Scheduling Algorithms for Variable Capacity Resources

Anne Benoit

LIP, Ecole Normale Supérieure de Lyon Institut Universitaire de France

Joint work with Y. Robert, L. Perotin, J. Cendrier, F. Vivien (ENS Lyon) and A. A. Chien, R. Wijayawardana, C. Zhang (U. Chicago)

May 16, 2024 – New Challenges in Scheduling Theory – Aussois

- Today's data centers assume resource capacity as a fixed quantity
- **•** Emerging approaches:
	- Exploit grid renewable energy
	- Reduce carbon emissions
	- ⇒ Variable power

←⊏

É

K ロ ト K 伊 ト K 毛

 $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$

 \leftarrow \Box ← ● \rightarrow \equiv

 \rightarrow

一 4 (国)

D.

€

[Case study \(with U. Chicago\)](#page-18-0)

[With checkpoints](#page-47-0)

重

イロト イ部 トイミト イミト

- Rigid jobs: Processor allocation is fixed
- Moldable jobs: Processor allocation is decided by the user or the system but cannot be changed during execution
- Malleable jobs: Processor allocation can be dynamically changed

• Rigid jobs: Processor allocation is fixed

• Moldable jobs: Processor allocation is decided by the user or the system but cannot be changed during execution

• Malleable jobs: Processor allocation can be dynamically changed

• Rigid jobs: Processor allocation is fixed

• Moldable jobs: Processor allocation is decided by the user or the system but cannot be changed during execution

• Malleable jobs: Processor allocation can be dynamically changed

←□

• Rigid jobs: Processor allocation is fixed

• Moldable jobs: Processor allocation is decided by the user or the system but cannot be changed during execution

- Malleable jobs: Processor allocation can be dynamically changed
	- The case for moldable jobs:
		- Easily adapt to the amount of available resources (contrarily to rigid jobs)
		- Easy to design/implement (contrarily to malleable jobs)
		- Computational kernels in scientific libraries are provided as moldable jobs

- Some jobs cannot be interrupted
- Some jobs can be checkpointed

Half the projected load for US Exascale systems include checkpointing capabilities (from APEX worklows, Sandia/LosAlamos/NERSC report, April 2016)

重

メロメメ 倒 メメ ミメメ ミメ

Kロト K倒

 \rightarrow \rightarrow \equiv

 \rightarrow \rightarrow \equiv

目 \rightarrow

重

メロメメ 倒 メメ ミメメ ミメ

重

メロメメ 倒 メメ ミメメ ヨメ

² How to schedule jobs to minimize impact?

4 0 8

∍

- When power decreases, which machines to power off? Which jobs to interrupt? And to re-schedule?
- Are we notified ahead of a power change?
	- Resource variation in power obeys specific parameters whose evolution is dictated by a mix of technical availability and economic conditions
	- Accurate external predictor (precision, recall)? Maybe too optimistic \odot
- Re-scheduling interrupted jobs
	- Can we take a proactive checkpoint before the interruption?
	- Which priority should be given to each interrupted job?
	- Which geometry and which nodes for re-execution?

When power decreases, which machines to power off? Which jobs to interrupt? And to re-schedule?

Are we notified ahead of a power change? S cheduling opportunity $\&$ challenge evolution is different by \sim

- Nodes ordered according to non-decreasing risk, say from left to right
• Shutdown podes starting from the right
- \bullet Shutdown nodes starting from the right
- \bullet Assign priority jobs, such as large jobs, to nodes on the left
- \bullet Global load of the platform must remain balanced

Sophisticated algorithms that go well beyond first-fit decisions

• Set M of M^+ identical parallel machines, each equipped with n_c cores, and requiring power P when switched on

• Global available power capacity $P(t)$: function of time t (time discretized) \Rightarrow $M_{alive}(t)$ machines alive, with $M_{alive}(t)P \le P(t)$

- Set \mathcal{J} ; job $\tau_i \in \mathcal{J}$ released at date r_i , needs c_i cores, has length w_i ; allocated to machine m_i at starting date s_i
- (Predicted) completion date of job τ_i : $e_i = s_i + w_i$ if not interrupted
- At any time, total cores used by running jobs on a machine $\leq n_c$

- The number of alive machines evolves over time (either random-length phases, or fixed-length periods)
- The number of alive machines in the next phase/period is not known in advance
- \bullet Technically, $M_{\text{alive}}(t)$:
	- Always ranges in interval $[M^- = M_{\text{avg}} M_{\text{ra}}, M^+ = M_{\text{avg}} + M_{\text{ra}}]$ centered in M_{avg}
	- Evolves according to some random walk, starting with M_{avg}
	- Stavs constant, increases or decreases with same probability (if range bound reached, stays constant or evolves in unique possible direction, with same probability)
	- Magnitude of variation controlled by another variable

- Rigid jobs \Rightarrow no flexibility in size
- **o** Identical multicore machines
- No checkpoints
- Power consumption at time t proportional to $M_{alive}(t)$ (actual load not accounted for)
- Resource variation not known until change

- \bullet \mathcal{J}_{conn} τ : set of jobs that are complete at time T (e_i < T)
- \bullet $\mathcal{J}_{\mathsf{stred},\mathcal{T}}$: set of jobs running and not finished at time \mathcal{T} ($s_i \leq \mathcal{T} < e_i$)
- Total number of units of work that can be executed in $[0, T]$:

$$
n_c \sum_{t \in [0, T-1]} M_{alive}(t)
$$

 \bullet GOODPUT(T) is the fraction of useful work up to time T:

$$
\text{GOODPUT}(\mathcal{T}) = \frac{\sum_{\tau_i \in \mathcal{J}_{comp,\mathcal{T}}} w_i c_i + \sum_{\tau_i \in \mathcal{J}_{stated,\mathcal{T}}} (\mathcal{T} - s_i) c_i}{n_c \sum_{t \in [0, \mathcal{T} - 1]} M_{alive}(t)}
$$

4 0 F

- \bullet \mathcal{J}_{conn} τ : set of jobs that are complete at time T (e_i < T)
- \bullet $\mathcal{J}_{\mathsf{stred},\mathcal{T}}$: set of jobs running and not finished at time \mathcal{T} ($s_i \leq \mathcal{T} < e_i$)
- Total number of units of work that can be executed in $[0, T]$:

$$
n_c \sum_{t \in [0, T-1]} M_{alive}(t)
$$

 \bullet GOODPUT(T) is the fraction of useful work up to time T:

$$
\text{GOODPUT}(\mathcal{T}) = \frac{\sum_{\tau_i \in \mathcal{J}_{comp,\mathcal{T}}} w_i c_i + \sum_{\tau_i \in \mathcal{J}_{stated,\mathcal{T}}} (\mathcal{T} - s_i) c_i}{n_c \sum_{t \in [0, \mathcal{T} - 1]} M_{alive}(t)}
$$

Keep an eye on maximum stretch

4 0 F

An adversary can force any schedule to achieve no goodput at all, even with a single unicore machine

• Job τ_1 of size $c_1 = 1$ and duration $w_1 = K$ released at time $t = r_1 = 0$; Goodput of the machine at time $T = K$?

Theorem

An adversary can force any schedule to achieve no goodput at all, even with a single unicore machine

• Job τ_1 of size $c_1 = 1$ and duration $w_1 = K$ released at time $t = r_1 = 0$; Goodput of the machine at time $T = K$?

• Start τ_1 at time $s_1 > 0$: machine interrupted at time K

Theorem

An adversary can force any schedule to achieve no goodput at all, even with a single unicore machine

• Job τ_1 of size $c_1 = 1$ and duration $w_1 = K$ released at time $t = r_1 = 0$; Goodput of the machine at time $T = K$?

• Start τ_1 at time $s_1 = 0$: new job τ_2 , machine interrupted at time $K - 1$

Risk-aware job allocation strategies

目 \rightarrow

K ロ ▶ K 御 ▶ K 舌

 \triangleright \rightarrow \equiv

Risk-aware job allocation strategies

目 \rightarrow

K ロ ▶ K 御 ▶ K 舌

 \rightarrow \rightarrow \equiv

Risk-aware job allocation strategies

目 \rightarrow

K ロ ▶ K 御 ▶ K 舌

 \rightarrow \rightarrow \equiv

Events:

- **Job arrival**: When a job is released, when to schedule it and on which machine?
- **Job completion**: When a job is completed, its cores are released \Rightarrow additional jobs can be scheduled
- Machine addition: When a new machine becomes available, how to utilize it?
- Machine removal: When a machine is turned off, its jobs are killed and need re-allocation

• Job arrival

Assign incoming job to smallest-index machine with enough free resources If no machine can execute the job, it is placed in waiting queue

Job completion

Check the queue for job with smallest release date that fits in the machine m with completed job, and assigns it to m

If a job is assigned, continues to search the queue

If empty queue or not enough cores in m for any waiting job \Rightarrow no action

• Machine addition

Assign jobs to the new machine in order of increasing release date

Machine removal

Shut down machine with highest index, put all its jobs in the queue Assign jobs to available machines in order of increasing release date

- \bullet Jobs mapped to leftmost (safer) machines whenever possible
- \bullet Rightmost (riskier) machines are shutdown whenever necessary

• Machine addition

Assign jobs to the new machine in order of increasing release date

If empty queue or not enough cores in m for any waiting job ⇒ no action

Machine removal

Shut down machine with highest index, put all its jobs in the queue Assign jobs to available machines in order of increasing release date

Assign jobs to available machines in order of increasing release date

重 \rightarrow

K ロ ▶ K 御 ▶ K 舌

 \triangleright \rightarrow \equiv

- Add one queue per machine
- Set target value for (target) maximum stretch
- Job arrival

Compute job's target machine

Consider neighboring machines if target stretch not achievable

• Machine addition/removal

Set of risk-free machines recomputed Re-allocate pending jobs

[Motivation](#page-1-0) **[Variable capacity scheduling](#page-4-0)** C_{ool} [Case study \(with U. Chicago\)](#page-18-0) [With checkpoints](#page-47-0) [Conclusion](#page-50-0)

TARGETASAP & PACKEDTARGETASAP

• TARGETSTRETCH: potential bad utilization No flexibility for mapping to another free machine

∍

 \leftarrow

[Motivation](#page-1-0) **1** [Variable capacity scheduling](#page-4-0) **[Case study \(with U. Chicago\)](#page-18-0)** [With checkpoints](#page-47-0) [Conclusion](#page-50-0)

TargetASAP & PackedTargetASAP

- TARGETSTRETCH: potential bad utilization No flexibility for mapping to another free machine
- \bullet TARGETASAP:
	- Start job immediately on target machine or closest machine in neighborhood
	- If not possible, assign on target machine if target stretch not exceeded
	- Otherwise, assign on machine where it can start ASAP (within acceptable distance)

[Motivation](#page-1-0) [Variable capacity scheduling](#page-4-0) [Case study \(with U. Chicago\)](#page-18-0) [With checkpoints](#page-47-0) [Conclusion](#page-50-0)

TARGETASAP & PACKEDTARGETASAP

- **TARGETSTRETCH: potential bad utilization** No flexibility for mapping to another free machine
- \bullet TARGETASAP:
	- Start job immediately on target machine or closest machine in neighborhood
	- If not possible, assign on target machine if target stretch not exceeded
	- Otherwise, assign on machine where it can start ASAP (within acceptable distance)
- Variant $PACKEDTARGETASAP$: group machines into packs, and assign jobs to first machines of the pack, to leave machines empty for future large jobs

In-house simulator, using a combination of two traces:

• Resource variation trace: number of machines alive at any given time Use of a random walk, within an interval

o lob trace:

- Real traces coming from **Borg** (two-week traces with jobs coming from Google cluster management software: release dates, lengths, number of cores)
- Synthetic traces to study the impact of parameters (three variants: uniform lengths, log scale, and three types of jobs) \Rightarrow similar conclusions

- Number of available machines always in $[M_{\text{avg}}-M_{\text{ra}}, M_{\text{avg}}+M_{\text{ra}}]$
- Total work hours \approx maximum capacity of 26 machines each with 24 cores, running during 2 weeks with full peak load
- Average number of machines: $M_{\text{avg}} = 24$
- Period of machine variation: $\phi = 20$ mn
- Range of machine variation: $M_{ra} = 8$; half the machines are safe
- Number of cores per machine: $n_c = 24$. Jobs typically use 1, 2, 4, 8 cores
- **Conservative backfilling at machine level**

- **FIRSTFITAWARE and FIRSTFITUNAWARE never good**
- TARGETSTRETCH: different behavior because of its lack of flexibility, some machines remain partially inactive even when jobs are waiting (better with fewer machines)
- \bullet \bullet \bullet TARGETASAP always good, and packed variant PACKEDTARGETASAP [ev](#page-40-0)e[n](#page-46-0)[b](#page-17-0)e[tt](#page-46-0)e[r](#page-0-0)

∍

- With low period (many changes), TARGETSTRETCH better by preserving long jobs
- Goodput increases with period: less changes \Rightarrow less job interruptions
- **Better relative performance of TARGETASAP and PACKEDTARGETASAP** with low periods $(=$ high variability)

- Increase in range \Rightarrow Degradation of the metric
- TARGETSTRETCH: lowest maximum stretch, as well as low aborted volume and time
- \bullet However, low utilization of machines for TARGESTREFCH , with low goodput

- A simple case-study of scheduling with variable capacity resources
- Primary challenge: when capacity decreases, running jobs need to be terminated to meet required power load reduction
- Online risk-aware scheduling strategies to preserve performance: map the right job to the right machine
- Algorithmic techniques: risk index per machine, mapping longer jobs to safer machines, maintaining local queues at machines, re-executing interrupted jobs on new machines, and redistributing pending jobs as resource capacity increases
- Significant gains over first-fit algorithms with up to 10% increase in goodput, and better performance in complementary metrics (maximum and average stretch)

during each section

Hypotheses:

- A job can be checkpointed and recovered
- \bullet Knowledge of the duration of each section, and bound on #proc difference Additional constraint:
	- Never lose work (i.e., checkpoint enough before section change, and never shut off a non-checkpointed job)

- Sophisticated dynamic programming algorithms to optimize goodput and/or yield at the end of a section
- **•** Evaluation on job traces
- Improvement of novel strategies over greedy approaches

Many challenging scheduling problems \odot

Workshop report: Scheduling Variable Capacity Resources for Sustainability; March 29-31, 2023, U. Chicago Paris Center

Today's case study: restricted instance \odot

Risk-Aware Scheduling Algorithms for Variable Capacity Resources; PMBS workshop at SC'23

4 0 8 ∢母 \rightarrow \triangleright \rightarrow \equiv

 \sim

∍

II

Platforms and resources: New and more complex definitions of capacity; describe resource capacity as a function of time

Flexible workloads: Flexible start dates, allow migration or deferral

Scheduling models and metrics: New models for resource variability and job classification; New multi-criteria metrics for both performance and sustainability; Accounting for uncertainty

Policy and societal factors: Mechanisms that help people accept constraints linked to environmental rules; Superficial feeling of abundance: abuse of computational resources, rebound effect