 1;

2) Σ attempts to execute Xi after Xj on both P1 and
P2: symbolically, [σ1(i) ≥ σ1(j)] and [σ2(i) ≥ σ2(j)].

We craft a sequence of alterations to Σ that produce a
schedule that practices the mirroring of replicated work.
Essentially, at each step, we identify a pair of pieces of
work, A and B, that violate mirroring in the way just
described. We then swap B for A in chunk W1,σ1(A)

and swap A for B in chunk W1,σ1(B), while leaving the
schedule of P2 unchanged.

How do we select the pieces to focus on at this
step? Our job is somewhat simplified by our ability to
focus entirely on replicated pieces of work—because of
our assumption that Σ practices both maximal work
deployment and local-work prioritization. We employ
the following inductive process to choose the pieces from
among pieces of replicated work that violate mirroring.
Say, for induction, that we have so far altered Σ k
times—so that the k pieces of replicated work that P1

is scheduled to (attempt to) execute first are the k pieces
of replicated work that P2 is scheduled to (attempt to)
execute last, and that these pieces are executed in reverse
orders on P1 and P2. We now select the (k + 1)th piece
of replicated work that P1 is scheduled to (attempt
to) execute, call it Xi, and the kth from last piece of
replicated work that P2 is scheduled to (attempt to)
execute, call it Xj .

(1) If Xi = Xj , then there is no violation to undo.
(2) If Xi 6= Xj , then we select the pieces, A and B, to

swap in the (k + 1)th alteration of Σ, in the following
manner. (a) If |Xj | ≥ |Xi|, then we have Xi play the
role of A, and we select as B any size-|A| subset of Xj .
After the swap, B is scheduled as the (k + 1)th piece
of replicated work for P1 to (attempt to) execute and

LIP RESEARCH REPORT RR-LIP-2010-18 15

(in deference to mirroring) as the kth from last piece of
replicated work for P2 to (attempt to) execute. None of
the first k pieces of replicated work for P1 nor any of
the last k pieces of replicated work for P2 were affected
by the swap. To conclude that the inductive process
eventually terminates (successfully!) we first consider
the number of chunks of P1 (respectively P2) that include
only work from the first (resp. last) k pieces of replicated
work. As the alterations progress, the numbers of such
pieces never decrease. If an alteration does not increase
either of these numbers, then we focus on the set of early
chunks of P2 that contain work that is replicated in the
chunk of P1 that we are working with:

V2 =
{
l < σ2(Xj) | W1,σ1(Xi) ∩W2,l 6= ∅

}
,

and the symmetrical set of chunks for P1:

V1 =
{
l > σ1(Xi) | W1,l ∩W2,σ2(Xj) 6= ∅

}
.

If we assume—as we may with no loss of generality—
that we are working with a partition made of maximal
elements, then the alteration decreases the set V2 by one
element (namely, W2,σ2(Xi)) and does not modify the set
V1. (b) The case when |Xj′ | < |Xi′ | is symmetric with case
(a), hence is left to the reader. We note only that, in that
case, the alteration does not modify the set V2, and it
decreases the set V1 by one element (namely, W1,σ1(Xj))
Validating the alterations. To complete the proof, we need
only verify that each of the schedule alterations we have
described cannot produce a schedule that completes less
work than schedule Σ does. An important feature of our
alterations that greatly simplifies these verifications is
that, in each case, the relevant alteration affects only the
terms in expression (13) that mention the pieces involved
in the alteration.

Maximal work deployment. Recall that our alteration of
schedule Σ in this case substituted piece B for piece A in
chunk W1,σ1(A). Now, before this substitution, the total
contribution to the expectation E of these pieces was:

|A| ·

1− Pr

σ1(A)∑
k=1

ω1,k

Pr

σ2(A)∑
k=1

ω2,k

+ |B| · 0.

After the substitution, this contribution becomes:

|A|·

1− Pr

σ2(A)∑
k=1

ω2,k

+|B|·

1− Pr

σ1(A)∑
k=1

ω1,k

 .

Because |A| = |B|, the latter contribution is never less
than the former, differing from it by the quantity

|A| ·

1− Pr

σ1(A)∑
k=1

ω1,k

 ·
1− Pr

σ2(A)∑
k=1

ω2,k

 ,

whose nonnegativity implies that the altered schedule
completes at least as much work, in expectation, as does
schedule Σ.

Local work prioritization. Recall that our alteration of
schedule Σ in this case substituted a piece of local

work A from W1,σ1(A) with a piece of replicated work
B of W1,σ1(B). Now, before this substitution, the total
contribution to the expectation E of these pieces was:

|A| ×

1− Pr

σ1(A)∑
k=1

ω1,k


+ |B| ×

1− Pr

σ1(B)∑
k=1

ω1,k

Pr

σ2(B)∑
k=1

ω2,k

 .

After the substitution, the contribution becomes

|A| ×

1− Pr

σ1(B)∑
k=1

ω1,k


+ |B| ×

1− Pr

σ1(A)∑
k=1

ω1,k

Pr

σ2(B)∑
k=1

ω2,k

 .

Because |A| = |B|, we see that the substitution increases
the overall expectation by the quantity

|A| ×

Pr
σ1(A)∑

k=1

ω1,k

− Pr
σ1(B)∑

k=1

ω1,k


×

1− Pr

σ2(B)∑
k=1

ω2,k

 .

This quantity is nonnegative because

• the probability Pr(w) is nondecreasing in w;
•
∑σ1(A)
k=1 ω1,k ≥

∑σ1(B)
k=1 ω1,k, because σ1(A) ≥ σ1(B).

The altered schedule completes, in expectation, at least
as much work as Σ.

Shared work “mirroring.” Recall that our alteration of
schedule Σ in this case swapped B for A in chunk
W1,σ1(A) and swapped A for B in chunk W1,σ1(B), while
leaving the schedule of P2 unchanged. Now, before this
substitution, the total contribution to the expectation E
of these pieces was:

|A| ×

1− Pr

σ1(A)∑
k=1

ω1,k

Pr

σ2(A)∑
k=1

ω2,k


+ |B| ×

1− Pr

σ1(B)∑
k=1

ω1,k

Pr

σ2(B)∑
k=1

ω2,k

 .

After the substitution, their contribution becomes:

|A| ×

1− Pr

σ1(B)∑
k=1

ω1,k

Pr

σ2(A)∑
k=1

ω2,k


+ |B| ×

1− Pr

σ1(A)∑
k=1

ω1,k

Pr

σ2(B)∑
k=1

ω2,k

 .

LIP RESEARCH REPORT RR-LIP-2010-18 16

Because |A| = |B|, the substitutions have increased the
overall expectation by the quantity:

|A| ×

Pr
σ1(B)∑

k=1

ω1,k

− Pr
σ1(A)∑

k=1

ω1,k


×

Pr
σ2(B)∑

k=1

ω2,k

− Pr
σ2(A)∑

k=1

ω2,k

 .

This quantity is nonnegative because A and B are pro-
cessed in the same order on P1 and on P2. The altered
schedule thus completes, in expectation, at least as much
work as Σ.

4.2 Two Remote Computers under Arbitrary Risk
Our results in [1] suggest that finding exactly optimal
schedules for two remote computers is surprisingly dif-
ficult, even in the simplest case wherein each computer
processes its allocated work as a single chunk or when
the entire workload is deployed on each computer. The
simulations in those sources also suggest that simple
regular solutions often complete, in expectation, almost
as much work as do complex exactly optimal ones.
These results lead us to abandon our quest for exactly
optimal schedules, in favor of asymptotically optimal
schedules with simple structure. Indeed, if one is will-
ing to settle for asymptotically optimal expected work-
production, then reasoning analogous to that used in
analyzing one remote computer shows how to adapt the
asymptotically optimal schedule Σ(n) of Theorem 3—
in the light of the guidelines of Theorem 5—to produce
asymptotically optimal expected work-production with
two remote computers.

Theorem 6: (Asymptotically optimal schedule: arbitrary
risk) One wishes to deploy W(ttl) units of work to two
remote computers, in ≤ n chunks, for some n > 0.
The goal. To maximize the expectation of W(cmp).
An asymptotically optimal schedule. One allocates the same
set of equal-size chunks to both computers, in the fol-
lowing “mirrored” manner:

(∀i ∈ [1, n])

[
W1,i,W2,n−i+1 ←

〈
i− 1

n
W(ttl),

i

n
W(ttl)

〉]
.

Proof: In this proof, we denote by S(n) the regimen
using n chunks we want to establish the asymptotic
optimality of. We denote by Σ(n) an optimal regimen
using (at most) n chunks.

Thanks to Theorem 5, we know the general shape
of schedule Σ(n). Without loss of generality, we can
indeed assume that Σ(n) has the shape described on
Figure 2(a). We thus begin—see Fig. 2(a)—with an opti-
mal schedule Σ(n) that processes work in n chunks and
that satisfies the three properties of Theorem 5. First—
see Fig. 2(b)—we transform Σ(n) to schedule Σ1(n), by
adding a possibly empty (n+1)th chunk to the workload
of each computer so that each computer processes the

entire workload. Clearly, this transformation cannot de-
crease expected work production. Next—see Fig. 2(c)—
we transform Σ1(n) to schedule Σ2(n) by subdividing
chunks so that both computers’ chunk boundaries coin-
cide. We accomplish this as follows. Focus on the (n+1)-
element increasing sequences, ~B1 and ~B2, of “places” in
the workloads of computers P1 and P2, respectively, at
which the chunks end:

~B1 = ω1,1, (ω1,1 + ω1,2), . . . ,

n+1∑
j=1

ω1,j

~B2 = W(ttl) −
n+1∑
j=1

ω2,j , W(ttl) −
n∑
j=1

ω2,j ,

. . . ,W(ttl) − (ω2,1 + ω2,2), W(ttl) − ω2,1

Merge the elements of ~B1 and ~B2 into an increasing
sequence, b0 < b1 < · · · < bl = W(ttl); clearly, l ≤ 2n + 1,
because ~B1 and ~B2 could contain many elements in
common and must both end with W(ttl). Then specify
the new, coterminal, chunks by partitioning W(ttl) into l
chunks as follows:

W ′1,i =W ′2,l−i+1, where each ω′1,i = bi − bi−1.

Finally, we remark that subdividing chunks does not de-
crease the overall expected work production. Therefore:

E(W(ttl),Σ(n)) ≤ E(W(ttl),Σ2(n)).

Let us now consider any strictly positive integer m. We
are going to compare the performance of the scheduling
regimens Σ2(n) and S(m).

For that purpose, we introduce three more notations.
First, we denote by α the size of a chunk of S(m): α =
W(ttl)

m . Then, for any i ∈ [1..m − 1], let s(i) be the index
of the first chunk of S(m) which starts no sooner than
the end of the i-th chunk of Σ2(n) (on computer P1).
Formally:

s(i) = 1 +

⌈∑i
k=1 ω

′
1,i

α

⌉
.

Symmetrically, for any i ∈ [1..m], let p(i) be the index
of the last chunk of S(m) which ends no later than the
beginning of the i-th chunk of Σ2(n) (on computer P1).
Formally:

p(i) =

⌊∑i−1
k=1 ω

′
1,i

α

⌋
.

The overall expectation of W(cmp) for Σ2(n) is:

E(W(ttl),Σ2(n)) =

l∑
i=1

ω′1,i

1− Pr

 i∑
j=1

ω′1,j

Pr

W(ttl) −
i−1∑
j=1

ω′1,j

 . (14)

Let us now consider any chunk W ′1,i of Σ2(n) (that is,
any i ∈ [1..m]). Its contribution to the overall expectation

LIP RESEARCH REPORT RR-LIP-2010-18 17

is:

ei = ω′1,i

1− Pr

 i∑
j=1

ω′1,j

Pr

W(ttl) −
i−1∑
j=1

ω′1,j

. (15)

If ω′1,i < 2α, obviously ei < 2α. Otherwise, ω′1,i ≥ 2α and
there exists at least one chunk of S(m) which is included
in the chunk W1,i. Then, p(i+ 1) ≥ s(i− 1) (we extend s
by letting s(0) = 0). We can then establish:

ω′1,i =

i∑
j=1

ω′1,j −
i−1∑
j=1

ω′1,j

=

 i∑
j=1

ω′1,j − p(i+ 1)α


+ (p(i+ 1)α− (s(i− 1)− 1)α)

+

(s(i− 1)− 1)α−
i−1∑
j=1

ω′1,j


< α+ (p(i+ 1)− s(i− 1) + 1)α+ α.

Using this result and Equation (15) we can bound the
value of ei:

ei < (2α+ (p(i+ 1)− s(i− 1) + 1)α)

×

1− Pr

 i∑
j=1

ω′1,j

Pr

W(ttl) −
i−1∑
j=1

ω′1,j


≤ 2α

+

p(i+1)∑
j=s(i−1)

α

1− Pr

 i∑
j=1

ω′1,j

Pr

W(ttl) −
i−1∑
j=1

ω′1,j


≤ 2α

+

p(i+1)∑
j=s(i−1)

α
(
1− Pr (jα)Pr

(
W(ttl) − (j − 1)α

))
.

The last inequation holds because Pr is a non decreasing
function, because p(i+ 1)α is no greater than

∑i
j=1 ω

′
1,j ,

and because (s(i−1)−1)α is no smaller than
∑i−1
j=1 ω

′
1,j .

We can now rewrite Equation (14):

E(W(ttl),Σ2(n))

=
∑
1≤i≤l
ω′1,i<2α

ei +
∑
1≤i≤l
ω′1,i≥2α

ei

<
∑
1≤i≤l
ω′1,i<2α

2α

+
∑
1≤i≤l
ω′1,i≥2α

2α+

p(i+1)∑
j=s(i−1)

α
(
1−Pr(jα)Pr

(
W(ttl)−(j−1)α

))
≤ 2lα+

l∑
j=1

α
(
1− Pr (jα)Pr

(
W(ttl) − (j − 1)α

))
≤ 4n+ 2

m
W(ttl) + E(W(ttl),S(m)).

Therefore, for any positive integers n and m:

E(W(ttl),Σ(n))− 4n+ 2

m
W(ttl)

≤ E(W(ttl),Σ2(n))− 4n+ 2

m
W(ttl)

< E(W(ttl),S(m))

≤ E(W(ttl),Σ(m)). (16)

E(W(ttl),Σ(n)) is obviously a nondecreasing, upper-
bounded (by W(ttl)), sequence and it thus converges. By
replacing n by b

√
mc in Equation (16), one easily sees

that the sequence E(W(ttl),S(m)) is converging with the
same limit.

4.3 Two Remote Computers under Linear Risk
We finally specialize from arbitrary risk functions to lin-
ear risk, in order to get stronger performance guarantees
under certain conditions.

4.3.1 Exact optimality for single-chunk deployment
Theorem 7: (Optimal schedule: linear risk, single-chunk

deployment) One wishes to deploy W(ttl) units of work
on two computers, deploying a single chunk on each
computer. The following schedule Σ is optimal among
symmetric schedules.
• If W(ttl) ≤ 1

2X , then Σ deploys the entire workload
on both computers; symbolically, W1,1 = W2,1 =
〈0,W(ttl)〉.

• If 1
2X < W(ttl) ≤ X , then Σ deploys the first half of

the workload on one computer and the second half
on the other; symbolically, W1,1 = 〈0, 1

2W(ttl)〉, and
W2,1 = 〈 12W(ttl),W(ttl)〉.

• If X < W(ttl), then Σ deploys only X units of
the workload, allocating the first half to one com-
puter and the second half to the other; symbolically,
W1,1 = 〈0, 1

2X〉, and W2,1 = 〈 12X,X〉.
Proof sketch: We derive the optimal schedule in the

light of the following principle (which we encountered
before). When we deploy work to a remote computer
as a single chunk, we should never make that chunk as
large as X , for that size would risk certain interruption,
hence, in expectation, complete no work. Our analysis
distinguishes schedules that deploy disjoint workloads
to the two computers from those that do not.

If schedule Σ deploys disjoint workloads to the two
remote computers, then the independence of the work-
loads allows us to invoke Theorem 2 to discover their
optimal sizes. The optimal strategy is to deploy W(dpl) =
min{W(ttl), X} units of work in total. If Σ deploys this
work in chunks of respective sizes ω1,1 and ω2,1 =
W(dpl) − ω1,1, then, by (1), the expectation of W(cmp) is

E = −2ω2
1,1κ+ 2ω1,1W(dpl)κ+W(dpl) −W 2

(dpl)κ.

Easily, E is maximized when ω1,1 = ω2,1 = 1
2W(dpl),

which yields the optimal value E = W(ttl) − 1
2W

2
(dpl)κ.

(We did not need to assume that the optimal schedule is
symmetric in this case; we proved that it should be.)

LIP RESEARCH REPORT RR-LIP-2010-18 18

The principle enunciated at the beginning of this proof
implies that an optimal schedule that deploys overlapping
workloads never allocates a full X units of work to
either remote computer. We can, therefore, simplify our
calculations by assuming henceforth that W(ttl) < 2X .
Since we consider only symmetric schedules, Theorem 5
tells us that the common size s of the allocations to
the computers satisfies s ≥ W(ttl)/2. Therefore, the
expectation of W(cmp) as a function of s is

E(s) = −2s3κ2 + (2 +W(ttl)κ)s2κ− 2sW(ttl)κ+W(ttl).

We seek the maximizing value of s.

E ′(s) =
d

ds
E(s) = 2[−3s2κ+ (2 +W(ttl)κ)s−W(ttl)]κ.

The discriminant of the bracketed quadratic polynomial
is:

∆ = W 2
(ttl)κ

2 − 8W(ttl)κ+ 4

=
(
W(ttl)κ− 2

(
2 +
√

3
)) (

W(ttl)κ− 2
(
2−
√

3
))
.

Because W(ttl) < 2X we have, W(ttl)κ < 2(2 +
√

3). We
branch on the relative sizes of W(ttl) and 2(2−

√
3)X :

W(ttl) > 2(2−
√

3)X . In this case, ∆ < 0, so the poly-
nomial has no real roots, and E(s) is decreasing with
s. Because s ∈ [1

2W(ttl),W(ttl)], E(s) is maximized when
s = W(ttl)/2.
W(ttl) ≤ 2(2−

√
3)X . This case is far more complicated

than its predecessor. Let us denote the two roots of our
quadratic polynomial by s− and s+, as follows:

s− =
2 +W(ttl)κ−

√
W 2

(ttl)κ
2 − 8W(ttl)κ+ 4

6κ
and

s+ =
2 +W(ttl)κ+

√
W 2

(ttl)κ
2 − 8W(ttl)κ+ 4

6κ
.

One sees that E(s) decreases as s progresses from −∞
to s−, then increases as s progresses from s− to s+, then
decreases once more as s increases beyond s+. We must
determine how these three intervals overlap E ’s domain
of validity, viz., s ∈ [1

2W(ttl), W(ttl)]. We note first that
1
2W(ttl) ≤ s−. Indeed:

W(ttl)/2 ≥ s−

⇔ W(ttl)/2 ≥
2 +W(ttl)κ−

√
W 2

(ttl)κ
2 − 8W(ttl)κ+ 4

6κ

⇔
√
W 2

(ttl)κ
2 − 8W(ttl)κ+ 4 ≥ 2(1−W(ttl)κ)

⇒ 0 ≥ 3W 2
(ttl)κ

2.

We invoke here the fact that W(ttl)κ ≤ 1, because
W(ttl) ≤ 2(2 −

√
3)X ≤ X . We remark next that

E ′(W(ttl)) = 2W(ttl)κ(1− 2W(ttl)κ), so that E ′(W(ttl)) ≥ 0
and W(ttl) ∈ [s−, s+] when W(ttl) ≤ X

2 ; moreover,
W(ttl) > s+ when W(ttl) >

1
2X . Indeed, if we assume

that 1
2X < W(ttl) ≤ s+ (the lower bound implying

5W(ttl)κ− 2 ≥ 0), then we reach a contradiction:

W(ttl) ≤ s+

⇔ W(ttl) ≤
2+W(ttl)κ+

√
W 2

(ttl)κ
2−8W(ttl)κ+4

6κ

⇔ 5W(ttl)κ−2 ≤
√
W 2

(ttl)κ
2 − 8W(ttl)κ+ 4

⇒ 2W(ttl)κ ≤ 1.

So, once again we have two cases to consider:
W(ttl) ≤ X/2. In this case, we have W(ttl) ∈

[s−, s+], so that E(s) achieves its maximum either when
s = 1

2W(ttl) or when s = W(ttl). Hence E(s)’s maximum
is

either E(W(ttl)/2) = W(ttl) − 1
2W

2
(ttl)κ

or E(W(ttl)) = W(ttl) −W 3
(ttl)κ

2.

When W(ttl) ≤ 1
2X , which is the case here, the latter

value dominates, so the optimal deployment is ω1,1 =
ω2,1 = W(ttl).

W(ttl) > X/2. In this case, W(ttl) > s+, so that
E(s) achieves its maximum either when s = W(ttl)/2 or
when s = s+. We compare the values at these points by
computing both E(s+) and E(s+)− E(W(ttl)/2). We find
that

54κ E(s+) = (W 2
(ttl)κ

2 − 8W(ttl)κ+ 4)
3
2

+W 3
(ttl)κ

3 − 12W 2
(ttl)κ

2 + 30W(ttl)κ+ 8

and

54κ
(
E(s+)− E(W(ttl)/2)

)
=

[W 2
(ttl)κ

2 − 8W(ttl)κ+ 4]3/2

+ [W 3
(ttl)κ

3 + 15W 2
(ttl)κ

2 − 24W(ttl)κ+ 8]. (17)

Easily, both of the bracketed polynomials in (17) de-
crease as W(ttl) progresses along its current hypothesized
interval, from 1

2X through 2(2−
√

3)X ; therefore, the dif-
ference E(s+)− E(W(ttl)/2) decreases as W(ttl) proceeds
along the same interval. Since the difference vanishes
at the point W(ttl) = 1

2X , we conclude that the optimal
deployment in this case is ω1,1 = ω2,1 = 1

2W(ttl).

4.3.2 (Asymptotic) optimality for multi-chunk allocations
This section is devoted to presenting and analyzing
Algorithm 1, which prescribes schedules for two remote
computers that are always asymptotically optimal and
that are exactly optimal when W(ttl) ≥ 2X . We use
the notation Algorithm 1(n) to denote the n-chunk in-
vocation of the algorithm. The algorithm employs the
notation 〈a, b〉 for sub-workloads, that we introduced at
the beginning of Section 3.1.2.

Theorem 8: ((Asymptotically) optimal schedule: linear risk)
The schedules specified by Algorithm 1 have the follow-
ing performance.

1) When W(ttl) ≥ 2X , they are exactly optimal, complet-
ing, in expectation, (1− 1/n)X units of work.

LIP RESEARCH REPORT RR-LIP-2010-18 19

Algorithm 1. Scheduling for 2 computers using at most n chunks per computer; n is an input.
if W(ttl) ≥ 2X then1

∀i ∈ [1, n] W1,i ←
〈
i− 1

n
· n

n+ 1
X,

i

n
· n

n+ 1
X

〉
2

∀i ∈ [1, n] W2,i ←
〈
W(ttl) −

i

n
· n

n+ 1
X, W(ttl) −

i− 1

n
· n

n+ 1
X

〉
3

if W(ttl) ≤ X then4

∀i ∈ [1, n] W1,i =W2,n−i+1 ←
〈
i− 1

n
W(ttl),

i

n
W(ttl)

〉
5

if X < W(ttl) < 2X then6

` ← bn/3c7

∀i ∈ [1, `] W1,i ←
〈
i− 1

`
(W(ttl) −X),

i

`
(W(ttl) −X)

〉
8

∀i ∈ [1, `] W2,i ←
〈
W(ttl) −

i

`
(W(ttl) −X), W(ttl) −

i− 1

`
(W(ttl) −X)

〉
9

∀i ∈ [1, 2`] W1,`+i = W2,3`−i+1 ←
〈

(W(ttl) −X) +
i− 1

2`
(2X −W(ttl)), (W(ttl) −X) +

i

2`
(2X −W(ttl))

〉
10

2) When W(ttl) < 2X , they are asymptotically optimal.
a) When W(ttl) ≤ X , their expected work produc-

tion tends asymptotically to W(ttl) − 1
6W

3
(ttl)κ

2

units.
b) When X < W(ttl) < 2X , their expected work

production tends asymptotically to 2W(ttl)− 1
3X−

W 2
(ttl)κ+ 1

6W
3
(ttl)κ

2 units.
Note. The actual (nonasymptotic) work productions

from parts 2(a) and 2(b) are, respectively,
• For part 2(a): W(ttl)− 1

6W
3
(ttl)κ

2
(
1 + 3

n + 2
n2

)
work units.

• For part 2(b):

2W(ttl) − 1
3X −W

2
(ttl)κ+ 1

6W
3
(ttl)κ

2+

1
m

((
1 + 1

m

)
W(ttl) −

(
1 + 2

3m

)
X − 1

2mW
2
(ttl)κ

− 1
4

(
1− 1

3m

)
W 3

(ttl)κ
2
)

work units, where m = bn/3c.
Proof: Case 1: W(ttl) ≥ 2X . By definition, a remote

computer is certain to be interrupted when its subwork-
load has size ≥ X . Therefore, Theorem 5 tells us that
when W(ttl) ≥ 2X , we lose no work production by
insisting that the two computers work on disjoint subsets
of the workload. Theorem 2 tells us how to schedule the
subworkloads, and it gives the expectation of W(cmp).

Case 2: W(ttl) < 2X . This case requires a subtler
argument. Focus on a fixed but arbitrary integer n > 0.
Clearly, the expected work completed by Algorithm 1
when each remote computer’s workload is partitioned
into n chunks cannot exceed the analogous quantity for
the optimal n-chunk schedule Σ(n). Note that we lose
no generality by insisting that schedule Σ(n) enjoys the
three characteristics of Theorem 5.
Subcase a: W(ttl) < X . We depict schedule Σ(n) in a
convenient schematic form in Fig. 2(a).

Strategy. We show that, with the current bound on
W(ttl), Σ(n)’s expected work production is no greater

W1,2 W1,3

W2,3 W2,2 W2,1

W1,1

(a) Optimal n-chunk schedule Σ(n).

W1,2 W1,3

W2,3 W2,2 W2,1

W1,1

W2,4

W1,4

(b) Σ1(n): each computer gets an (n+ 1)th chunk so that it
processes all of W(ttl).

(c) Σ2(n): Σ1(n) with chunks subdivided to make chunk
boundaries coincide.

(d) Σ3(n): Σ2(n) implemented via Algorithm 1 with 2n + 1

chunks.

Fig. 2. Schedule transformations used to prove asymptotic
optimality results in Theorems 6 and 8 (Algorithm 1 when
W(ttl) ≤ X).

than that of the (2n + 1)-chunk schedule produced by
Algorithm 1. We then derive the value of the expected
work production of our schedules, which yields Case
2(a) of the theorem. Our analysis builds on three succes-
sive work-preserving transformations to schedule Σ(n),

LIP RESEARCH REPORT RR-LIP-2010-18 20

that are depicted schematically in Fig. 2.
Transformations. (1) We transform Σ(n) to a schedule

Σ1(n) that has each computer process the entire work-
load W(ttl), by adding a possibly empty (n+ 1)th chunk
to the workload of each computer; see Fig. 2(b). (2)
We transform Σ1(n) to a schedule Σ2(n) within which
both computers’ chunk boundaries coincide; see Fig. 2(c).
We accomplish this as follows. Focus on the (n + 1)-
element increasing sequences, ~B1 and ~B2, of “places” in
the workloads of computers P1 and P2, respectively, at
which the chunks end:

~B1 = ω1,1, (ω1,1 + ω1,2), . . . ,

n+1∑
j=1

ω1,j

~B2 = W(ttl) −
n+1∑
j=1

ω2,j , W(ttl) −
n∑
j=1

ω2,j ,

. . . ,W(ttl) − (ω2,1 + ω2,2), W(ttl) − ω2,1

Merge the elements of ~B1 and ~B2 into an increasing
sequence, b0 < b1 < · · · < bl = W(ttl); clearly, l ≤ 2n + 1,
because ~B1 and ~B2 could contain many elements in
common and must both end with W(ttl). Then specify
the new, coterminal, chunks by partitioning W(ttl) into l
chunks as follows:

W ′1,i =W ′2,l−i+1, where each ω′1,i = bi − bi−1.

(3) We invoke Algorithm 1(l) to produce schedule Σ3(n);
note that we now have l equal-size chunks; see Fig. 2(d):

(∀i ∈ [1, l]) W ′′1,i =W ′′2,l−i+1 =

[
i− 1

l
W(ttl),

i

l
W(ttl)

]
.

(4) We finally replace Σ3(n) by the schedule Σ̂(n) pro-
duced by invoking Algorithm 1(2n+1), thereby increas-
ing l to its maximum value.

Analysis. (1) Our failure model ensures that schedule
Σ1(n)’s expected work production is no smaller than
Σ(n)’s. (2) Because we focus here only on the free-
initiation model, subdividing chunks cannot decrease
the overall expected work production. Hence, Σ2(n)’s
expected work production is no smaller than Σ1(n)’s.
(3) The only problematic transformation is the one that
replaces Σ2(n) by Σ3(n). It is not obvious that this
alteration cannot decrease work production. We prove
this via the following more general result. Consider the
following schedule-optimization problem for computers,
P1 and P2. For i = 1, 2, computer Pi executes li chunks
of possibly different sizes, Vi,1, . . . , Vi,li , in that order.
Suppose that P1 and P2 have two consecutive chunks in
common; i.e., for some i ∈ [1, l1 − 1] and j ∈ [1, l2 − 1],
V1,i = V2,j+1 and V1,i+1 = V2,j .7 What should the
relative sizes of V1,i (=V2,j+1) and V1,i+1 (=V2,j) be?
We begin to answer this question by considering the
impact on the overall work expectation E of possibly
redistributing work between chunks V1,i and V1,i+1. To

7. Theorem 5 tells us that P1 and P2 should execute these chunks
in opposite orders.

simplify formulas, let V1 =
∑i−1
k=1 |V1,k|, V2 =

∑j−1
k=1 |V2,k|,

and L = |V1,i|+ |V1,i+1|. Then:

E = |V1,i| (1− (V1 + |V1,i|)κ(V2 + L)κ)

+(L− |V1,i|) (1− (V1 + L)κ(V2 + L− |V1,i|)κ) .

Thus, the contribution of these two chunks to E is:

E = (V1 + V2 + 2L)Lκ2|V1,i|
+L(1− (V1 + L)(V2 + L)κ2)

−(V1 + V2 + 2L)κ2|V1,i|2,

which is maximized by setting |V1,i| = 1
2L, i.e., by

making both chunks the same size.
Proceeding by induction, we generalize from the case

l = 2, to show that replacing l consecutive chunks by l
equal-size chunks cannot decrease work expectation. (4)
We note finally that Σ̂(n)’s expected work production
is no smaller than Σ3(n)’s. This follows from the next
paragraph, in which we show that the expected work
production of schedules produced via Algorithm 1 in-
creases with the number n of chunks; cf. (18).

The endgame of the analysis. We obtain the de-
sired bound on the performance of Algorithm 1. Let
E(W(ttl),Σ(n)) and E(W(ttl),A(n)) denote, respectively,
the work expectation of the optimal schedule and Al-
gorithm 1’s schedule, when each deploys n equal-size
chunks per computer. We find

E(W(ttl),A(n))

=

n∑
i=1

W(ttl)

n

1− i∑
j=1

W(ttl)

n
κ ·

n−i+1∑
j=1

W(ttl)

n
κ


= W(ttl) −

W 3
(ttl)κ

2

6

(
1 +

3

n
+

2

n2

)
, (18)

which is obviously nondecreasing in n.
We have thus proved that, for all n > 0,

E(W(ttl),A(2n+1)) ≥ E(W(ttl),Σ(n)) ≥ E(W(ttl),A(n)).

E(W(ttl),Σ(n)) is obviously a nondecreasing function
bounded above by W(ttl); hence, it has a limit as n in-
creases without bound. The preceding inequalities show
that E(W(ttl),Σ(n)) and E(W(ttl),A(n)) have the same
limit, whence Algorithm 1’s schedule is asymptotically
optimal. By (18) the limit shared by E(W(ttl),Σ(n)) and
E(A)(n) is W(ttl) − 1

6W
3
(ttl)κ

2.
Subcase b: X < W(ttl) < 2X . We depict schedule Σ(n)

in a convenient schematic form in Fig. 3(a).
Strategy. We parallel the argument of Case 2(a), with

two changes. We now craft four work-preserving trans-
formations to Σ(n) (depicted schematically in Fig. 3), and
we now show that, with the current bounds on W(ttl),
Σ(n)’s expected work production is no greater than that
of the 3(n+1)-chunk schedule produced by Algorithm 1.

Transformations. (1) We replace Σ(n) by schedule Σ1(n),
that deploys exactly X units of work to each remote
computer, by adding an (n+1)th chunk to the workload
of each computer; see Fig. 3(b).

LIP RESEARCH REPORT RR-LIP-2010-18 21

W(ttl) −X X W(ttl)

(a) Σ(n): Optimal schedule with n chunks.

W(ttl) −X X W(ttl)

(b) Σ1(n): Extending Σ(n)’s subworkloads to size X via an
(n + 1)th chunk.

W(ttl) −X X W(ttl)

(c) Σ2(n): Subdividing chunks to line up boundaries.

W(ttl) −X X W(ttl)

(d) Σ3(n): Equalizing chunk sizes in each of the three
intervals.

W(ttl) −X X W(ttl)

(e) Σ4(n): Algorithm 1’s schedule with 3(n + 1) chunks.

Fig. 3. Schedule transformations that prove the asymptotic
optimality of Algorithm 1 when X < W(ttl) < 2X.

(2) Proceeding as in Subcase a(2), we produce schedule
Σ2(n), that subdivides the chunks of Σ1(n) when nec-
essary in order to align the chunk boundaries of both
computers; see Fig. 3(c).

The work charts depicted in Fig. 3(b)–3(e) consist of
three intervals, whose boundaries are also chunk bound-
aries: I(left) = [0,W(ttl)−X], I(mid) = [W(ttl)−X,X], and
I(right) = [X,W(ttl)]. The chunk boundaries in I(left) come
only from original chunks of P1 and from the (n+ 1)th
chunk that we added to P2; I(left) thus contains ≤ n+ 1
chunks. Easily, the same bound holds for I(right), with the
computers switching roles. Turning to I(mid), note that all
the boundaries of chunks W1,2, . . . , W1,n, and of chunks
W2,2, . . . , W2,n, could lie strictly within this interval;
therefore, in the worst case, 2n chunk boundaries could

lie strictly between W(ttl)−X and X ; hence, I(mid) could
contain as many as 2n+ 1 chunks.

(3) We replace Σ2(n) by schedule Σ3(n), that equalizes
the sizes of chunks independently in each of I(left),
I(mid), and I(right); see Fig. 3(d).

(4) Finally, we produce schedule Σ4(n) by using Algo-
rithm 1(3(n+ 1)) to build a schedule with n+ 1 chunks
in interval I(left), 2n + 2 chunks in interval I(mid), and
n+1 chunks in interval I(right). Note that Σ4(n) employs
at least as many chunks in each interval as Σ3(n) does
and that all chunks in each interval are like-sized; see
Fig. 3(e).

Analysis. (1) By definition of X , Σ1(n) has the same
work expectation as Σ(n). (2,4) We noted in Subcase a
that neither lining up chunk boundaries nor increasing
the number of chunks can decrease the work expectation
of either computer. (3) Once again, the problematic trans-
formation is the one that equalizes chunk sizes interval
by interval: it is not clear that this transformation cannot
decrease the overall work expectation. Now, it is clear
from the proof of Case 1 that this transformation does
not decrease the work expectation when it is applied
solely to the interval I(mid). Therefore, one needs focus
only on the two “outer” intervals. This task is simpli-
fied under our interruption/failure model, because the
disjointness of intervals I(left) and I(right) allows us to
analyze them independently of one another. Therefore,
we lose no generality by focusing solely on interval
I(left). To this end, we consider two consecutive chunks
of P1, V1,i and V1,i+1, that both belong to interval I(left)

(hence, do not intersect the workload of P2). Letting
L = |V1,i| + |V1,i+1| and V =

∑i−1
j=1 V1,j , we find that

these chunks contribute

E = (|V1,i|κ+ (1− (V + L)κ))L− |V1,i|2κ

units of work to the overall expectation. This expression
is obviously maximized when |V1,i| = L/2, i.e., when
the two consecutive chunks have the same size. (4) The
last transformation increases the numbers of same-size
jobs in each of the three intervals to their maximum
possible respective values: n+ 1, 2(n+ 1), and n+ 1 (see
Figure 3(e)). Direct calculation, coupled with the analysis
of subcase 2(a) shows that this cannot decrease expected
work production for the chunks in interval I(mid). We
now show that this is also the case for chunks in interval
I(left). To wit, the cumulative expectation for the m equal-
size chunks of I(left) is:

E =

m∑
i=1

W(ttl) −X
m

1−
i∑

j=1

W(ttl) −X
m

κ


= (W(ttl) −X)−

(
1

2
+

1

2m

)
(W(ttl) −X)2κ,

which is obviously increasing in m.

LIP RESEARCH REPORT RR-LIP-2010-18 22

The expectation of W(cmp), with l =
⌊
n
3

⌋
, for the

scheduling of Algorithm 1(n) is then equal to:

E =

l∑
i=1

W(ttl) −X
l

(
1− i

W(ttl) −X
l

κ

)
+

2l∑
i=1

2X−W(ttl)

2l

(
1−
(
W(ttl)−X+i

2X−W(ttl)

2l

)
κ

×
(
X−(i−1)

2X−W(ttl)

2l

)
κ

)
+

l∑
i=1

W(ttl) −X
l

(
1− i

W(ttl) −X
l

κ

)
= 2W(ttl) −

1

3
X −W 2

(ttl)κ+
W 3

(ttl)κ
2

6

+
1

l

((
1 +

1

l

)
W(ttl) −

(
1 +

2

3l

)
X

− 1

2l
W 2

(ttl)κ−
1

4

(
1− 1

3l

)
W 3

(ttl)κ
2

)
.

5 STRATEGIES FOR CRAFTING GENERAL
SCHEDULES

This section is devoted to developing strategies that
allow one to craft simple heuristics for sharing work
with arbitrary numbers of remote computers that are
subject to unrecoverable interruptions. In an attempt to
describe our heuristics in terms that are clear, evocative,
and free of undesired connotations, we introduce the
following terminology.
• A coterie is a collection of remote computers that

work jointly on the same subset of our workload.
• A slice of our workload is a subset that we assign

to a single coterie.
All of our scheduling heuristics operate as follows.

1) They partition the total workload into slices that they
deploy on disjoint coteries.

2) They tell each coterie how to partition its assigned
slices into equal-size chunks.

3) They orchestrate the processing of the slices on each
coterie.

The entire scheduling process is performed in the light
of our interruption model. Specifically, we acknowledge
the futility of deploying a slice of work of size > X on
any remote computer, because such a slice is “certain”
to be interrupted—i.e., will be interrupted with proba-
bility 1. The amount of work that we actually deploy to
the remote computers, which we denote by W(dpl), is,
therefore, often less than the entire W(ttl) units of work
in the overall workload. Part of the scheduling process
is to determine the size of W(dpl).

5.1 The Partitioning Phase

We begin the scheduling process with some simple
heuristics that determine the value of W(dpl) and that
partition this many units of work into slices that will be

deployed on the remote computers. While these heuris-
tics are tailored to the linear risk function, we show
how to adapt them easily to other risk functions. Our
scheduling strategy branches into three sub-strategies
that depend heavily on the size of the overall work-
load W(ttl).

W(ttl) is “very large.” When W(ttl) ≥ pX , we deploy p
slices, each of size X , to be processed independently on
the remote computers. We abandon the remaining W −
pX units of work, because our interruption model tells
us that it is “certain” not to be completed. (We assume
that work is not prioritized, so we do not care which pX
units we deploy.) We schedule the deployed work on
each remote computer in the manner prescribed by the
single-computer scheduling guidelines in Section 3.

W(ttl) is “very small.” When W(ttl) ≤ X , we deploy the
entire workload in a single slice, which we replicate on
all p remote computers. We have thus a single coterie
with p computers which works on a slice of size X , and
we orchestrate the work as explained in Section 5.2.

W(ttl) is of “intermediate” size. The case X < W(ttl) < pX
is the interesting challenge, as there is no compelling
known scheduling strategy. Here we can deploy the
total work W(ttl), and replicate each deployed piece
pX/W(ttl) times on average. Note that no worker will
receive more than X units of work with this deployment
scheme. In our quest for schedules that are simple
to implement, we assign disjoint coteries to work on
independent slices of work. Ideally, we would like to
have p/(pX/W(dpl)) = W(dpl)κ coteries, but this number
may not be integral, so we approximate this ideal by
partitioning the workload into q = dW(dpl)κe slices. We
balance computing resources as much as possible, by
replicating each slice on either bp/qc or dp/qe remote
computers. We balance the load among the coteries
by having a coterie with bp/qc computers (resp., dp/qe
computers) work on a slice of size sl− = bp/qcW(dpl)/p
(resp., of size sl+ = dp/qeW(dpl)/p).

Adapting to general risk functions. The preceding
scenario is tailored to the linear risk function in that the
load of a single computer has a size ≤ X . To adapt the
strategy to general risk functions, we would introduce
a parameter λ that specifies the maximum probability
of interruption that the user would allow for the work
allocated to a computer. (For linear risk, we set λ = 1,
a choice that could often be impractical; consider, e.g.,
a heavy-tailed distribution.) We would then use λ to
compute the maximum size of a slice, maxsl, by insisting
that Pr(maxsl) = λ. For illustration, if λ = 1/2, then
under the linear risk function we would set maxsl = 1

2X ,
while with the exponential risk function we would set
maxsl = (ln 2)X . The deployed workload would now
consist of W(dpl) = min(W(ttl), p×maxsl) units—which
would mandate using q = dW(dpl)/maxsle slices, whose
sizes are as defined previously.

LIP RESEARCH REPORT RR-LIP-2010-18 23

`````````Computer
Chunk 1 2 3 4 5 6 7 8 9 10 11 12

P1 1 6 9 12 2 5 8 11 3 4 7 10
P2 12 1 6 9 11 2 5 8 10 3 4 7
P3 9 12 1 6 8 11 2 5 7 10 3 4
P4 6 9 12 1 5 8 11 2 4 7 10 3

TABLE 1
Execution chart for a general schedule.

Group 1 Group 2 Group 3
chunks 1–4 chunks 5–8 chunks 9–12

1 2 3
6 5 4
9 8 7

12 11 10

TABLE 2
Execution chart for a group schedule.

5.2 The Orchestration Phase

The partitioning phase of Section 5.1 has formed mu-
tually disjoint slices of work, each of size sl, that we
deploy to disjoint coteries. We first partition each slice
into some number of equal-size chunks: We have shown
that such equal-size-chunk schedules are asymptotically
optimal when scheduling one or two remote computers
(Theorems 3 and 6, respectively). The first issue then
to resolve is, what should the checkpointing granularity
be, as measured by the number of chunks we partition
each slice into? We denote this quantity by n, so that
each remote computer partitions its slice into n chunks
of common size ω = sl/n. For the well-structured
heuristics that we design here, we can actually determine
the best value of n. We defer this determination until
Section 5.2.3, since we have to develop some concepts
first. Each chunk of work that is deployed to a coterie
Γ will be scheduled on every one of Γ’s g computers.
Our challenge is to determine the time step at which
each chunk i will be scheduled on each computer j of
Γ. We strive for a schedule that maximizes the expected
amount of work completed by the total assemblage
of p computers. We discuss the orchestration phase in
detail only for the linear risk model. We generalize this
discussion to arbitrary risk functions in Section 7.1.

5.2.1 Overview

We illustrate our approach to orchestration via an exam-
ple wherein each coterie contains g = 4 computers and
each slice is partitioned into n = 12 chunks. Because
coteries operate mutually independently, we need to
develop a schedule for just one coterie and replicate it
on all of the others. Given a coterie Γ and its associated
slice, we represent a possible schedule via an execution
chart C for Γ, as depicted in Table 1. Each row of chart C
represents a computer in Γ, and each column represents
one of the chunks into which Γ’s slice is chopped. Chart
entry Ci,j is the step at which chunk j is processed by
computer Pi.

Any g×n integer matrix whose rows are permutations
of [1..n] is a valid execution chart, under which each
Pi executes each chunk j precisely once, at step Ci,j .
One can use an execution chart to calculate the ex-
pected amount of work completed under the schedule
Σ that the chart specifies. To wit, chunk j will not be
executed under the schedule Σ only if all g computers
in the coterie are interrupted before they complete the

chunk. This occurs with probability
∏g
i=1 Pr(Ci,jω) =∏g

i=1 Pr (Ci,jsl/n), so the expected amount of work
completed from the slice is

E(sl, n,Σ) =

1− 1

n

(
sl · κ
n

)g n∑
j=1

g∏
i=1

Ci,j

 sl. (19)

This last expression is specific to the linear risk model
and assumes that

Pr(Ci,jω) = Ci,jωκ ≤ 1. (20)

We retain assumption (20) while computing expectations
throughout this section.

Note. We retain assumption (20) for pragmatic reasons
that are justified by our simulations. Under our parti-
tioning strategy, the assumption is true when a coterie
has bp/qc computers, because sl− ≤ X , which ignores
cases when sl+ > X . Taking the latter cases into account
would considerably complicate all expectation formulas,
thereby preventing us from drawing conclusions when
comparing heuristics. It is, therefore, convenient to re-
tain assumption (20) even when we know it does not
always hold. Fortunately, the conclusions that we reach
in Section 5.3 using this assumption are supported by
the experiments, which consider all cases (see Section 6
and the appendices). These experiments thus provide an
a posteriori justification for the simplifying assumption.
In other words, the performance of the coteries with
bp/qc computers empirically gives us good insight into
the actual performance of heuristics.

One can derive the following upper bound on
E(sl, n,Σ), to lend perspective to that expectation.

Proposition 1: For any schedule Σ,

E(sl, n,Σ)≤

(
1−
(
sl · κ (n!)1/n

n

)g)
sl ≈

(
1−
(
sl · κ
e

)g)
sl.

Proof: Let cpj =
∏g
i=1 Ci,j be the j-th column prod-

uct in the chart. From the expression of E(sl, n,Σ), we
see that it is maximum when the sum of the n column
products is minimum. But the product of the column
products is constant, because each row is a permutation
of [1..n]: we have

∏n
j=1 cpj = (n!)g . The sum is minimum

when all products are equal (to (n!)
g
n ), whence the in-

equality. Stirling’s formula gives a useful approximation
of the upper bound when n is large:

Emax ≈ sl
(

1−
(
sl · κ
e

)g)
.



LIP RESEARCH REPORT RR-LIP-2010-18 24

5.2.2 Group Schedules: Introduction
One notes that under the schedule of Table 1, chunks 1–4
are always executed at the same steps—but by different
computers; the same is true for chunks 5–8 as a group
and for chunks 9–12 as a group. The twelve chunks of
the slice thus partition naturally into three groups. One
can, therefore, re-specify the schedule of Table 1 as the
group-(oriented) schedule of Table 2, thereby significantly
simplifying the specification. In the group execution
chart of Table 2, each column corresponds to a group
of chunks, and the ith row specifies the step at which
chunks are executed for the ith time. (Thus, for instance,
each chunk in group 1 is executed for the first time at
step 1, for the second time at step 6, and so on.) This
specification leaves implicit that chunk indices within
each group are permuted cyclically at each step, so that
each chunk is scheduled on each computer exactly once.

We generalize this description. When n is a multiple
of g, we can sometimes convert the full g × n execution
chart C exemplified by Table 1 to the g × n/g group
execution chart Ĉ exemplified by Table 2. There are n/g
groups of size g, and chart-entry Ĉi,j denotes the step
at which group j of chunks is executed for the ith time.
For a chart Ĉ to specify a valid group schedule Σ, its
total set of entries must be a permutation of [1..n]. In this
case, we denote the chart by Ĉ(Σ). We can compute easily
the expected amount of work that schedule Σ completes
under the linear risk model:

E(sl, n,Σ) = sl − K(Σ) g

κ

(
sl · κ
n

)g+1

where Σ’s performance constant K(Σ) is

K(Σ) =

n/g∑
j=1

g∏
i=1

Ĉ
(Σ)
i,j .

Note that a smaller value of K(Σ) corresponds to a larger
value of E(sl, n,Σ).

Group schedules are very natural, because they are
symmetric: all computers are allocated the same number
of chunks, and each computer’s schedule is a “translate”
of each other computer’s; i.e., each computer is sched-
uled to execute a chunk from the ith group at the same
steps as every other computer. Intuition suggests that the
most productive schedules are symmetric: Why should
some of the identical computers be treated differently
from others by a “nature” that interrupts all computers
at random times (within the distribution specified by the
risk function)? Lending perspective to (19) and confi-
dence in the upper bound of Proposition 1—and, more
generally, in our focus on group schedules—is the fact
that we have not been able to strengthen the latter bound
for group schedules! In fact, the latter bound affords
us an easy lower bound on the performance constant
of any group schedule that has parameters g and n:

Kmin =
⌈
(n/g)(n!)g/n

⌉
. We shall see in Section 5.2.4 that

this value of Kmin cannot be improved in general.

5.2.3 Choosing the Granularity of Checkpointing
We are finally ready to determine the best number n
of chunks to partition each computer’s workslice into.
Happily, at least for group schedules, one does not have
to guess at this value. We begin to flesh out this remark
by noting that we can easily obtain an explicit expression
for the expected work completed by any group schedule
under the charged-initiation model, from that schedule’s
analogous expectation under the free-initiation model.
Moreover, this expression is valid for any nondecreasing
risk function.

Theorem 9: Let Σ be a group schedule defined by the
execution chart Ci,j

∣∣
i∈{1,...,g},j∈{1,...,n/g} . Then, whatever

the (nondecreasing) risk function,

E(c,n)(sl(c),Σ) =
sl(c)

sl(c) + nε
E(f,n)(sl(c) + nε,Σ).

Proof: To establish the result, we only need to explicit
the expectation of W(cmp) under the charged-initiation
model:

E(c,n)(sl(c), σ)

=

n∑
j=1

sl(c)

n

(
1−

g∏
i=1

Pr(c)

(
Ci,j

sl(c)

n

))

=

n∑
j=1

sl(c)

n

(
1−

g∏
i=1

Pr(f)

(
Ci,j

(
sl(c)

n
+ ε

)))

=
sl(c)

sl(c)+nε

n∑
j=1

(
sl(c)

n
+ε

)(
1−

g∏
i=1

Pr(f)

(
Ci,j

(
sl(c)

n
+ε

)))

=
sl(c)

sl(c) + nε
E(f,n)(sl(c) + nε, σ).

We can now determine the optimal value for n for any
risk function under which the expected work produc-
tion of the group schedule within the charged-initiation
model is a unimodal function of n. (It is quite natural to
assume that this expectation is nondecreasing under the
free-initiation model, but not with the charged-initiation
model where the per-chunk overhead damps the work
production.) We can then use binary search (on the
number of chunks per slice) to seek the optimum value
of n; the search can be safely performed in the interval
[1..X/ε].

5.2.4 Group Schedules: A Sampler
Our group schedules strive to minimize the impact of
work-killing interruptions—and, thereby, to maximize
expected work completion—by having every computer
attempt to compute every chunk. Of course, there are
many ways to achieve this coverage, and the form of the
risk function will make some ways more advantageous
than others. As an extreme example, when p = 2, it
is always advantageous to have the remote computers



LIP RESEARCH REPORT RR-LIP-2010-18 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

1 2 3 4 5

10 9 8 7 6

15 14 13 12 11

20 19 18 17 16

1 2 3 4 5

6 7 8 9 10

15 14 13 12 11

20 19 18 17 16

(a) Cyclic: K(Σcyclic) = 34104 (b) Reverse: K(Σreverse) = 24396 (c) Mirror: K(Σmirror) = 27284

1 2 3 4 5

10 9 8 7 6

11 12 13 14 15

20 19 18 17 16

1 2 3 4 5

14 12 10 8 6

15 13 11 9 7

16 17 18 19 20

1 2 3 4 5

10 9 8 7 6

15 14 13 12 11

20 19 18 16 17

1 2 3 4 5

13 10 6 9 7

18 15 14 11 8

20 16 19 12 17

(d) Snake: K(Σsnake) = 25784 (e) Fat-snake: K(Σfat-snake) = 24276 (f) Greedy: K(Σgreedy) = 24390 (g) Optimal: K(ΣOptimal) = 23780

TABLE 3
Comparing group schedules for n = 20 and g = 4. Here the most efficient group schedules are Σfat-snake, Σgreedy, and

Σreverse (in this order). The lower bound, Kmin = 23780, is reached on this example.

process replicated work “in opposite orders” (Theo-
rem 5). We now specify and compare the performance of
five group schedules whose chunk-scheduling regimens
seem to be a good match for the way the linear risk func-
tion “predicts” interruptions. We specify each schedule
Σ via its group execution chart Ĉ(Σ)—see Table 3—and
we represent the performance of each schedule Σ via its
performance constant K(Σ). The beneficent structures of
these schedules is evidenced by our ability to present
explicit symbolic expressions for their K constants.
Cyclic scheduling (See Table 3(a)). Under this simplest
scheduling regimen, whose schedules we denote by
Σcyclic, groups are executed sequentially in a round-robin
fashion, so the chunks of group j are executed at steps
j, j + n/g, j + 2n/g, and so on. One verifies that

K(Σcyclic) =

n/g∑
j=1

g−1∏
k=0

(j + kn/g) .

The weakness of Σcyclic is that chunks in low-index
groups have a higher probability of being completed suc-
cessfully than do chunks in high-index groups—because
chunks remain in the same relative order throughout the
computation. The other schedules we consider aim to
compensate for this imbalance.
Reverse scheduling (See Table 3(b)). Under this regimen,
whose schedules we denote by Σreverse, the chunks in
each group are executed once in the initially specified
order and then in the reverse order n/g − 1 times. Thus,
the chunks in group j are executed at step j and there-
after, at steps 2n/g−j+1, 3n/g−j+1, 4n/g−j+1, and so
on. Σreverse is motivated by an attempt to compensate for
the imbalance in chunks’ likelihoods of being completed
created by their initial order of processing. (Σreverse is the
schedule specified in Table 2.) One verifies that

K(Σreverse) =

n/g∑
j=1

j ×
g−1∏
k=1

((k + 1)n/g − j + 1) .

Mirror scheduling (See Table 3(c)). This regimen, whose

schedules we denote by Σmirror, represents a compromise
between the cyclic and reverse regimens. Σmirror com-
pensates for the imbalance in the likelihood of work’s
being completed only during the second half of the
computation. Specifically, Σmirror mimics Σcyclic for the
first g/2 phases of processing a group, and it mimics
Σreverse for the remaining phases. One verifies that

K(Σmirror) =

n/g∑
j=1

1
2 g−1∏
k=0

(j + kn/g) ((p− k)n/g − j + 1) .

Snake-like scheduling (See Table 3(d)). This regimen,
whose schedules we denote by Σsnake, compensates for
the imbalance of the cyclic schedule by mimicking Σcyclic

at every odd-numbered step and Σreverse at every even-
numbered step, thereby lending a snake-like structure to
its execution chart, Ĉ(Σsnake). One verifies easily that

K(Σsnake) =

n/g∑
j=1

1
2 g−1∏
k=0

(j + 2kn/g) (2(k + 1)n/g − j + 1) .

Fat-snake-like scheduling (See Table 3(e)). This regimen,
whose schedules we denote by Σfat-snake, qualitatively
adopts the same strategy as Σsnake, but it slows down
the reverse phase of the latter regimen. Consider, for
illustration, three consecutive rows of Ĉ(Σfat-snake). The first
row is identical in shape to the first row of Ĉ(Σcyclic). The
reverse phase of Fat-snake distributes the elements of the
two remaining rows in the reverse order, two elements
at a time. The motivating intuition is that the slower
reversal would further compensate for the imbalance in
Σcyclic. One verifies that

K(Σfat-snake) =

n/g−1∑
j=0

1
3 g−1∏
k=0

(1+j+3k
n

g
)(3(k+1)

n

g
−2j−1)(3(k+1)

n

g
− 2j).

We derive performance bounds for these five schedul-
ing regimens.



LIP RESEARCH REPORT RR-LIP-2010-18 26

Relative Absolute Success rate
min max avg. stdv. min max avg. stdv.

Cyclic 1.1 3.786 2.143 0.664 1.1 3.786 2.239 0.592 00.00%
Reverse 1 1.295 1.055 0.065 1 1.295 1.117 0.061 12.42%
Mirror 1 2.468 1.504 0.393 1 2.468 1.575 0.338 12.37%
Snake 1 1.199 1.127 0.059 1 1.291 1.193 0.059 12.34%
Fat-snake 1 1.442 1.123 0.115 1 1.530 1.192 0.143 17.07%
Greedy 1 1.055 1.005 0.015 1 1.224 1.067 0.074 83.01%
Best-of 1 1 1 0 1 1.224 1.061 0.069 100.00%

TABLE 4
Statistics on the K value of all heuristics for 2 ≤ g ≤ 100 and 2g ≤ n ≤ 1000 (minimum, maximum, average value and

standard deviation over the 4032 instances).

Proposition 2: The values of K(Σ) for our five schedul-
ing regimens — presented as the ratio K(Σ)÷(g! (n/g)

g+1
)

— satisfy the following bounds:

Regimen Lower bound Upper bound

K(Σcyclic) 1/n 1

K(Σreverse) 1/(2g) 1
2 (n+ g)

K(Σmirror) 1/n 1

K(Σsnake) g/n2 1

K(Σfat-snake) 1/((g − 1)n) g

Proof: The calculations are straightforward. For
Σcyclic, we have

K(Σcyclic) =

n
g∑
j=1

g−1∏
k=0

(
j + k

n

g

)
.

We derive the lower bound by replacing index j by 0
in the summation (except in the term k = 0 where we
replace j by 1):

K(Σcyclic) ≥ n

g

(
g−1∏
k=1

k
n

g

)
= (g − 1)!

(
n

g

)g
=

1

n
g!

(
n

g

)g+1

.

Similarly, we let j = n
g in each term of the summation to

get the upper bound. We proceed in a similar way for
the other three variants.

We explicit the computations for Σfat-snake, as they are
a bit less obvious. For the lower bound we have:

K(Σfat-snake)

=

n
g−1∑
j=0

g
3−1∏
k=0

(
1+j+3k

n

g

)(
3(k+1)

n

g
−2j−1

)(
3(k+1)

n

g
−2j

)

≥

n
g−1∑
j=0

g
3−1∏
k=0

(
1+3k

n

g

)(
3(k+1)

n

g
−2

n

g
+1

)(
3(k+1)

n

g
−2

n

g
+2

)
≥ n

g

∏ g
3−1

k=0

(
1 + 3k ng

)(
(3k + 1)ng

)(
(3k + 1)ng

)
≥
(
n
g

)3∏ g
3−1

k=1

(
3k ng

)(
(3k + 1)ng

)(
(3k + 1)ng

)
≥
(
n
g

)3∏ g
3−1

k=1

(
(3k − 1)ng

)(
3k ng

)(
(3k + 1)ng

)
=
(
n
g

)g
(g − 2)!

For the upper bound we derive:

K(Σfat-snake)

=

n
g−1∑
j=0

g
3−1∏
k=0

(
1+j+3k

n

g

)(
3(k+1)

n

g
−2j−1

)(
3(k+1)

n

g
−2j

)

≤

n
g−1∑
j=0

g
3−1∏
k=0

(
n

g
+ 3k

n

g

)(
3(k + 1)

n

g

)(
3(k + 1)

n

g

)

≤ n

g

g
3−1∏
k=0

(
(3k + 1)

n

g

)(
(3k + 3)

n

g

)(
(3k + 3)

n

g

)

≤
(
n

g

)g+1
 g

3−2∏
k=0

(3k + 2)(3k + 3)(3k + 4)

 (g − 2)g2

=

(
n

g

)g+1

(g − 2)!(g − 2)g2 ≤
(
n

g

)g+1

(g)!g

Proposition 2 suggests that Σsnake may be the most effi-
cient of our five group-scheduling algorithms, especially
when we checkpoint often, i.e., when n is large. While
still focusing on mathematical analyses of our schedules,
though, we can use Stirling’s formula to derive the
following more evocative bounds on K(Σsnake):

Kmin ≤ K(Σsnake) ≤ Kupper ,

where

Kmin≈
e

g

(
n

g

)g+1

and Kupper = g!

(
n

g

)g+1

≈ e
√

2π
√
g

(n
e

)g+1

.

We conclude this subsection by adding a last group
schedule to our list, as a reference point for our exper-
iments. The “greedy” scheduling regimen, whose sched-
ules we denote by Σgreedy, strives to iteratively balance
the probability of successful completion for each group
of chunks. We have not been able to derive an analytical
asymptotic estimate of Σgreedy’s expected work produc-
tion, so we content ourselves with a numerical estimate.
Greedy scheduling (See Table 3(f)). This regimen, whose
schedules we denote by Σgreedy, iteratively assigns a step
to each group of chunks so as to balance the current
success probabilities as much as possible. At each step,
Σgreedy constructs one new row of its execution chart



LIP RESEARCH REPORT RR-LIP-2010-18 27

Ĉ(greedy). Thus, after k steps, the probability that a chunk
in group j will be interrupted is proportional to the
product

∏k

i=1 Ĉ
(greedy)
ij of the entries in column j of the

chart. The idea is to sort current column products and
assign the smallest time-step to the largest product, and
so on.

Table 3 provides a scenario in which Σgreedy outper-
forms most of the other heuristics. None of our group
schedules completes an optimal amount of work in this
scenario, which shows that one pays a price for the
heuristics’ simple structure.

5.3 Evaluating the Heuristics Numerically

We ran all six of our scheduling heuristics on problems
having all parameter values in the following ranges:
g ∈ [2, 100], n ∈ [2g, 1000], and g divides n, altogether
4032 instances. Table 4 summarizes the results of this
evaluation via two series of statistics. In the Relative
series, we form the ratio of the performance constant K
of a given heuristic on a given problem instance and (i.e.,
divided by) the lowest value of K that we found for that
instance, among all the tested heuristics. For the Absolute
series, we form the analogous ratio with Kmin in the
denominator. For perspective, the table also reports the
“performance” of the (unrealistic) best-of heuristic that,
on each problem instance, runs the six other algorithms
and picks the best answer.

Table 4 shows that Σgreedy is clearly the best heuristic: it
finds the best schedule for 83% of the problem instances,
and its schedules are never more than 6% worse than the
best one found. More importantly, Σgreedy’s performance
is never more than 23% larger than the lower bound Kmin

and, on average, it is less than 7% larger than this bound.
In fact, only Σfat-snake happens sometimes to find better
solutions than Σgreedy—but only by marginal amounts,
as one can see by comparing the absolute performance
of Σgreedy and best-of.

6 EXPERIMENTS BASED ON THE LINEAR RISK
MODEL

We have assessed the performance of our group heuris-
tics by testing them on simulated computing platforms
that are subject to unrecoverable interruptions (see Ap-
pendix B). Since the relative performance of the group
heuristics were consistent with the theoretical predic-
tions of Table 4, we carry forward only the champion
heuristic, Σgreedy, to the experiments that follow. Whereas
the heuristics of Section 5 (including Σgreedy) were tai-
lored for the linear risk model, the heuristics that we
study henceforth as competitors for Σgreedy are suggested
less formally by the way they implement the strategy
of work replication. The source codes and raw data for
all heuristics can be found at http://graal.ens-lyon.fr/
∼fvivien/Publications/Data/Interruptions. The appen-
dices present the graphs for all the experiments.

6.1 The Experimental Plan

We performed our experiments on randomly generated
platforms containing p computers. In all experiments, we
set κ = 1 and chose the times for interruptions randomly
between 0 and 1, following a uniform distribution. We
varied the size of the overall workload, W(ttl), between
1 and p. The case W(ttl) = 1 represents the scenario
in which all computers can potentially do all the work
before being interrupted. The case W(ttl) = p represents
the scenario when we can do no better than give one
unit-size slice to each computer, which then computes
until it is interrupted; there is no replication in this case.

The key parameters in our experiments are: the num-
ber of computers p; the total amount of work W(ttl); the
number of chunks per unit of work n; and the start-up
cost ε. In the first four series of experiments, three of
these parameters are fixed while the fourth is varied.
When fixed, these parameters take the following values:
• p ∈ {5, 10, 25, 50, 100};
• W(ttl) = 0.3p or 0.7p;
• n ∈ {47, 97, 147, 197};
• ε ∈ {0.1000, 0.0100, 0.0010, 0.0001}.

We have the parameters range over large sets of values
in order to assess the heuristics in very different config-
urations, even very unfavorable ones.

Our experiments compared the performance of the
following heuristics:
The group-greedy heuristic Σgreedy. We have already seen
Σgreedy in Section 5.2.2. Since the number of chunks n
may not be a multiple of g, the last group of computers
may not have a full set of g chunks to process. This
heuristic works as though the last group contained g
chunks; this has the potential impact of inserting idle
time-slots in a schedule. (A computer that still has work
will never be kept idle.) The values for n were explicitly
picked not to favor the group-heuristics: they almost
certainly ensured that the last group of computers never
had a full set of g chunks to process.
The brute-force replication heuristic Σbrute replicates the en-
tire workload onto all computers. Each computer exe-
cutes work in the order of receipt, starting from the first
chunk, until it is interrupted.
The no-replication heuristic Σno-rep distributes the work in
a round-robin fashion, with no replication. Thus, each
computer is allocated W(ttl)/p units of work.
The cyclic-replication heuristic Σcyclic-rep distributes the work
in a round-robin fashion, as does Σno-rep, but it keeps
distributing chunks, starting from chunk 1 again, until
each computer has a total (local) workload of 1. Note
that when the number of chunks is a multiple of p,
this heuristic is identical to Σno-rep, because the chunks
assigned to a computer during the replication phase
were already assigned to it previously.
The random-replication heuristic Σrandom-rep distributes a to-
tal workload of 1 to each computer, but it chooses the
chunks and their order randomly, while ensuring that
all chunks deployed on any given computer are distinct.



LIP RESEARCH REPORT RR-LIP-2010-18 28

Note, however, that the same chunk can be assigned to
several computers.
The omniscient heuristic Σomniscient is an idealized, unreal-
izable “heuristic” that is included only as a reference
point. The “heuristic” knows (in advance) exactly when
each computer will be interrupted. It deploys on each
computer a single chunk of length `+ ε (recall that ε is
the start-up cost); ` is computed so that the computer
completes its work immediately before it is interrupted.
Thus, this heuristic, knowing all interruption times, com-
pletes the maximum possible amount of work.

We do not report the absolute amount of work com-
pleted by the heuristics: This quantity would be impos-
sible to interpret because the amount of work deployed
and the amount of work that can be completed before
computers are interrupted vary vastly within the ex-
periment. We therefore consider, for each instance, the
ratio of the work completed by a given heuristic and the work
completed by Σomniscient. Since Σomniscient always achieves a
performance ratio of 1, we do not display it on figures.
(By convention, in the marginal cases where Σomniscient

does not complete any work—because all computers are
interrupted by time ε—the performance of all heuristics
is set to 1.)

6.2 Results from Idealized Experiments
For each considered set of parameters, we randomly
generated 1000 different sets of interruption times. In
Experiments E1–E4, we fixed all parameters but one;
Experiment E5 studies the effectiveness of the procedure
from Section 5.2.3 for choosing the sizes of the chunks
we deploy; Experiment E6 studies the impact of work
replication. Figure 4 presents the result of Experiments
E1-E4 for a sample set of parameters. (Graphs showing
the impact of the various parameters are available ap-
pendices A and B.)
Experiment E1: varying workload size. When W(ttl) = 1, the
opportunities for replicating work are maximum. As one
would expect in this case, Σrandom-rep often dominates
Σno-rep. Replication is therefore worth considering—but
it must be implemented in a meaningful way: Σbrute

almost always achieves very poor performance. Another
obvious conclusion is that when there is very little room
for replication, i.e., when W(ttl) is close to p, Σno-rep,
Σcyclic-rep, and Σgreedy achieve quite similar performance.
In all cases, Σcyclic-rep achieves better performance than
Σno-rep. This is significant when W(ttl) is small relative to
pX . On every instance, Σgreedy exhibits the best perfor-
mance.
Experiment E2: varying number of computers. The perfor-
mance of our heuristics is generally not impacted when
the number of computers p grows while the overall
work-to-computer ratio W(ttl)/p is kept constant. (The
exception is Σbrute whose performance drops dramati-
cally.) As the ratio W(ttl)/p increases, there is less op-
portunity for replication, so efficient use of resources
becomes more complicated; this leads to overall worse
performance by all of the heuristics.

Experiment E3: varying number of chunks. When the start-up
cost ε is very small, one is always better off deploying
work in a larger number of chunks (i.e., more check-
pointing), because having small chunks reduces the loss
of work in progress when a computer is interrupted.
However, for larger values of ε, one must be more
cautious in choosing chunk sizes, because the “penalty”
for each additional chunk/checkpoint then negatively
impacts the expected work production; when ε is large,
this impact is dramatic. It is not clear that the loss of ex-
pected work would be significant in an intermediate case
such as ε = 0.001. But even in this case, the performance
starts to decrease as the number of chunks increases. Of
course, one must exercise special care in choosing the ex-
act number of chunks when scheduling using Σcyclic-rep,
for that heuristic’s performance fluctuates depending on
whether the number of computers is relatively prime
to the number of chunks. As a positive sidenote from
this experiment, the general shapes of the performance
curves corroborate the unimodal assumption proposed
at the end of Section 5.2.3.

Because the studied parameter is not the overall number
of chunks but, rather, the number of chunks per unit of work,
the number of computers has no significant impact on
performance (except, obviously, for Σcyclic-rep).
Experiment E4: varying the start-up cost ε. As one considers
successively larger values of ε, one observes a dramatic
drop in performance. Indeed, when ε is large, e.g., when
ε ≥ 0.05 (roughly), very few chunks can be executed
on a computer before it is interrupted. In these con-
figurations, performance depends mainly on the size of
chunks relative to the interruption times in the instance.
There is no way to design good heuristics on average
(compared to Σomniscient) and all heuristics have poor
average performance. This effect gets even worse with
larger numbers of chunks per unit of work. Indeed,
as ε approaches 1, the proportion of cases where even
Σomniscient does not complete any work increases. In these
pathological cases, all of our heuristics have performance
ratios of 1.

(Due to the poor performance of Σrandom-rep, we do not
consider this heuristic in the following experiments.)
Experiment E5: automatic inference of chunk size. This ex-
periment replicates experiment E1 except that, for each
instance and each heuristic, the size of chunks is no
longer given but is, rather, automatically inferred using
the procedure of Section 5.2.3. In Fig. 5, for each heuris-
tic, we plot the average performance when considering
only the x% best instances for that heuristic. The perfor-
mance for 100% is thus the average performance over all
760,000 instances. One observes Σgreedy achieving at least
85.2% of the optimal work production of Σomniscient, with
Σno-rep close behind with 79.6% of the optimal. Thus, on
average, Σgreedy is 27.4% closer to optimal than is Σno-rep.
Furthermore, in more than 21% of the instances, Σgreedy

is almost optimal, achieving more than 99.5% of the
optimal work production. Σcyclic-rep’s work production is
quite close to Σgreedy’s.



LIP RESEARCH REPORT RR-LIP-2010-18 29

Experiment E6: varying ratio of potential replication. This ex-
periment is dedicated to assessing the impact of the
ratio of potential replication pX/W(ttl). We fixed the
overall workload to W(ttl) = 10 units and allowed p
to assume all integral values between 10 and 100 (with
the earlier mentioned four choices for the value of ε).
We considered 1000 random instances of each set of
parameters. The results are presented in Fig. 6. Σcyclic-rep
and Σgreedy always have better performance than Σno-rep,
and the difference is very significant as soon as the ratio
of potential replication exceeds 2. Overall, Σgreedy has
better and more regular performance than Σcyclic-rep. In
contrast with Σgreedy, Σcyclic-rep takes almost no advantage
of the possibility of replication when the potential for
replication is smaller than 2.

Summarizing the idealized experiments. The exper-
iments show that careful use of work replication can
significantly improve the performance of heuristics. The
greedy heuristic Σgreedy always delivers good perfor-
mance, it is never outperformed by any other heuristic—
on average it delivers the best performance on every
configuration—and in favorable cases, it performs sig-
nificantly better than any other heuristic.

7 EXPERIMENTS BASED ON ACTUAL TRACES

Most of the results in this paper focus on the linear
risk model. Three notable exceptions that are relevant
to the current study are the following results that relate
to scheduling for arbitrary nondecreasing risk functions:
(1) Theorem 5, which supplies guidelines for crafting
optimal schedules for two remote computers under the
free-initiation model; (2) Theorem 9, which exposes a
close relationship between the expected work production
under the free- and the charged-initiation models; (3)
Theorem 6 which describes an asymptotically optimal
schedule for two remote computers under the free-
initiation model. Inspired by the cited theoretical results
and by the development in Section 5.2.2, we devote
Section 7.1 to developing group-scheduling heuristics
that are intended for use with arbitrary risk functions.
We then evaluate these heuristics using actual traces, in
Section 7.2.

7.1 Heuristics for Arbitrary Interruption Risk
Based on our work to this point, it is natural to restrict
attention to schedules that deploy equal-size chunks
when scheduling for the general setting of p remote
computers under arbitrary nondecreasing risk functions.
First, we know that such equal-size-chunk schedules
are asymptotically optimal when scheduling one or two
remote computers; Theorem 3 and Theorem 6. Second,
the group-scheduling heuristics of Section 5.2 deploy
work in equal-size chunks, and this class of schedules
are structurally quite attractive as we contemplate how
to deploy work to arbitrary numbers of computers.

Elaborating on the second point, we note that, with
the sole exception of the greedy scheduling heuristic,

the underlying risk function does not play any role in
the definition of any of our group-scheduling heuristics.
The underlying risk function does have an impact on
the choice of the optimal number of chunks (see Sec-
tion 5.2.3) but that is the function’s only impact. There-
fore, adapting any of our group-scheduling heuristics
(other than the greedy heuristic) to another risk function
requires only changing the number of chunks that the
heuristic works with.

The preceding is both good and bad news: it is good
news since adapting almost all heuristics is easy; it is
bad news because the sole exception is the heuristic that
dominated in all of our tests. Therefore, it is worth-
while working a bit to adapt the greedy scheduling
heuristic for arbitrary interruption risk. In fact, this is
not so hard: after k steps, the probability that a chunk
in group j will be interrupted is proportional to the
product

∏k

i=1 Pr(Ĉ
(greedy)
ij sl/n). We can, therefore, adapt

the greedy scheduling heuristic by using this general
expression for the probability, in place of the expression
specialized for the linear risk model, i.e.,

∏k

i=1 Ĉ
(greedy)
ij .

We are now ready to assess the quality of our heuris-
tics, using actual activity traces.

7.2 Trace-based Experiments
7.2.1 Traces and Methodology
We evaluate our scheduling heuristics using eight traces
that recorded, for each computer in an assemblage,
the lengths of the different time interval during which
the computer was available. These traces are: 0) the
SDSC trace [26, p. 33] with 5678 availability durations;
1) the UCB trace [27] with 19276 availability durations;
2) the XtremWeb trace [26, p. 33] with 8756 availability
durations; 3) the Cetus trace [28] with 1898 availability
durations; 4) the LONG trace [28] with 10958 availability
durations; 5) the Princeton trace [28] with 79 availability
durations; 6) the Condor trace [29] with 1125 availability
durations; and 7) the CSIL trace [29] with 927 availability
durations.

We normalized these traces so that the longest avail-
ability interval for each trace is exactly 1. (This allows us
to compare and average statistics over different traces).
Then, from each trace, trace, we built a risk function,
Prtrace(t), that specifies the probability of a computer’s
being interrupted by time t:

Prtrace(t) =
Number of intervals in trace shorter than t

Number of intervals in trace
.

We generated interruption instances by uniformly and
randomly picking availability interval lengths in the
studied trace. Therefore, we assumed implicitly that
when making a scheduling decision, we only considered
computers that just became available.

7.2.2 Simulation Results
Parameter settings. We ran the heuristics with parameter
λ (see Section 5.1) set to 1.00, parameters p and ε set as



LIP RESEARCH REPORT RR-LIP-2010-18 30

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

(a) Experiment (E1).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

(b) Experiment (E2).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

(c) Experiment (E3).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

(d) Experiment (E4).

Fig. 4. Experiments (E1) through (E4) with 25 computers, 147 chunks, ε = 0.0010, and W(ttl) = 0.3p.

in Section 6.1, and parameter W(ttl) taking all integral
values in the range [1..p]. For each set of parameters and
each trace we generated 1,000 interruption scenarios.

Results. The aggregated simulation results are pre-
sented in Fig. 7 and Table 5. (Graphs showing the
impact of the various parameters are available in ap-
pendix C.) Overall, and under each studied scenario,
Σgreedy achieves far better results than Σcyclic-rep and
Σno-rep. The difference between Σgreedy and the other
heuristics becomes more and more important as the
number of computers increases or as the size of the start-
up cost decreases: the more freedom for work replica-
tion, the more obvious the advantage of Σgreedy.

Fig. 8 presents aggregated result for each of the eight
traces, and Fig. 9 presents the risk function of each of the
eight traces. Trace 5 is the most similar and Trace 1 the
least similar to the linear risk model. For both traces, and
for all the intermediate cases, Σgreedy achieves the best
overall performance with a significant margin. This is the
case when a lot of work can be successfully processed
(Traces 0, 3, 5, and 7, for which the performance of Σbrute

is below 20%). This is also the case when very little work
can be performed before all processors are interrupted
(Traces 1 and 2).

The performance of Σcyclic-rep is close to that of Σno-rep.

On average, Σgreedy closes 37% of the gap between Σno-rep
and the (omniscient) optimal heuristic.

The comparison of Σomniscient and Σgreedy shows that the
latter has very good absolute performance. This proves
the efficiency of static heuristics in this context.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

Σbrute

Σno-rep

Σcyclic-rep

Σgreedy

Fig. 7. Performance of the heuristics with risk functions
defined by computer-availability traces. For each of the
four heuristics, the curve y = f(x) shows the average
performance y of the heuristics when only considering the
x% cases most favorable to that heuristic.



LIP RESEARCH REPORT RR-LIP-2010-18 31

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

Σbrute

Σno-rep

Σcyclic-rep

Σgreedy

Fig. 5. Experiment E5: performance with auto-
matic inference of chunk sizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

W
(c

m
p)

 / 
W

to
t

Ratio of potential replication pX / W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σgreedy

Fig. 6. Experiment E6: impact of the ratio of
potential replication, pX/W(ttl).

Heuristic average stdv
Σbrute 21.7 24.2
Σno-rep 53.6 22.1
Σcyclic-rep 56.5 22.2
Σgreedy 70.8 23.2

TABLE 5
Aggregate performance over all 6,080,000 instances for

risk functions defined by computer-availability traces.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

In
te

rr
up

tio
n 

pr
ob

ab
ili

ty

Size of workload

Trace 0
Trace 1
Trace 2
Trace 3
Trace 4
Trace 5
Trace 6
Trace 7

Linear model

Fig. 9. Interruption probability for each of the eight traces.

8 CONCLUSION

We have presented a model for studying the problem
of scheduling large divisible workloads on identical
remote computers that are vulnerable (with the same
risk function) to unrecoverable interruptions. Our goal
has been to find schedules for allocating work to the
computers and for scheduling the checkpointing of that
work, in a manner that maximizes the expected amount
of work completed by the remote computers. Most of
the results we report assume that the risk of a remote
computer being interrupted increases linearly with the
amount of time that the computer has been available to
us; a few results provide scheduling guidelines for more
general risk functions.

We have completely solved this scheduling prob-

lem for the case of p = 1 remote computer (see [1]
and Section 3), by deriving schedules whose expected
work completion is exactly maximum, both for the free-
initiation model, wherein checkpointing incurs no over-
head, and the charged-initiation model, wherein check-
pointing does incur an overhead. Our major focus is the
case of p = 2 remote computers (Section 4). We provide
schedules for this case whose expected work completion
is either exactly or asymptotically optimal when the
size of the workload grows without bound; we also
provide guidelines for deriving exactly optimal sched-
ules. The complexity of the development in Section 4
suggests that the general case of p remote computers
will be prohibitively difficult, even for deriving asymp-
totically optimal schedules. Therefore, we settle in this
general case for deriving a number of well-structured
heuristics, whose quality can be assessed via explicit
expressions for their expected work outputs (Section 5).
Numerical evaluations suggest that one of our six group
heuristics is the winner in terms of performance. An
extensive suite of simulation experiments suggests that
the “winner” in the competition of Section 5 provides
schedules with good expected work output, and that
it dominates the reference heuristics (Section 6). Finally,
building on the insight gained studying the linear risk
model, we turned our attention to general risk models
(Section 7). We adapted to general risk functions our p-
computer heuristics. Extensive simulations using actual
traces of computer availabilities suggest that the winner
of Sections 5 and 6 also dominate reference heuristics
in the presence of general risk functions, and is a very
efficient heuristic. Furthermore, these simulations show
that static heuristics have overall very good absolute
performance.

Much remains to be done regarding this important
problem, but two directions stand out as perhaps the ma-
jor outstanding challenges. One of these is to extend our
study to include heterogeneous assemblages of remote
computers, whose constituent computers differ in speed
and other computational resources. We have already
embarked on this study, with an initial report in [30].



LIP RESEARCH REPORT RR-LIP-2010-18 32

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

Σbrute Σno-rep Σcyclic-rep Σgreedy

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(a) Trace 0.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(b) Trace 1.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(c) Trace 2.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100
P

er
ce

nt
ag

e 
of

 o
pt

im
al

 w
or

k 
do

ne

Percentage of best cases considered

(d) Trace 3.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(e) Trace 4.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(f) Trace 5.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(g) Trace 6.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(h) Trace 7.

Fig. 8. Experiments with the eight different traces.



LIP RESEARCH REPORT RR-LIP-2010-18 33

Another great challenge, when the assemblages are het-
erogeneous, but even when they are homogeneous, is
to allow the assemblage’s computers to be subject to
differing probabilities of failing/being interrupted.

Acknowledgments. The work of A. Benoit and Y. Robert was
supported in part by the ANR StochaGrid project. The work of
A. Rosenberg was supported in part by US NSF Grants CNS-
0842578 and CNS-0905399.

The authors would like to thank Joshua Wingstrom who
gave them access to the availability traces.

REFERENCES

[1] A. Benoit, Y. Robert, A. L. Rosenberg, and F. Vivien, “Static
strategies for worksharing with unrecoverable interruptions,” in
23rd Intl. Parallel and Distributed Processing Symp. (IPDPS). IEEE
Computer Society Press, 2009.

[2] G. F. Pfister, In Search of Clusters. Prentice-Hall, 1995.
[3] R. Buyya, D. Abramson, and J. Giddy, “A case for economy

grid architecture for service-oriented grid computing,” in 10th
Heterogeneous Computing Workshop. IEEE Computer Society, 2001.

[4] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:
Enabling scalable virtual organizations,” Intl. J. High Performance
Computing Applications, vol. 15, no. 3, pp. 200–222, 2001.

[5] I. Foster and C. Kesselman, Eds., The Grid 2: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, 2004.

[6] W. Cirne and K. Marzullo, “The computational co-op: Gathering
clusters into a metacomputer,” in 13th Intl. Parallel Processing
Symp. (IPPS), 1999, pp. 160–166.

[7] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Leboisky,
“Seti@home-massively distributed computing for seti,” Computing
in Science & Engineering, vol. 3, no. 1, pp. 78–83, 2001.

[8] B. Awerbuch, Y. Azar, A. Fiat, and F. T. Leighton, “Making
commitments in the face of uncertainty: How to pick a winner
almost every time,” in 28th ACM SToC, 1996, pp. 519–530.

[9] M. A. Bender and C. A. Phillips, “Scheduling dags on asyn-
chronous processors,” in 19th ACM SPAA, 2007, pp. 35–45.

[10] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg,
“An optimal strategies for cycle-stealing in networks of worksta-
tions,” IEEE Trans. Computers, vol. 46, no. 5, pp. 545–557, 1997.

[11] L. Gao and G. Malewicz, “Toward maximizing the quality of
results of dependent tasks computed unreliably,” Theory Comput.
Syst., vol. 41, no. 4, pp. 731–752, 2007.

[12] G. Malewicz, A. L. Rosenberg, and M. Yurkewych, “Toward a
theory for scheduling dags in internet-based computing,” IEEE
Trans. Computers, vol. 55, no. 6, pp. 757–768, 2006.

[13] A. L. Rosenberg, “Optimal schedules for cycle-stealing in a net-
work of workstations with a bag-of-tasks workload,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 2, pp. 179–191, 2002.

[14] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi, Scheduling
Divisible Loads in Parallel and Distributed Systems. Wiley-IEEE
Computer Society Press, 1996.

[15] A. L. Rosenberg, “Changing challenges for collaborative algorith-
mics,” in Handbook of Nature-Inspired and Innovative Computing:
Integrating Classical Models with Emerging Technologies, A. Zomaya,
Ed. Springer, 2006, pp. 1–44.

[16] ——, “Guidelines for data-parallel cycle-stealing in networks
of workstations i: On maximizing expected output,” J. Parallel
Distrib. Comput., vol. 59, no. 1, pp. 31–53, 1999.

[17] ——, “Guidelines for data-parallel cycle-stealing in networks
of workstations ii: On maximizing guaranteed output,” Intl. J.
Foundations of Computer Science, vol. 11, no. 1, pp. 183–204, 2000.

[18] D. Kondo, H. Casanova, E. Wing, and F. Berman, “Models and
scheduling mechanisms for global computing applications,” in
16th Intl. Parallel and Distr. Processing Symp. (IPDPS), 2002.

[19] J. Wingstrom and H. Casanova, “Probabilistic allocation of tasks
on desktop grids,” in Proceedings of PCGrid. IEEE CS Press, 2008.

[20] C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and R. Wolski,
“Fault-aware scheduling for bag-of-tasks applications on desktop
grids,” in GRID ’06. IEEE Computer Society, 2006, pp. 56–63.

[21] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang,
“Scheduling divisible loads on star and tree networks: results and
open problems,” IEEE TPDS, vol. 16, no. 3, pp. 207–218, 2005.

[22] M. Gallet, Y. Robert, and F. Vivien, “Divisible load scheduling,” in
Introduction to Scheduling. Chapman and Hall/CRC Press, 2009.

[23] ——, “Comments on “design and performance evaluation of load
distribution strategies for multiple loads on heterogeneous linear
daisy chain networks”,” J. Parallel Distributed Computing, vol. 68,
no. 7, pp. 1021–1031, 2008.

[24] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor - a hunter
of idle workstations,” in ICDCS, 1988, pp. 104–111.

[25] S. White and D. Torney, “Use of a workstation cluster for the
physical mapping of chromosomes,” SIAM NEWS, pp. 14–17,
Mar. 1993.

[26] D. Kondo, “Scheduling task parallel applications for rapid
turnaround on enterprise desktop grids,” Ph.D. dissertation, Uni-
versity of California at San Diego, July 2005.

[27] R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E.
Anderson, and D. A. Patterson, “The interaction of parallel and
sequential workloads on a network of workstations,” in SIGMET-
RICS ’95/PERFORMANCE ’95. ACM, 1995, pp. 267–278.

[28] J. Plank and W. Elwasif, “Experimental assessment of workstation
failures and their impact on checkpointing systems,” in Fault-
Tolerant Computing, 1998, June 1998, pp. 48–57.

[29] D. Nurmi, J. Brevik, and R. Wolski, “Modeling machine availabil-
ity in enterprise and wide-area distributed computing environ-
ments,” in Euro-Par 2005, vol. LNCS 3648, 2005, pp. 432–441.

[30] A. Benoit, Y. Robert, A. Rosenberg, and F. Vivien, “Static work-
sharing strategies for heterogeneous computers with unrecover-
able interruptions,” Parallel Computing, 2010, to appear.



LIP RESEARCH REPORT RR-LIP-2010-18 34

APPENDIX A
EXPERIMENTS WITH LINEAR RISK FUNCTIONS
(SELECTED HEURISTICS)
On the following graphs, the only group-heuristic whose
performance is reported is Σgreedy.

A.1 Experiments E1



LIP RESEARCH REPORT RR-LIP-2010-18 35

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 10. Experiment (E1) using 5 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 36

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 11. Experiment (E1) using 5 computers (continued).



LIP RESEARCH REPORT RR-LIP-2010-18 37

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 12. Experiment (E1) using 10 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 38

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 13. Experiment (E1) using 10 computers (continued).



LIP RESEARCH REPORT RR-LIP-2010-18 39

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 14. Experiment (E1) using 25 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 40

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 15. Experiment (E1) using 25 computers (continued).



LIP RESEARCH REPORT RR-LIP-2010-18 41

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 16. Experiment (E1) using 50 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 42

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 17. Experiment (E1) using 50 computers (continued).



LIP RESEARCH REPORT RR-LIP-2010-18 43

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 18. Experiment (E1) using 100 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 44

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 19. Experiment (E1) using 100 computers (continued).



LIP RESEARCH REPORT RR-LIP-2010-18 45

A.2 Experiments E2



LIP RESEARCH REPORT RR-LIP-2010-18 46

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

Fig. 20. Experiment (E2) with 47 chunks.



LIP RESEARCH REPORT RR-LIP-2010-18 47

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

Fig. 21. Experiment (E2) with 97 chunks.



LIP RESEARCH REPORT RR-LIP-2010-18 48

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

Fig. 22. Experiment (E2) with 147 chunks.



LIP RESEARCH REPORT RR-LIP-2010-18 49

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

Fig. 23. Experiment (E2) with 197 chunks.



LIP RESEARCH REPORT RR-LIP-2010-18 50

A.3 Experiments E3



LIP RESEARCH REPORT RR-LIP-2010-18 51

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

W(ttl) = 1.5 W(ttl) = 3.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

Fig. 24. Experiment (E3) using 5 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 52

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

W(ttl) = 3 W(ttl) = 7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

Fig. 25. Experiment (E3) using 10 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 53

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

W(ttl) = 7.5 W(ttl) = 17.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

Fig. 26. Experiment (E3) using 25 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 54

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

W(ttl) = 15 W(ttl) = 35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

Fig. 27. Experiment (E3) using 50 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 55

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

W(ttl) = 30 W(ttl) = 70

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

Fig. 28. Experiment (E3) using 100 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 56

A.4 Experiments E4



LIP RESEARCH REPORT RR-LIP-2010-18 57

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

Fig. 29. Experiment (E4) with 5 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 58

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

Fig. 30. Experiment (E4) with 10 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 59

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

Fig. 31. Experiment (E4) with 25 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 60

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

Fig. 32. Experiment (E4) with 50 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 61

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute Σno-rep Σcyclic-rep Σrandom-rep Σgreedy

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

Fig. 33. Experiment (E4) with 100 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 62

APPENDIX B
EXPERIMENTS WITH LINEAR RISK FUNCTIONS
(ALL HEURISTICS)
On the following graphs, the performance of all the
heuristics is displayed, including all our group heuris-
tics.

B.1 Experiments E1



LIP RESEARCH REPORT RR-LIP-2010-18 63

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 34. Experiment (E1) using 5 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 64

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4  4.5  5

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 35. Experiment (E1) using 5 computers (continued).



LIP RESEARCH REPORT RR-LIP-2010-18 65

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 36. Experiment (E1) using 10 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 66

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 37. Experiment (E1) using 10 computers (continued).



LIP RESEARCH REPORT RR-LIP-2010-18 67

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 38. Experiment (E1) using 25 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 68

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 39. Experiment (E1) using 25 computers (continued).



LIP RESEARCH REPORT RR-LIP-2010-18 69

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 40. Experiment (E1) using 50 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 70

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 41. Experiment (E1) using 50 computers (continued).



LIP RESEARCH REPORT RR-LIP-2010-18 71

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

47 chunks 97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 42. Experiment (E1) using 100 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 72

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

147 chunks 197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60  70  80  90  100

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Fig. 43. Experiment (E1) using 100 computers (continued).



LIP RESEARCH REPORT RR-LIP-2010-18 73

B.2 Experiments E2



LIP RESEARCH REPORT RR-LIP-2010-18 74

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

Fig. 44. Experiment (E2) with 47 chunks.



LIP RESEARCH REPORT RR-LIP-2010-18 75

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

Fig. 45. Experiment (E2) with 97 chunks.



LIP RESEARCH REPORT RR-LIP-2010-18 76

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

Fig. 46. Experiment (E2) with 147 chunks.



LIP RESEARCH REPORT RR-LIP-2010-18 77

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

W
(c

m
p)

 / 
O

pt
im

al

Number of computers

Fig. 47. Experiment (E2) with 197 chunks.



LIP RESEARCH REPORT RR-LIP-2010-18 78

B.3 Experiments E3



LIP RESEARCH REPORT RR-LIP-2010-18 79

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

W(ttl) = 1.5 W(ttl) = 3.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

Fig. 48. Experiment (E3) using 5 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 80

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

W(ttl) = 3 W(ttl) = 7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

Fig. 49. Experiment (E3) using 10 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 81

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

W(ttl) = 7.5 W(ttl) = 17.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

Fig. 50. Experiment (E3) using 25 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 82

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

W(ttl) = 15 W(ttl) = 35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

Fig. 51. Experiment (E3) using 50 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 83

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

W(ttl) = 30 W(ttl) = 70

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.1000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0010

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

ε = 0.0001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

W
(c

m
p)

 / 
O

pt
im

al

Number of chunks per unit of work

Fig. 52. Experiment (E3) using 100 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 84

B.4 Experiments E4



LIP RESEARCH REPORT RR-LIP-2010-18 85

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

Fig. 53. Experiment (E4) with 5 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 86

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

Fig. 54. Experiment (E4) with 10 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 87

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

Fig. 55. Experiment (E4) with 25 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 88

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

Fig. 56. Experiment (E4) with 50 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 89

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45  50

W
(c

m
p)

 / 
O

pt
im

al

Total workload W(ttl)

Σbrute

Σno-rep

Σcyclic-rep

Σrandom-rep

Σgreedy

Σcyclic

Σreverse

Σmirror

Σsnake

Σfat-snake

W(ttl) = 0.3p W(ttl) = 0.7p

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

47 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

97 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

147 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

197 chunks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

W
(c

m
p)

 / 
O

pt
im

al

Start-up cost ε

Fig. 57. Experiment (E4) with 100 computers.



LIP RESEARCH REPORT RR-LIP-2010-18 90

B.5 Experiments E5



LIP RESEARCH REPORT RR-LIP-2010-18 91

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

Σbrute Σno-rep Σcyclic-rep Σgreedy

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(a) 5 computers.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(b) 10 computers.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(c) 25 computers.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(d) 50 computers.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(e) 100 computers.

Fig. 58. Experiment (E5) using different numbers of computers.



LIP RESEARCH REPORT RR-LIP-2010-18 92

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

Σbrute Σno-rep Σcyclic-rep Σgreedy

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(a) ε = 0.1000.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(b) ε = 0.0010.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(c) ε = 0.0010.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(d) ε = 0.0001.

Fig. 59. Experiment (E5) using different values of start-up cost.



LIP RESEARCH REPORT RR-LIP-2010-18 93

APPENDIX C
EXPERIMENTS WITH GENERAL RISK FUNCTIONS



LIP RESEARCH REPORT RR-LIP-2010-18 94

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

Σbrute Σno-rep Σcyclic-rep Σgreedy

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(a) 5 computers.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(b) 10 computers.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(c) 25 computers.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(d) 50 computers.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(e) 100 computers.

Fig. 60. Experiments using different numbers of computers.



LIP RESEARCH REPORT RR-LIP-2010-18 95

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

Σbrute Σno-rep Σcyclic-rep Σgreedy

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(a) ε = 0.1000.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(b) ε = 0.0010.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(c) ε = 0.0010.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(d) ε = 0.0001.

Fig. 61. Experiments using different values of start-up cost.



LIP RESEARCH REPORT RR-LIP-2010-18 96

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

Σbrute Σno-rep Σcyclic-rep Σgreedy

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(a) Trace 0.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(b) Trace 1.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(c) Trace 2.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(d) Trace 3.

Fig. 62. Experiments using different different traces (a).



LIP RESEARCH REPORT RR-LIP-2010-18 97

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

Σbrute Σno-rep Σcyclic-rep Σgreedy

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(a) Trace 4.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(b) Trace 5.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(c) Trace 6.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

P
er

ce
nt

ag
e 

of
 o

pt
im

al
 w

or
k 

do
ne

Percentage of best cases considered

(d) Trace 7.

Fig. 63. Experiments using different different traces (b).


