
Framework Complexity Experiments Conclusion

Performance and energy optimization
of concurrent pipelined applications

Anne Benoit, Paul Renaud-Goud and Yves Robert

Institut Universitaire de France

ROMA team, LIP
École Normale Supérieure de Lyon, France

CCGSC 2010, Flat Rock, NC

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 1/ 38

Framework Complexity Experiments Conclusion

Motivations

Mapping concurrent pipelined applications onto distributed
platforms: practical applications, but difficult problems

Assess problem hardness ⇒ different mapping rules and
platform characteristics

Energy saving is becoming a crucial problem

Several concurrent objective functions: period, latency, power

⇒ Multi-criteria approach: minimize power consumption
while guaranteeing some performance

Exhaustive complexity study

Heuristics on most general (NP-complete) case

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 2/ 38

Framework Complexity Experiments Conclusion

Motivations

Mapping concurrent pipelined applications onto distributed
platforms: practical applications, but difficult problems

Assess problem hardness ⇒ different mapping rules and
platform characteristics

Energy saving is becoming a crucial problem

Several concurrent objective functions: period, latency, power

⇒ Multi-criteria approach: minimize power consumption
while guaranteeing some performance

Exhaustive complexity study

Heuristics on most general (NP-complete) case

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 2/ 38

Framework Complexity Experiments Conclusion

Motivations

Mapping concurrent pipelined applications onto distributed
platforms: practical applications, but difficult problems

Assess problem hardness ⇒ different mapping rules and
platform characteristics

Energy saving is becoming a crucial problem

Several concurrent objective functions: period, latency, power

⇒ Multi-criteria approach: minimize power consumption
while guaranteeing some performance

Exhaustive complexity study

Heuristics on most general (NP-complete) case

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 2/ 38

Framework Complexity Experiments Conclusion

Motivations

Mapping concurrent pipelined applications onto distributed
platforms: practical applications, but difficult problems

Assess problem hardness ⇒ different mapping rules and
platform characteristics

Energy saving is becoming a crucial problem

Several concurrent objective functions: period, latency, power

⇒ Multi-criteria approach: minimize power consumption
while guaranteeing some performance

Exhaustive complexity study

Heuristics on most general (NP-complete) case

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 2/ 38

Framework Complexity Experiments Conclusion

Why bother with energy?

Minimizing total energy consumed by processors: very
important objective (economic and environmental reasons)

M. P. Mills, The internet begins with coal, Environment and
Climate News (1999)

Algorithmic techniques:

Shut down idle processors
Dynamic speed scaling processors can run at variable speed,
e.g., Intel XScale, Intel Speed Step, AMD PowerNow

The higher the speed, the higher the power consumption
Power = f × V 2, and V (voltage) increases with f (frequency)
Speed s: P(s) = sα + Pstatic , with 2 ≤ α ≤ 3

Problem: decide which processors to enroll, and at which
speed to run them

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 3/ 38

Framework Complexity Experiments Conclusion

Why bother with energy?

Minimizing total energy consumed by processors: very
important objective (economic and environmental reasons)

M. P. Mills, The internet begins with coal, Environment and
Climate News (1999)

Algorithmic techniques:

Shut down idle processors
Dynamic speed scaling processors can run at variable speed,
e.g., Intel XScale, Intel Speed Step, AMD PowerNow

The higher the speed, the higher the power consumption
Power = f × V 2, and V (voltage) increases with f (frequency)
Speed s: P(s) = sα + Pstatic , with 2 ≤ α ≤ 3

Problem: decide which processors to enroll, and at which
speed to run them

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 3/ 38

Framework Complexity Experiments Conclusion

Why bother with energy?

Minimizing total energy consumed by processors: very
important objective (economic and environmental reasons)

M. P. Mills, The internet begins with coal, Environment and
Climate News (1999)

Algorithmic techniques:

Shut down idle processors
Dynamic speed scaling: processors can run at variable speed,
e.g., Intel XScale, Intel Speed Step, AMD PowerNow

The higher the speed, the higher the power consumption
Power = f × V 2, and V (voltage) increases with f (frequency)
Speed s: P(s) = sα + Pstatic , with 2 ≤ α ≤ 3

Problem: decide which processors to enroll, and at which
speed to run them

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 3/ 38

Framework Complexity Experiments Conclusion

Why bother with energy?

Minimizing total energy consumed by processors: very
important objective (economic and environmental reasons)

M. P. Mills, The internet begins with coal, Environment and
Climate News (1999)

Algorithmic techniques:

Shut down idle processors
Dynamic speed scaling: processors can run at variable speed,
e.g., Intel XScale, Intel Speed Step, AMD PowerNow

The higher the speed, the higher the power consumption
Power = f × V 2, and V (voltage) increases with f (frequency)
Speed s: P(s) = sα + Pstatic , with 2 ≤ α ≤ 3

Problem: decide which processors to enroll, and at which
speed to run them

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 3/ 38

Framework Complexity Experiments Conclusion

Why bother with energy?

Minimizing total energy consumed by processors: very
important objective (economic and environmental reasons)

M. P. Mills, The internet begins with coal, Environment and
Climate News (1999)

Algorithmic techniques:

Shut down idle processors
Dynamic speed scaling: processors can run at variable speed,
e.g., Intel XScale, Intel Speed Step, AMD PowerNow

The higher the speed, the higher the power consumption
Power = f × V 2, and V (voltage) increases with f (frequency)
Speed s: P(s) = sα + Pstatic , with 2 ≤ α ≤ 3

Problem: decide which processors to enroll, and at which
speed to run them

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 3/ 38

Framework Complexity Experiments Conclusion

Motivating example

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 33 + 83

= 539

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 539
P = 8

Period: T = 3

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 539
P = 8

Period: T = 3 T = 15

Latency: L = 8

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Motivating example

P = 539
P = 8

Period: T = 3 T = 15

Latency: L = 8 L = 17

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 4/ 38

Framework Complexity Experiments Conclusion

Outline of the talk

1 Framework
Application and platform
Mapping rules
Metrics

2 Complexity results
Mono-criterion problems
Bi-criteria problems
Tri-criteria problems
With resource sharing

3 Experiments
Heuristics
Experiments
Summary

4 Conclusion

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 5/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Outline of the talk

1 Framework
Application and platform
Mapping rules
Metrics

2 Complexity results
Mono-criterion problems
Bi-criteria problems
Tri-criteria problems
With resource sharing

3 Experiments
Heuristics
Experiments
Summary

4 Conclusion

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 6/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Application model and execution platform

Concurrent pipelined applications

w i
a: weight of stage S ia (i th stage of application a)

δia: size of outcoming data of S ia

Processors with multiple speeds (or modes): {su,1, . . . , su,mu}
Constant speed during the execution

Platform fully interconnected;
bu,v : bandwidth between processors Pu and Pv ;
overlap or non-overlap of communications and computations

Three platform types:

Fully homogeneous, or speed homogeneous
Communication homogeneous, or speed heterogeneous
Fully heterogeneous

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 7/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Application model and execution platform

Concurrent pipelined applications

w i
a: weight of stage S ia (i th stage of application a)

δia: size of outcoming data of S ia

Processors with multiple speeds (or modes): {su,1, . . . , su,mu}
Constant speed during the execution

Platform fully interconnected;
bu,v : bandwidth between processors Pu and Pv ;
overlap or non-overlap of communications and computations

Three platform types:

Fully homogeneous, or speed homogeneous
Communication homogeneous, or speed heterogeneous
Fully heterogeneous

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 7/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Application model and execution platform

Concurrent pipelined applications

w i
a: weight of stage S ia (i th stage of application a)

δia: size of outcoming data of S ia

Processors with multiple speeds (or modes): {su,1, . . . , su,mu}
Constant speed during the execution

Platform fully interconnected;
bu,v : bandwidth between processors Pu and Pv ;
overlap or non-overlap of communications and computations

Three platform types:

Fully homogeneous, or speed homogeneous
Communication homogeneous, or speed heterogeneous
Fully heterogeneous

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 7/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Mapping rules

Mapping with no processor sharing:
relevant in practice (security rules)

One-to-one mapping

Interval mapping

General mapping with resource sharing:
better resource utilization

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 8/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Mapping rules

Mapping with no processor sharing:
relevant in practice (security rules)

One-to-one mapping

Interval mapping

General mapping with resource sharing:
better resource utilization

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 8/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Mapping rules

Mapping with no processor sharing:
relevant in practice (security rules)

One-to-one mapping

Interval mapping

General mapping with resource sharing:
better resource utilization

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 8/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Metrics without resource sharing

Interval mapping on a single application with no resource sharing;
k intervals Ij of stages from Sdj to Sej

Period T of an application: minimum delay between the
processing of two consecutive data sets

T (overlap) = max
j∈{1,...,k}

(
max

(
δ
dj−1

balloc(dj−1),alloc(dj)

,

∑ej
i=dj

w i

salloc(dj)

,
δ
ej

balloc(dj),alloc(ej +1)

))

Latency L of an application: time, for a data set, to go
through the whole pipeline

L =
δ0

balloc(0),alloc(1)

+
m∑
j=1

 ej∑
i=dj

w i

salloc(dj)

+
δ
ej

balloc(dj),alloc(ej +1)



Power P of the platform: sum of power of processors

P =
∑
Pu

P(u), P(u) = Pdyn(su)+Pstat(u), Pdyn(su) = sαu , 2 ≤ α ≤ 3

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 9/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Metrics without resource sharing

Interval mapping on a single application with no resource sharing;
k intervals Ij of stages from Sdj to Sej

Period T of an application: minimum delay between the
processing of two consecutive data sets

T (overlap) = max
j∈{1,...,k}

(
max

(
δ
dj−1

balloc(dj−1),alloc(dj)

,

∑ej
i=dj

w i

salloc(dj)

,
δ
ej

balloc(dj),alloc(ej +1)

))

Latency L of an application: time, for a data set, to go
through the whole pipeline

L =
δ0

balloc(0),alloc(1)

+
m∑
j=1

 ej∑
i=dj

w i

salloc(dj)

+
δ
ej

balloc(dj),alloc(ej +1)



Power P of the platform: sum of power of processors

P =
∑
Pu

P(u), P(u) = Pdyn(su)+Pstat(u), Pdyn(su) = sαu , 2 ≤ α ≤ 3

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 9/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Metrics without resource sharing

Interval mapping on a single application with no resource sharing;
k intervals Ij of stages from Sdj to Sej

Period T of an application: minimum delay between the
processing of two consecutive data sets

T (overlap) = max
j∈{1,...,k}

(
max

(
δ
dj−1

balloc(dj−1),alloc(dj)

,

∑ej
i=dj

w i

salloc(dj)

,
δ
ej

balloc(dj),alloc(ej +1)

))

Latency L of an application: time, for a data set, to go
through the whole pipeline

L =
δ0

balloc(0),alloc(1)

+
m∑
j=1

 ej∑
i=dj

w i

salloc(dj)

+
δ
ej

balloc(dj),alloc(ej +1)



Power P of the platform: sum of power of processors

P =
∑
Pu

P(u), P(u) = Pdyn(su)+Pstat(u), Pdyn(su) = sαu , 2 ≤ α ≤ 3

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 9/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Metrics without resource sharing

Interval mapping on a single application with no resource sharing;
k intervals Ij of stages from Sdj to Sej

Period T of an application: minimum delay between the
processing of two consecutive data sets

T (overlap) = max
j∈{1,...,k}

(
max

(
δ
dj−1

balloc(dj−1),alloc(dj)

,

∑ej
i=dj

w i

salloc(dj)

,
δ
ej

balloc(dj),alloc(ej +1)

))

Latency L of an application: time, for a data set, to go
through the whole pipeline

L =
δ0

balloc(0),alloc(1)

+
m∑
j=1

 ej∑
i=dj

w i

salloc(dj)

+
δ
ej

balloc(dj),alloc(ej +1)



Power P of the platform: sum of power of processors

P =
∑
Pu

P(u), P(u) = Pdyn(su)+Pstat(u), Pdyn(su) = sαu , 2 ≤ α ≤ 3

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 9/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Metrics with resource sharing

With classical latency definition, NP-completeness of the execution
scheduling, given a mapping with a period/latency objective

⇒ for general mappings, latency model of Özgüner:
L = (2m − 1)T , where m − 1 is the number of processor changes,
and T the period of the application

Period given ⇒ bound on number of processor changes

Given an application, we can check if the mapping is valid,
given a bound on period and latency per application:

For period, check that each processor can handle its load
computation and meet some communication constraints

For latency, check the number of processor changes

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 10/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Metrics with resource sharing

With classical latency definition, NP-completeness of the execution
scheduling, given a mapping with a period/latency objective

⇒ for general mappings, latency model of Özgüner:
L = (2m − 1)T , where m − 1 is the number of processor changes,
and T the period of the application

Period given ⇒ bound on number of processor changes

Given an application, we can check if the mapping is valid,
given a bound on period and latency per application:

For period, check that each processor can handle its load
computation and meet some communication constraints

For latency, check the number of processor changes

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 10/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Metrics with resource sharing

With classical latency definition, NP-completeness of the execution
scheduling, given a mapping with a period/latency objective

⇒ for general mappings, latency model of Özgüner:
L = (2m − 1)T , where m − 1 is the number of processor changes,
and T the period of the application

Period given ⇒ bound on number of processor changes

Given an application, we can check if the mapping is valid,
given a bound on period and latency per application:

For period, check that each processor can handle its load
computation and meet some communication constraints

For latency, check the number of processor changes

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 10/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Metrics with resource sharing

With classical latency definition, NP-completeness of the execution
scheduling, given a mapping with a period/latency objective

⇒ for general mappings, latency model of Özgüner:
L = (2m − 1)T , where m − 1 is the number of processor changes,
and T the period of the application

Period given ⇒ bound on number of processor changes

Given an application, we can check if the mapping is valid,
given a bound on period and latency per application:

For period, check that each processor can handle its load
computation and meet some communication constraints

For latency, check the number of processor changes

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 10/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Metrics with resource sharing

With classical latency definition, NP-completeness of the execution
scheduling, given a mapping with a period/latency objective

⇒ for general mappings, latency model of Özgüner:
L = (2m − 1)T , where m − 1 is the number of processor changes,
and T the period of the application

Period given ⇒ bound on number of processor changes

Given an application, we can check if the mapping is valid,
given a bound on period and latency per application:

For period, check that each processor can handle its load
computation and meet some communication constraints

For latency, check the number of processor changes

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 10/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Metrics with resource sharing

With classical latency definition, NP-completeness of the execution
scheduling, given a mapping with a period/latency objective

⇒ for general mappings, latency model of Özgüner:
L = (2m − 1)T , where m − 1 is the number of processor changes,
and T the period of the application

Period given ⇒ bound on number of processor changes

Given an application, we can check if the mapping is valid,
given a bound on period and latency per application:

For period, check that each processor can handle its load
computation and meet some communication constraints

For latency, check the number of processor changes

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 10/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Optimization problems

Minimizing one criterion:

Period or latency: minimize maxa Wa × Ta or maxa Wa × La
Power: minimize P =

∑
u P(u)

Fixing one criterion:

Fix the period or latency of each application
→ fix an array of periods or latencies
Fix a bound on total power consumption P

Multi-criteria approach: minimizing one criterion, fixing the
other ones

Energy criterion = power consumption, i.e., energy per time
unit ⇒ combination power/period

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 11/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Optimization problems

Minimizing one criterion:

Period or latency: minimize maxa Wa × Ta or maxa Wa × La
Power: minimize P =

∑
u P(u)

Fixing one criterion:

Fix the period or latency of each application
→ fix an array of periods or latencies
Fix a bound on total power consumption P

Multi-criteria approach: minimizing one criterion, fixing the
other ones

Energy criterion = power consumption, i.e., energy per time
unit ⇒ combination power/period

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 11/ 38

Framework Complexity Experiments Conclusion Application and platform Mapping rules Metrics

Optimization problems

Minimizing one criterion:

Period or latency: minimize maxa Wa × Ta or maxa Wa × La
Power: minimize P =

∑
u P(u)

Fixing one criterion:

Fix the period or latency of each application
→ fix an array of periods or latencies
Fix a bound on total power consumption P

Multi-criteria approach: minimizing one criterion, fixing the
other ones

Energy criterion = power consumption, i.e., energy per time
unit ⇒ combination power/period

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 11/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Outline of the talk

1 Framework
Application and platform
Mapping rules
Metrics

2 Complexity results
Mono-criterion problems
Bi-criteria problems
Tri-criteria problems
With resource sharing

3 Experiments
Heuristics
Experiments
Summary

4 Conclusion

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 12/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Mono-criterion complexity results

Period minimization:

proc-hom proc-het
com-hom special-app1 com-hom com-het

one-to-one polynomial (binary search) NP-complete

interval polynomial NP-complete NP-complete

Latency minimization:

proc-hom proc-het
com-hom special-app1 com-hom com-het

one-to-one polynomial NP-complete NP-complete

interval polynomial (binary search) NP-complete

1special-app: com-hom & pipe-hom
Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 13/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Mono-criterion complexity results

Period minimization:

proc-hom proc-het
com-hom special-app1 com-hom com-het

one-to-one polynomial (binary search) NP-complete

interval polynomial NP-complete NP-complete

Latency minimization:

proc-hom proc-het
com-hom special-app1 com-hom com-het

one-to-one polynomial NP-complete NP-complete

interval polynomial (binary search) NP-complete

1special-app: com-hom & pipe-hom
Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 13/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Latency minimization (1)

Problem: one-to-one mapping - many applications -
heterogeneous platform - no communication - homogeneous
pipelines - minimize maxa La

Single application: greedy polynomial algorithm

Many applications: reduction from 3-partition

3-partition:

Input: 3m + 1 integers a1, a2, . . . , a3m and B such that∑
i ai = mB

Does there exist a partition I1, . . . , Im of {1, . . . , 3m} such that
for all j ∈ {1, . . . ,m}, |Ij | = 3 and

∑
i∈Ij

ai = B?

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 14/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Latency minimization (2)

3-partition: renumbering of the ai such that:
a1,1 + a1,2 + a1,3 = B
a2,1 + a2,2 + a2,3 = B

...
am,1 + am,2 + am,3 = B

Reduction:

Can we obtain a latency L0 ≤ B?

Equivalence of problems

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 15/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Bi-criteria complexity results

Period/latency minimization:

proc-hom proc-het
com-hom special-app com-hom com-het

one-to-one
or polynomial NP-complete

interval

Power/period minimization:

proc-hom proc-het
com-hom special-app com-hom com-het

one-to-one polynomial (minimum matching) NP-complete

interval polynomial NP-complete

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 16/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Bi-criteria complexity results

Period/latency minimization:

proc-hom proc-het
com-hom special-app com-hom com-het

one-to-one
or polynomial NP-complete

interval

Power/period minimization:

proc-hom proc-het
com-hom special-app com-hom com-het

one-to-one polynomial (minimum matching) NP-complete

interval polynomial NP-complete

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 16/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Power/period minimization

Problem: one-to-one mapping - many applications -
communication homogeneous platform - power minimization
for a given array of periods

Minimum weighted matching of a bipartite graph

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 17/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Bi-criteria complexity results

Period/latency minimization:

proc-hom proc-het
com-hom special-app com-hom com-het

one-to-one
or polynomial NP-complete

interval

Power/period minimization:

proc-hom proc-het
com-hom special-app com-hom com-het

one-to-one polynomial (minimum matching) NP-complete

interval polynomial NP-complete

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 18/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Single application (1)

Problem: interval mapping - single application - fully
homogeneous platform - power minimization for a given period

P(i , j , k): minimum power to run stages S i to S j using
exactly k processors → looking for min1≤k≤p P(1, n, k)

Recurrence relation:

P(i , j , k) = min
1≤`≤j−1

(P(i , `, k − 1) + P(`+ 1, j , 1))

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 19/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Single application (2)

P(i , i , q) = +∞ if q > 1

F j
i : possible powers of a processor running the stages

S i to S j , fulfilling the period constraint

F j
i =

{
Pdyn(s`) + Pstat ,max

(
δi−1

b
,

∑j
k=i w

k

s`
,
δj

b

)
≤ T , ` ∈ {1, . . . ,m}

}

P(i , j , 1) =

{
minF j

i if F j
i 6= ∅

+∞ otherwise

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 20/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Many applications (1)

Problem: interval mapping - fully homogeneous platform -
power minimization for given periods by application

Pq
a : minimum power consumed by q processors so that the

period constraint on the application a is met, found by the
previous dynamic programming

P(a, k): minimum power consumed by k processors on the
applications 1, . . . , a, unknown

Initialization: ∀k ∈ {1, . . . , p} P(1, k) = Pk
1

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 21/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Many applications (2)

Recurrence: P(a, k) = min1≤q<k

(
P(a− 1, k − q) + Pq

a

)

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 22/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Tri-criteria complexity results

proc-hom proc-het
com-hom special-app com-hom com-het

one-to-one
or NP-complete

interval

Reduction from 2-partition

(Instance of 2-partition: a1, a2, . . . , an with σ =
n∑

i=1

ai)

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 23/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Problem instance

One-to-one mapping - fully homogeneous platform

P0 = P∗ + αX (σ/2 + 1/2), L0 = L∗ − X (σ/2− 1/2), T 0 = L0

where P∗ and L∗ are power and latency when each Si is run at
speed s2i−1

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 24/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

Main ideas

K big enough and X small enough so that the stage Si must
be processed at speed s2i−1 or s2i

For a subset I of {1, . . . , n}, if (Si is run at speed s2i

⇔ i ∈ I),

P = P∗+
∑
i∈I

(αaiX + o(X)) , L = L∗−
∑
i∈I

(aiX − o(X))

Recall:

P0 = P∗ + αX (σ/2 + 1/2) , L0 = L∗ − X (σ/2− 1/2)

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 25/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

And for general mappings with resource sharing?

Exhaustive complexity study with no resource sharing: new
polynomial algorithms for multiple applications and results of
NP-completeness

With the simplified latency model, tri-criteria polynomial
dynamic programming algorithm with no resource sharing and
speed-homogeneous platforms

With resource sharing or speed-heterogeneous platforms, all
problem instances are NP-hard, even for only period
minimization

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 26/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

And for general mappings with resource sharing?

Exhaustive complexity study with no resource sharing: new
polynomial algorithms for multiple applications and results of
NP-completeness

With the simplified latency model, tri-criteria polynomial
dynamic programming algorithm with no resource sharing and
speed-homogeneous platforms

With resource sharing or speed-heterogeneous platforms, all
problem instances are NP-hard, even for only period
minimization

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 26/ 38

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

And for general mappings with resource sharing?

Exhaustive complexity study with no resource sharing: new
polynomial algorithms for multiple applications and results of
NP-completeness

With the simplified latency model, tri-criteria polynomial
dynamic programming algorithm with no resource sharing and
speed-homogeneous platforms

With resource sharing or speed-heterogeneous platforms, all
problem instances are NP-hard, even for only period
minimization

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 26/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

Outline of the talk

1 Framework
Application and platform
Mapping rules
Metrics

2 Complexity results
Mono-criterion problems
Bi-criteria problems
Tri-criteria problems
With resource sharing

3 Experiments
Heuristics
Experiments
Summary

4 Conclusion

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 27/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

Heuristics

Tri-criteria problem: power consumption minimization given a
bound on period and latency per application, on speed
heterogeneous platform

Each heuristic (except H2) exists in two variants: interval mapping
without resource sharing and general mapping with resource
sharing in order to evaluate the impact of processor reuse

Latency model of Özgüner: L = (2m − 1)T

H1: random cuts

H2: one entire application per processor (assignment problem)

H2-split: interval splitting

H3: two-step heuristic: choose a speed distribution and find a
valid mapping (variants on both steps)

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 28/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Fix processor speeds

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Mapping heuristic: find a valid maping

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Mapping heuristic: find a valid maping

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Mapping heuristic: find a valid maping

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Iterate the process: increase processor speeds

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Iterate the process: increase processor speeds

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Iterate the process: increase processor speeds

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Iterate the process: increase processor speeds

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Iterate the process: increase processor speeds

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Iterate the process: increase processor speeds

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Iterate the process: increase processor speeds

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Iterate the process: increase processor speeds

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Iterate the process: increase processor speeds

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Iterate the process: increase processor speeds

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

H3-energy

Iterate the process: increase processor speeds

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 29/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

Experimental plan

Integer linear program to assess the absolute performance of
the heuristics on small instances

Small instances: two or three applications, around 15 stages
per application, around 8 processors

Execution time on 30 small instances: less than one second
for all heuristics, one week for the ILP

Each heuristic and the ILP: variant without sharing (”-n”)
and variant with sharing (”-r”)

General behavior of heuristics
Impact of resource sharing
Scalability of heuristics

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 30/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

Experimental plan

Integer linear program to assess the absolute performance of
the heuristics on small instances

Small instances: two or three applications, around 15 stages
per application, around 8 processors

Execution time on 30 small instances: less than one second
for all heuristics, one week for the ILP

Each heuristic and the ILP: variant without sharing (”-n”)
and variant with sharing (”-r”)

General behavior of heuristics
Impact of resource sharing
Scalability of heuristics

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 30/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

Experimental plan

Integer linear program to assess the absolute performance of
the heuristics on small instances

Small instances: two or three applications, around 15 stages
per application, around 8 processors

Execution time on 30 small instances: less than one second
for all heuristics, one week for the ILP

Each heuristic and the ILP: variant without sharing (”-n”)
and variant with sharing (”-r”)

General behavior of heuristics
Impact of resource sharing
Scalability of heuristics

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 30/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

Increasing latency

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9 10 11 12

1
/E
n
e
rg
y

nbInter

cplex-r
H1-r

H2
H2-split-r

H3-upDown-r
H3-speed-r

H3-energy-r
best

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 31/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

Increasing number of processors

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

1
/E
n
e
rg
y

nbProcs

cplex-r
H1-r

H2
H2-split-r

H3-upDown-r
H3-speed-r

H3-energy-r
best

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 32/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

Impact of static power

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 500 1000 1500 2000

1
/E
n
e
rg
y

max Estat

cplex-n
H1-n

H1-r
H2

H2-split-n
H2-split-r

H3-upDown-n
H3-upDown-r

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 33/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

Impact of mode distribution

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50 60 70 80

1
/E
n
e
rg
y

su,l+1 - su,l

cplex-n
H1-n

H1-r
H2

H2-split-n
H2-split-r

H3-upDown-n
H3-upDown-r

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 34/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

Scalability

0

10000

20000

30000

40000

50000

60000

0 2 4 6 8 10 12 14 16 18 20

E
n
e
rg

y

nbApp

H1-r
H2

H2-split-r
H3-upDown-r

H3-speed-r
H3-energy-r

best

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 35/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

Summary of experiments

Efficient heuristics: best heuristic always at 90% of the
optimal solution on small instances

Supremacy of H2-split-r, better in average, and gets even
better when problem instances get larger

H3 has smaller execution time (one second versus three
minutes for 20 applications), ILP not usable in practice

Resource sharing becomes crucial with important static power
(use fewer processors) or with distant modes (better use of all
available speed)

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 36/ 38

Framework Complexity Experiments Conclusion Heuristics Experiments Summary

Summary of experiments

Efficient heuristics: best heuristic always at 90% of the
optimal solution on small instances

Supremacy of H2-split-r, better in average, and gets even
better when problem instances get larger

H3 has smaller execution time (one second versus three
minutes for 20 applications), ILP not usable in practice

Resource sharing becomes crucial with important static power
(use fewer processors) or with distant modes (better use of all
available speed)

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 36/ 38

Framework Complexity Experiments Conclusion

Outline of the talk

1 Framework
Application and platform
Mapping rules
Metrics

2 Complexity results
Mono-criterion problems
Bi-criteria problems
Tri-criteria problems
With resource sharing

3 Experiments
Heuristics
Experiments
Summary

4 Conclusion

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 37/ 38

Framework Complexity Experiments Conclusion

Conclusion and future work

Exhaustive complexity study

new polynomial algorithms
new NP-completeness proofs
impact of model on complexity (tri-criteria homogeneous)

Experimental study

efficient heuristics
impact of resource reuse

Current/future work

continuous speeds
approximation algorithms

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 38/ 38

Framework Complexity Experiments Conclusion

Conclusion and future work

Exhaustive complexity study

new polynomial algorithms
new NP-completeness proofs
impact of model on complexity (tri-criteria homogeneous)

Experimental study

efficient heuristics
impact of resource reuse

Current/future work

continuous speeds
approximation algorithms

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 38/ 38

Framework Complexity Experiments Conclusion

Conclusion and future work

Exhaustive complexity study

new polynomial algorithms
new NP-completeness proofs
impact of model on complexity (tri-criteria homogeneous)

Experimental study

efficient heuristics
impact of resource reuse

Current/future work

continuous speeds
approximation algorithms

Anne.Benoit@ens-lyon.fr CCGSC 2010 Performance and energy optimization 38/ 38

	Framework
	Application and platform
	Mapping rules
	Metrics

	Complexity results
	Mono-criterion problems
	Bi-criteria problems
	Tri-criteria problems
	With resource sharing

	Experiments
	Heuristics
	Experiments
	Summary

	Conclusion

