
Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Variable Capacity Scheduling

Anne Benoit
LIP, Ecole Normale Supérieure de Lyon

Institut Universitaire de France
Mercator Fellow for the Collaborative Research Center FONDA

Joint work with Y. Robert, L. Perotin, J. Cendrier, F. Vivien (ENS Lyon)
and A. A. Chien, R. Wijayawardana, C. Zhang (U. Chicago)

October 29, 2024 – Humboldt University Seminar – Berlin

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

1 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Variable power

Today’s data centers assume resource capacity as a fixed quantity

Emerging approaches:

Exploit grid renewable energy
Reduce carbon emissions

⇒ Variable power

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

2 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Big picture

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

3 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Big picture

" Scheduling is getting even more challenging!

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

3 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Outline

1 Batch scheduling

2 With variable capacity

3 Study without checkpoints

4 With checkpoints

5 Conclusion

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

4 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Batch scheduling

Jobs submitted online

Each job has a release time and a size (number of resources)

Each job has an (estimated) execution time, a.k.a reservation length

The Batch Scheduler is responsible for the sharing

job requests

queue

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

5 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

General principle

Jobs are released one after the other and are scheduled upon arrival

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

6 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

General principle

Jobs are released one after the other and are scheduled upon arrival

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

6 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

General principle

Jobs are released one after the other and are scheduled upon arrival

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

6 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

General principle

Jobs are released one after the other and are scheduled upon arrival

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

6 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Backfilling

FCFS + FirstFit = simplest scheduling strategy

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

7 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Backfilling

FCFS + FirstFit = simplest scheduling strategy
Fragmentation /

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

7 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Backfilling

FCFS + FirstFit = simplest scheduling strategy
Fragmentation / ⇒ need for backfilling

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

7 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

EASY Backfilling

Extensible Argonne Scheduling System
Maintain only one reservation time, for first job in the queue

Shadow time – Starting execution of first job in the queue

Extra nodes – Number of nodes idle at shadow time

1 Go through the queue in order, starting with second job
2 Backfill a job

either if it will terminate by shadow time
or if it needs no more nodes than the extra nodes

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

8 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

EASY

First job in the queue is never delayed by backfilled jobs

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

9 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

EASY

First job in the queue is never delayed by backfilled jobs

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

9 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

EASY

First job in the queue is never delayed by backfilled jobs

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

9 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

EASY

First job in the queue is never delayed by backfilled jobs

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

9 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

EASY

First job in the queue is never delayed by backfilled jobs

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

9 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

EASY

First job in the queue is never delayed by backfilled jobs
BUT other jobs may be delayed indefinitely!

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

9 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

EASY

First job in the queue is never delayed by backfilled jobs
BUT other jobs may be delayed indefinitely!

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

9 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

EASY

First job in the queue is never delayed by backfilled jobs
BUT other jobs may be delayed indefinitely!

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

9 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

EASY

First job in the queue is never delayed by backfilled jobs
BUT other jobs may be delayed indefinitely!

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

9 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

EASY properties

Unbounded Delay

First job in the queue is never delayed by backfilled jobs
BUT other jobs may be delayed indefinitely!

No Starvation

Delay of first job in the queue is bounded by runtime of current jobs
When first job completes, second job becomes first job in the queue
Once it is the first job, it cannot be delayed further

Behavior

EASY favors small long jobs and delays large short jobs

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

10 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Conservative backfilling

Find holes in the schedule

Each job has a reservation time

A job may be backfilled
only if it does not delay any other job ahead of it in the queue

Fixes EASY unbounded delay problem

More complicated to implement /

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

11 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

When does backfilling happen?

Possibly when

A new job is released

The first job in the queue starts execution

When a job finishes early

A job is killed if it goes over

Users provide job runtime estimates
Trade-off: provide

a tight estimate: you go through the queue faster (may be backfilled)

a loose estimate: your job will not be killed

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

12 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

When does backfilling happen?

Possibly when

A new job is released

The first job in the queue starts execution

When a job finishes early

A job is killed if it goes over

Users provide job runtime estimates
Trade-off: provide

a tight estimate: you go through the queue faster (may be backfilled)

a loose estimate: your job will not be killed

Tricks

• Pick the right “shape” so that you’ll be backfilled
• Chop up your job into multiple pieces
• Aggressively submit versions of the same job (different shapes),
perhaps to multiple systems, and cancel when one begins

• . . .

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

12 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

What’s a good batch schedule?

Define a metric of goodness for this on-line scheduling problem

Wait time: time spent in the queue

Wait time is annoying, so likely a good thing to minimize
Not a great idea:

Job #1 needs 100h on 1000 nodes and waits 1h
Job #2 needs 1s on 1 node and waits 1h
Clearly Job #1 is really happy, and Job #2 is not happy at all

Turn-around time: Wait time + Execution time

Called flow time in scheduling literature
Not a great idea:

Job #1 needs 1h of compute time and waits 1s
Job #2 needs 1s of compute time and waits 1h
Clearly Job #1 is really happy, and Job #2 is not happy at all

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

13 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

What’s a good batch schedule?

Define a metric of goodness for this on-line scheduling problem

Wait time: time spent in the queue

Wait time is annoying, so likely a good thing to minimize
Not a great idea:

Job #1 needs 100h on 1000 nodes and waits 1h
Job #2 needs 1s on 1 node and waits 1h
Clearly Job #1 is really happy, and Job #2 is not happy at all

Turn-around time: Wait time + Execution time

Called flow time in scheduling literature
Not a great idea:

Job #1 needs 1h of compute time and waits 1s
Job #2 needs 1s of compute time and waits 1h
Clearly Job #1 is really happy, and Job #2 is not happy at all

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

13 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

What’s a good batch schedule?

Define a metric of goodness for this on-line scheduling problem

Wait time: time spent in the queue

Wait time is annoying, so likely a good thing to minimize
Not a great idea:

Job #1 needs 100h on 1000 nodes and waits 1h
Job #2 needs 1s on 1 node and waits 1h
Clearly Job #1 is really happy, and Job #2 is not happy at all

Turn-around time: Wait time + Execution time

Called flow time in scheduling literature
Not a great idea:

Job #1 needs 1h of compute time and waits 1s
Job #2 needs 1s of compute time and waits 1h
Clearly Job #1 is really happy, and Job #2 is not happy at all

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

13 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

What’s a good batch schedule?

We want a metric that represents “happiness” for small, large, short, long jobs

Slowdown: (Wait time + Execution time) / Execution time
Called stretch in scheduling literature
Quantifies loss of performance due to competition for the processors
Takes care of the short vs. long job problem
Doesn’t really say anything about job size . . .

Two possible objectives:
minimize the Sum Stretch (make jobs happy on average)
minimize the Max Stretch (make the least happy job as happy as possible)

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

14 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

What’s a good batch schedule?

We want a metric that represents “happiness” for small, large, short, long jobs

Slowdown: (Wait time + Execution time) / Execution time
Called stretch in scheduling literature
Quantifies loss of performance due to competition for the processors
Takes care of the short vs. long job problem
Doesn’t really say anything about job size . . .

Two possible objectives:
minimize the Sum Stretch (make jobs happy on average)
minimize the Max Stretch (make the least happy job as happy as possible)

Flow time measures the time that a job is in the system regardless
of the service it requests; the stretch measure relies on the intuition
that a job that requires a long service time must be prepared to
wait longer than jobs that require small service times.
M. Bender et al, J. of Scheduling, 2004

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

14 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Minimizing Maximum Stretch

t

Incoming jobs

r1 r2 r3 r4 r5

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

15 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Minimizing Maximum Stretch

t

Incoming jobs

r1 r2 r3 r4 r5
ASAP scheduling M1

M2

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

15 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Minimizing Maximum Stretch

t

Incoming jobs

r1 r2 r3 r4 r5
ASAP scheduling M1

M2

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

15 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Minimizing Maximum Stretch

t

Incoming jobs

r1 r2 r3 r4 r5
ASAP scheduling M1

M2

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

15 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Minimizing Maximum Stretch

t

Incoming jobs

r1 r2 r3 r4 r5
ASAP scheduling M1

M2

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

15 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Minimizing Maximum Stretch

t

Incoming jobs

r1 r2 r3 r4 r5

Minimize max. stretch M1

M2

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

15 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Online Max Stretch: Difficult

The offline scheduling problem is NP-complete

On one processor, with preemption allowed,
there is a O(

√
X )-competitive algorithm

X is the ratio of largest to smallest job duration
Competitive ratio: ratio to performance of an adversary who knows all jobs

Without preemption, no approximation algorithm

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

16 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

A massive divide

Practice No preemption in batch scheduling
Need for many scheduling configuration knobs

Theory Without preemption, we cannot do anything guaranteed anyway

The two remain very divorced

Stretch used as a metric to evaluate how good scheduling is in practice

Often, it is not the objective of the batch scheduler

That objective is complex, sometimes mysterious, and not necessarily
theoretically-motivated

Bottom-line: Users hate the batch queue, and will use ingenuity to get ahead

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

17 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Scheduling objectives

User-oriented, performance

Wait time – Amount of time spent waiting before execution
Turnaround time/Response time/Flow – Amount of time between job release
and completion
Slowdown/Stretch – Slowdown factor relative to time it would take on an
unloaded system

User-oriented, other criteria

Cost – Money paid for reservation
Energy – Energy consumed by job

Platform-oriented

Utilization – Proportion of time spent doing computation
Goodput – Proportion of time spent doing successful computation
Failure rate – Proportion of interrupted jobs
Total power – Minimize power peak
Carbon emission – Minimize carbon emission (if green power sources available)

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

18 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Outline

1 Batch scheduling

2 With variable capacity

3 Study without checkpoints

4 With checkpoints

5 Conclusion

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

19 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Flexible workloads: Parallel jobs

Rigid jobs: Processor allocation is fixed

Moldable jobs: Processor allocation is decided by the user or the
system but cannot be changed during execution

Malleable jobs: Processor allocation can be dynamically changed

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

20 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Flexible workloads: Parallel jobs

Rigid jobs: Processor allocation is fixed

Moldable jobs: Processor allocation is decided by the user or the
system but cannot be changed during execution

Malleable jobs: Processor allocation can be dynamically changed

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

20 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Flexible workloads: Parallel jobs

Rigid jobs: Processor allocation is fixed

Moldable jobs: Processor allocation is decided by the user or the
system but cannot be changed during execution

Malleable jobs: Processor allocation can be dynamically changed

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

20 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Flexible workloads: Parallel jobs

Rigid jobs: Processor allocation is fixed

Moldable jobs: Processor allocation is decided by the user or the
system but cannot be changed during execution

Malleable jobs: Processor allocation can be dynamically changed

The case for moldable jobs:

Easily adapt to the amount of available resources (contrarily to rigid jobs)

Easy to design/implement (contrarily to malleable jobs)

Computational kernels in scientific libraries are provided as moldable jobs

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

20 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Checkpoints

Some jobs cannot be interrupted

Some jobs can be checkpointed

Half the projected load for US Exascale systems include checkpointing capabilities
(from APEX worklows, Sandia/LosAlamos/NERSC report, April 2016)

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

21 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Checkpoints

Some jobs cannot be interrupted

Some jobs can be checkpointed

Half the projected load for US Exascale systems include checkpointing capabilities
(from APEX worklows, Sandia/LosAlamos/NERSC report, April 2016)

Scheduling opportunity

• Many checkpointable jobs are moldable

• These jobs are able to restart with a different allocation (size and shape)

" Resizing impacts performance

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

21 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Risk aware?

1 Which machine to shutdown?

t
r1 r2 r3 r4 r5

M1

M2

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

22 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Risk aware?

1 Which machine to shutdown?

t
r1 r2 r3 r4 r5

M1

M2

Machine shutdown

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

22 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Risk aware?

1 Which machine to shutdown?

t
r1 r2 r3 r4 r5

M1

M2
X

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

22 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Risk aware?

1 Which machine to shutdown?

t
r1 r2 r3 r4 r5

M1

M2 X

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

22 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Risk aware?

1 Which machine to shutdown?

t
r1 r2 r3 r4 r5

M1

M2 X

2 How to schedule jobs to minimize impact?

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

22 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Main questions

When power decreases, which machines to power off? Which jobs to interrupt?
And to re-schedule?

Are we notified ahead of a power change?

Resource variation in power obeys specific parameters whose evolution is dictated by
a mix of technical availability and economic conditions
Accurate external predictor (precision, recall)? Maybe too optimistic /

Re-scheduling interrupted jobs

Can we take a proactive checkpoint before the interruption?
Which priority should be given to each interrupted job?
Which geometry and which nodes for re-execution?

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

23 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Outline

1 Batch scheduling

2 With variable capacity

3 Study without checkpoints

4 With checkpoints

5 Conclusion

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

24 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Framework

Platform
Set M of M+ identical parallel machines, each equipped with nc cores, and
requiring power P when switched on
Global available power capacity P(t): function of time t (time discretized)
⇒ Malive(t) machines alive, with Malive(t)P ≤ P(t)

Rigid jobs
Set J ; job τi ∈ J released at date ri , needs ci cores, has length wi ; allocated to
machine mi at starting date si
(Predicted) completion date of job τi : ei = si + wi if not interrupted
At any time, total cores used by running jobs on a machine ≤ nc

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

25 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Resource variation

Number of alive machines evolves over time
(either random-length phases, or fixed-length periods)

Number of alive machines in the next phase/period not known in advance

Technically, Malive(t):

Always ranges in interval [M− = Mavg −Mra,M
+ = Mavg +Mra] centered in Mavg

Evolves according to some random walk, starting with Mavg

Stays constant, increases or decreases with same probability
(if range bound reached, stays constant or evolves in unique possible direction,
with same probability)
Magnitude of variation controlled by another variable

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

26 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Limitations

Rigid jobs ⇒ no flexibility in size

Identical multicore machines

No checkpoints

Power consumption at time t proportional to Malive(t)
(actual load not accounted for)

Resource variation not known until change

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

27 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Objective function: Goodput

Jcomp,T : set of jobs that are complete at time T (ei ≤ T )

Jstarted ,T : set of jobs running and not finished at time T (si ≤ T < ei )

Total number of units of work that can be executed in [0,T ]:

nc
∑

t∈[0,T−1]

Malive(t)

Goodput(T ) is the fraction of useful work up to time T :

Goodput(T ) =

∑
τi∈Jcomp,T

wici +
∑

τi∈Jstarted,T
(T − si )ci

nc
∑

t∈[0,T−1]Malive(t)

Keep an eye on maximum stretch

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

28 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Objective function: Goodput

Jcomp,T : set of jobs that are complete at time T (ei ≤ T )

Jstarted ,T : set of jobs running and not finished at time T (si ≤ T < ei )

Total number of units of work that can be executed in [0,T ]:

nc
∑

t∈[0,T−1]

Malive(t)

Goodput(T ) is the fraction of useful work up to time T :

Goodput(T ) =

∑
τi∈Jcomp,T

wici +
∑

τi∈Jstarted,T
(T − si )ci

nc
∑

t∈[0,T−1]Malive(t)

Keep an eye on maximum stretch

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

28 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Complexity

Theorem

An adversary can force any schedule to achieve no goodput at all,
even with a single unicore machine

Job τ1 of size c1 = 1 and duration w1 = K released at time t = r1 = 0;
Goodput of the machine at time T = K?

τ1
time

0 K

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

29 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Complexity

Theorem

An adversary can force any schedule to achieve no goodput at all,
even with a single unicore machine

Job τ1 of size c1 = 1 and duration w1 = K released at time t = r1 = 0;
Goodput of the machine at time T = K?

τ1
time

0 K

Start τ1 at time s1 > 0: machine interrupted at time K

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

29 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Complexity

Theorem

An adversary can force any schedule to achieve no goodput at all,
even with a single unicore machine

Job τ1 of size c1 = 1 and duration w1 = K released at time t = r1 = 0;
Goodput of the machine at time T = K?

τ1

τ2
time

0

1

K

K − 1

Start τ1 at time s1 = 0: new job τ2, machine interrupted at time K − 1

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

29 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Risk-aware

riskier machinessafer machines

M1 M2 M3 · · · M7 M8

Risk-aware job allocation strategies

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

30 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Risk-aware

riskier machinessafer machines

M1 M2 M3 · · · M7 M8X

Risk-aware job allocation strategies

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

30 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Risk-aware

riskier machinessafer machines

M1 M2 M3 · · · M7 M8 M9

Risk-aware job allocation strategies

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

30 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Risk-aware

riskier machinessafer machines

M1 M2 M3 · · · M7 M8

Risk-aware job allocation strategies

Events:

Job arrival: When a job is released, when to schedule it and on which machine?

Job completion: When a job is completed, its cores are released ⇒ additional
jobs can be scheduled

Machine addition: When a new machine becomes available, how to utilize it?

Machine removal: When a machine is turned off, its jobs are killed and need
re-allocation

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

30 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

FirstFitAware

Job arrival
Assign incoming job to smallest-index machine with enough free resources
If no machine can execute the job, it is placed in waiting queue

Job completion
Check the queue for job with smallest release date that fits in the machine m with
completed job, and assigns it to m
If a job is assigned, continues to search the queue
If empty queue or not enough cores in m for any waiting job ⇒ no action

Machine addition
Assign jobs to the new machine in order of increasing release date

Machine removal
Shut down machine with highest index, put all its jobs in the queue
Assign jobs to available machines in order of increasing release date

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

31 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

FirstFitAware

Job arrival
Assign incoming job to smallest-index machine with enough free resources
If no machine can execute the job, it is placed in waiting queue

Job completion
Check the queue for job with smallest release date that fits in the machine m with
completed job, and assigns it to m
If a job is assigned, continues to search the queue
If empty queue or not enough cores in m for any waiting job ⇒ no action

Machine addition
Assign jobs to the new machine in order of increasing release date

Machine removal
Shut down machine with highest index, put all its jobs in the queue
Assign jobs to available machines in order of increasing release date

Risk-aware
• Ordered list of machines
• Jobs mapped to leftmost (safer) machines whenever possible
• Rightmost (riskier) machines are shutdown whenever necessary

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

31 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

FirstFitAware

Job arrival
Assign incoming job to smallest-index machine with enough free resources
If no machine can execute the job, it is placed in waiting queue

Job completion
Check the queue for job with smallest release date that fits in the machine m with
completed job, and assigns it to m
If a job is assigned, continues to search the queue
If empty queue or not enough cores in m for any waiting job ⇒ no action

Machine addition
Assign jobs to the new machine in order of increasing release date

Machine removal
Shut down machine with highest index, put all its jobs in the queue
Assign jobs to available machines in order of increasing release date

Risk-aware
• Ordered list of machines
• Jobs mapped to leftmost (safer) machines whenever possible
• Rightmost (riskier) machines are shutdown whenever necessary

FirstFitUnaware: Shutdown random machines whenever necessary

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

31 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

FirstFitAware

Job arrival
Assign incoming job to smallest-index machine with enough free resources
If no machine can execute the job, it is placed in waiting queue

Job completion
Check the queue for job with smallest release date that fits in the machine m with
completed job, and assigns it to m
If a job is assigned, continues to search the queue
If empty queue or not enough cores in m for any waiting job ⇒ no action

Machine addition
Assign jobs to the new machine in order of increasing release date

Machine removal
Shut down machine with highest index, put all its jobs in the queue
Assign jobs to available machines in order of increasing release date

Risk-aware
• Ordered list of machines
• Jobs mapped to leftmost (safer) machines whenever possible
• Rightmost (riskier) machines are shutdown whenever necessary

FirstFitUnaware: Shutdown random machines whenever necessary

Interrupting a long job is a big performance loss
Schedule smaller jobs on machines that are likely to be turned off
Schedule longer jobs on risk-free machines

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

31 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

TargetStretch

riskier machinessafer machines

M1 M2 M3 · · · M7 M8

Add one queue per machine

Set target value for (target) maximum stretch

Job arrival
Compute job’s target machine
Consider neighboring machines if target stretch not achievable

Machine addition/removal
Set of risk-free machines recomputed
Re-allocate pending jobs

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

32 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

TargetASAP & PackedTargetASAP

TargetStretch: potential bad utilization
No flexibility for mapping to another free machine

riskier machinessafer machines

M1 M2 M3 · · · M7 M8

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

33 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

TargetASAP & PackedTargetASAP

TargetStretch: potential bad utilization
No flexibility for mapping to another free machine

TargetASAP:

Start job immediately on target machine or closest machine in neighborhood
If not possible, assign on target machine if target stretch not exceeded
Otherwise, assign on machine where it can start ASAP (within acceptable distance)

riskier machinessafer machines

M1 M2 M3 · · · M7 M8

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

33 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

TargetASAP & PackedTargetASAP

TargetStretch: potential bad utilization
No flexibility for mapping to another free machine

TargetASAP:

Start job immediately on target machine or closest machine in neighborhood
If not possible, assign on target machine if target stretch not exceeded
Otherwise, assign on machine where it can start ASAP (within acceptable distance)

Variant PackedTargetASAP: group machines into packs, and assign jobs to
first machines of the pack, to leave machines empty for future large jobs

M1 M2 M3 · · · M7 M8

Pack 1 Pack 2 Pack 4

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

33 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

TargetASAP & PackedTargetASAP

TargetStretch: potential bad utilization
No flexibility for mapping to another free machine

TargetASAP:

Start job immediately on target machine or closest machine in neighborhood
If not possible, assign on target machine if target stretch not exceeded
Otherwise, assign on machine where it can start ASAP (within acceptable distance)

Variant PackedTargetASAP: group machines into packs, and assign jobs to
first machines of the pack, to leave machines empty for future large jobs

M1 M2 M3 · · · M7 M8

Pack 1 Pack 2 Pack 4

Technical and kind of painful
despite all simplifying hypotheses /

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

33 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Simulation setting

In-house simulator, using a combination of two traces:

Resource variation trace: number of machines alive at any given time
Use of a random walk, within an interval

Job trace:

Real traces coming from Borg (two-week traces with jobs coming from Google
cluster management software: release dates, lengths, number of cores)
Synthetic traces to study the impact of parameters (three variants: uniform lengths,
log scale, and three types of jobs) ⇒ similar conclusions

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

34 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Dimensioning

Number of available machines always in [Mavg−Mra,Mavg+Mra]

Total work hours ≈ maximum capacity of 26 machines each with 24 cores,
running during 2 weeks with full peak load

Average number of machines: Mavg = 24

Period of machine variation: ϕ = 20 minutes

Range of machine variation: Mra = 8; half the machines are safe

Number of cores per machine: nc = 24. Jobs typically use 1, 2, 4, 8 cores

Conservative backfilling at machine level

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

35 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Varying the number of machines

Borg

FirstFitAware and FirstFitUnaware never good

TargetStretch: different behavior because of its lack of flexibility, some machines
remain partially inactive even when jobs are waiting (better with fewer machines)

TargetASAP always good, and packed variant PackedTargetASAP even better

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

36 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Varying the period of machine variation

400 1200 3600 10800 32400
Period of Machine Change (in seconds)

0.75

0.80

0.85

0.90

0.95

1.00

Go
od

pu
t

Borg

With low period (many changes), TargetStretch better by preserving long jobs

Goodput increases with period: less changes ⇒ less job interruptions

Better relative performance of TargetASAP and PackedTargetASAP
with low periods (= high variability)

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

37 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Exploring other metrics (Borg)

4 6 8 12 16
Range of the machines

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Go
od

pu
t

4 6 8 12 16
Range of the machines

200

400

600

800

1000

M
ax

im
um

St
re

tc
h

4 6 8 12 16
Range of the machines

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ab
or

te
dV

ol
um

e

4 6 8 12 16
Range of the machines

0

5000

10000

15000

20000

25000

30000

35000

40000

Ab
or

te
dV

ol
um

e

Goodput MaximumStretch AbortedVolume AverageAbortedTime

Increase in range ⇒ Degradation of the metric

TargetStretch: lowest maximum stretch, as well as low aborted volume and time

However, low utilization of machines for TargetStretch, with low goodput

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

38 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Conclusion for this case study

A simple case-study of scheduling with variable capacity resources

Primary challenge: when capacity decreases, running jobs need to be terminated
to meet required power load reduction

Online risk-aware scheduling strategies to preserve performance:
map the right job to the right machine

Algorithmic techniques: risk index per machine, mapping longer jobs to safer
machines, maintaining local queues at machines, re-executing interrupted jobs on
new machines, and redistributing pending jobs as resource capacity increases

Significant gains over first-fit algorithms with up to 10% increase in goodput,
and better performance in complementary metrics (maximum and average stretch)

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

39 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Outline

1 Batch scheduling

2 With variable capacity

3 Study without checkpoints

4 With checkpoints

5 Conclusion

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

40 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Model

Problem: Scheduling infinite parallel rigid jobs under variable number of processors,
during each section
Hypotheses:

A job can be checkpointed and recovered
Knowledge of the duration of each section, and bound on #proc difference

Additional constraint:

Never lose work (i.e., checkpoint enough before section change, and never shut off
a non-checkpointed job)

j5

j3

j2
j1

C2

C1

j5

C3
R4 j4 C4

j5

j4

R2

R1
j2
j1

timeTn Tn+1

processors

0

5

10

15

20

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

41 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Algorithms

Sophisticated dynamic programming algorithms to optimize goodput and/or yield
at the end of a section

Evaluation on job traces

Improvement of novel strategies over greedy approaches

0.00

0.25

0.50

0.75

1.00

0.7 0.8 0.9 1.0
Relative Goodput

R
el
at
iv
e
Y
ie
ld

Greedy Goodput
Greedy Yield

DP Goodput
DP Yield

Target Yield
Target Goodput

DP BiC

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

42 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Outline

1 Batch scheduling

2 With variable capacity

3 Study without checkpoints

4 With checkpoints

5 Conclusion

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

43 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Back to the big picture

Many challenging scheduling problems ,
Workshop report: Scheduling Variable Capacity Resources for Sustainability

March 29-31, 2023, U. Chicago Paris Center

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

44 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Take-aways

Today’s case study: restricted instance /
Risk-Aware Scheduling Algorithms for Variable Capacity Resources;

PMBS workshop at SC’23

With checkpoints: Many assumptions – knowledge of period changes, bound on
machine variation

In some particular settings, possible to design clever ad-hoc solutions

Instantiate problems from real case studies, good performance

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

45 / 46



Motivation Batch scheduling With variable capacity Study without checkpoints With checkpoints Conclusion

Future research directions

Relax some hypothesis to explore further problems

Explore other kinds of jobs: in particular moldable jobs

Study other objective functions (carbon emissions, memory, etc.)

Within FONDA: workflow scheduling, adaptive scheduling
(while we have independent tasks in a static setting in what I presented)

Thanks to my colleagues Henri Casanova, Arnaud Legrand, and Yves Robert,
from whom I borrowed some slides ,

: Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling
Berlin

46 / 46


	Motivation
	Batch scheduling
	With variable capacity
	Flexible workloads
	Risk-aware allocation

	Study without checkpoints
	Framework
	Algorithms
	Simulations

	With checkpoints
	Conclusion

	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	minutes: 


