Energy-aware mappings of series-parallel workflows onto chip multiprocessors

Anne Benoit, Paul Renaud-Goud and Yves Robert LIP, École Normale Supérieure de Lyon, France

Rami Melhem, University of Pittsburgh, USA

International Research Workshop on Advanced High Performance Computing Systems Cetraro (Italy), June 27-29, 2011

Motivations

- Mapping streaming applications onto parallel platforms: practical applications (image processing, astrophysics, meteorology, neuroscience, ...), but difficult problems (NP-hard)
- Objective: maximize the throughput, i.e., minimize the period of the application
- Energy saving is becoming a crucial problem (economic and environmental reasons)
- M. P. Mills, The internet begins with coal, Environment and Climate News (1999)
- Objective of a mapping: minimize energy consumption while maintaining a given level of performance (bound on period)

A D A D A D A

Motivations

- Mapping streaming applications onto parallel platforms: practical applications (image processing, astrophysics, meteorology, neuroscience, ...), but difficult problems (NP-hard)
- Objective: maximize the throughput, i.e., minimize the period of the application
- Energy saving is becoming a crucial problem (economic and environmental reasons)
- M. P. Mills, The internet begins with coal, Environment and Climate News (1999)
- Objective of a mapping: minimize energy consumption while maintaining a given level of performance (bound on period)

通 ト イヨ ト イヨト

Motivations

- Mapping streaming applications onto parallel platforms: practical applications (image processing, astrophysics, meteorology, neuroscience, ...), but difficult problems (NP-hard)
- Objective: maximize the throughput, i.e., minimize the period of the application
- Energy saving is becoming a crucial problem (economic and environmental reasons)
- M. P. Mills, The internet begins with coal, Environment and Climate News (1999)
- Objective of a mapping: minimize energy consumption while maintaining a given level of performance (bound on period)

Our contribution

- Applications: most task graphs of streaming applications are series-parallel graphs (SPGs), see for instance the *StreamIt* suite from MIT
- Platforms: Chip MultiProcessors (CMPs)
 → p × q homogeneous cores arranged along a 2D g
- Trend: increase the number of cores on single chips
- Increasing number of cores rather than processor's complexity: slower growth in power consumption
- This work: energy-aware mappings of SPG streaming applications onto CMPs

A D A D A D A

Our contribution

- Applications: most task graphs of streaming applications are series-parallel graphs (SPGs), see for instance the *StreamIt* suite from MIT
- Platforms: Chip MultiProcessors (CMPs)

ightarrow p imes q homogeneous cores arranged along a 2D grid

- Trend: increase the number of cores on single chips
- Increasing number of cores rather than processor's complexity: slower growth in power consumption
- This work: energy-aware mappings of SPG streaming applications onto CMPs

Our contribution

- Applications: most task graphs of streaming applications are series-parallel graphs (SPGs), see for instance the *StreamIt* suite from MIT
- Platforms: Chip MultiProcessors (CMPs)

ightarrow p imes q homogeneous cores arranged along a 2D grid

- Trend: increase the number of cores on single chips
- Increasing number of cores rather than processor's complexity: slower growth in power consumption
- This work: energy-aware mappings of SPG streaming applications onto CMPs

Outline of the talk

Framework

- Application model
- Platform
- Mapping strategies
- Objective functions

2 Complexity results

- Uni-directional uni-line CMP
- Bi-directional uni-line CMP
- Bi-directional square CMP

3 Heuristics

④ Simulations

Outline of the talk

Framework

- Application model
- Platform
- Mapping strategies
- Objective functions

2 Complexity results

- Uni-directional uni-line CMP
- Bi-directional uni-line CMP
- Bi-directional square CMP

3 Heuristics

4 Simulations

- Series-parallel graph (SPG) streaming application
- Nodes: n application stages
 w_i: computation requirement of stage S_i
- Edges: precedence constraints $\delta_{i,j}$: volume of communication between S_i and S_j
- G is a SPG if G is a composition of two SPGs
- Elementary SPG: \bullet (two stages $S_1 \rightarrow S_2$)
- Two kind of compositions:

- Series-parallel graph (SPG) streaming application
- Nodes: n application stages
 w_i: computation requirement of stage S_i
- Edges: precedence constraints
 δ_{i,j}: volume of communication between S_i and S_j
- G is a SPG if G is a composition of two SPGs
- Elementary SPG: • (two stages $S_1 \rightarrow S_2$)
- Two kind of compositions:

- Series-parallel graph (SPG) streaming application
- Nodes: n application stages
 w_i: computation requirement of stage S_i
- Edges: precedence constraints
 δ_{i,j}: volume of communication between S_i and S_j
- G is a SPG if G is a composition of two SPGs
- Elementary SPG: • (two stages $S_1 \rightarrow S_2$)
- Two kind of compositions:

- Series-parallel graph (SPG) streaming application
- Nodes: n application stages
 w_i: computation requirement of stage S_i
- Edges: precedence constraints
 δ_{i,j}: volume of communication between S_i and S_i
- G is a SPG if G is a composition of two SPGs
- Elementary SPG: (two stages $S_1 \rightarrow S_2$)

• Recursive definition of the label of stage S_i, (x_i, y_i): coordinates along a 2D grid in the recursive construction

3

.

Application Platform Mapping Objective

Application model

• Recursive definition of the label of stage S_i, (x_i, y_i): coordinates along a 2D grid in the recursive construction

э

Application Platform Mapping Objective

Application model

• Recursive definition of the label of stage S_i, (x_i, y_i): coordinates along a 2D grid in the recursive construction

- Source node: label (1, 1); Sink node: label $(x_n, 1)$
- $x_n = \max_{1 \le i \le n} x_i$, $y_{\max} = \max_{1 \le i \le n} y_i$

Application Platform Mapping Objective

Application model

• Recursive definition of the label of stage S_i, (x_i, y_i): coordinates along a 2D grid in the recursive construction

- Source node: label (1, 1); Sink node: label $(x_n, 1)$
- $x_n = \max_{1 \le i \le n} x_i$, $y_{\max} = \max_{1 \le i \le n} y_i$
- y_{max} is the maximum elevation; special case of bounded-elevation SPGs

Target platform

• Chip Multiprocessor: cores $C_{u,v}$ on a $p \times q$ grid

- Bidirectional links of bandwidth BW:
- Time $\frac{\delta}{BW}$ to send δ bytes to a neighboring core
- C_{u,v} running at speed s_{u,v} ∈ {s⁽¹⁾,...,s^(M)} (M possible voltage/frequency, leading to different speeds, identical on each core)

• Time $\frac{w_i}{s_{u,v}}$ to compute one data set for stage S_i on core $C_{u,v}$

Target platform

• Chip Multiprocessor: cores $C_{u,v}$ on a $p \times q$ grid

• Bidirectional links of bandwidth BW:

- Time $\frac{\delta}{BW}$ to send δ bytes to a neighboring core
- C_{u,v} running at speed s_{u,v} ∈ {s⁽¹⁾,...,s^(M)} (M possible voltage/frequency, leading to different speeds, identical on each core)
- Time $\frac{w_i}{s_{u,v}}$ to compute one data set for stage S_i on core $\mathcal{C}_{u,v}$

Target platform

• Chip Multiprocessor: cores $\mathcal{C}_{u,v}$ on a $p \times q$ grid

- Bidirectional links of bandwidth BW:
- Time $\frac{\delta}{BW}$ to send δ bytes to a neighboring core
- C_{u,v} running at speed s_{u,v} ∈ {s⁽¹⁾,...,s^(M)} (M possible voltage/frequency, leading to different speeds, identical on each core)
- Time $\frac{w_i}{s_{u,v}}$ to compute one data set for stage S_i on core $\mathcal{C}_{u,v}$

• Trade-off between one-to-one and general mappings

- One-to-one mappings: each stage is mapped on a distinct core; unduly restrictive, high communication costs
- General mappings: no restriction; arbitrary number of communications between two cores, and NP-complete
- DAG-partition mappings: first partition the SPG into acyclic clusters, and then perform one-to-one mapping
- Allocation function: alloc(i) = (u, v) if S_i is mapped on C_{u,v} Routes to communicate between two cores: path_{i,j}

9

- Trade-off between one-to-one and general mappings
 - One-to-one mappings: each stage is mapped on a distinct core; unduly restrictive, high communication costs
 - General mappings: no restriction; arbitrary number of communications between two cores, and NP-complete
 - DAG-partition mappings: first partition the SPG into acyclic clusters, and then perform one-to-one mapping
- Allocation function: alloc(i) = (u, v) if S_i is mapped on C_{u,v} Routes to communicate between two cores: path_{i,j}

- Trade-off between one-to-one and general mappings
 - One-to-one mappings: each stage is mapped on a distinct core; unduly restrictive, high communication costs
 - General mappings: no restriction; arbitrary number of communications between two cores, and NP-complete
 - DAG-partition mappings: first partition the SPG into acyclic clusters, and then perform one-to-one mapping
- Allocation function: alloc(i) = (u, v) if S_i is mapped on C_{u,v} Routes to communicate between two cores: path_{i,j}

- Trade-off between one-to-one and general mappings
 - One-to-one mappings: each stage is mapped on a distinct core; unduly restrictive, high communication costs
 - General mappings: no restriction; arbitrary number of communications between two cores, and NP-complete
 - DAG-partition mappings: first partition the SPG into acyclic clusters, and then perform one-to-one mapping
- Allocation function: alloc(i) = (u, v) if S_i is mapped on $C_{u,v}$ Routes to communicate between two cores: $path_{i,j}$

- Trade-off between one-to-one and general mappings
 - One-to-one mappings: each stage is mapped on a distinct core; unduly restrictive, high communication costs
 - General mappings: no restriction; arbitrary number of communications between two cores, and NP-complete
 - DAG-partition mappings: first partition the SPG into acyclic clusters, and then perform one-to-one mapping
- Allocation function: alloc(i) = (u, v) if S_i is mapped on $C_{u,v}$ Routes to communicate between two cores: $path_{i,j}$

Objective functions: period of the application

• Data sets arrive at regular time intervals: period T

- Given a mapping and an execution speed for each core, check whether the period can be respected, i.e., the cycle-time of each core does not exceed *T*
- Computations: $w_{u,v} = \sum_{1 \le i \le n | alloc(i) = (u,v)} w_i$ (work assigned to $C_{u,v}$, running at speed $s_{u,v}$) \rightarrow check that $\frac{w_{u,v}}{s_{u,v}} \le T$
- Communications: ((u' = u + 1 and v' = v) or (u' = u and v' = v + 1)) $b_{(u,v)\leftrightarrow(u',v')} = \sum_{1\leq i,j\leq n|(u,v)\leftrightarrow(u',v')\in path_{i,j}} \delta_{i,j}$ (communication on link $(u, v) \leftrightarrow (u', v')$) $\rightarrow \text{ check that } \frac{b_{(u,v)\leftrightarrow(u',v')}}{BW} \leq T$

Framework Complexity Heuristics Simulations Conclusion Application Platform Mapping Objective

Objective functions: period of the application

- Data sets arrive at regular time intervals: period T
- Given a mapping and an execution speed for each core, check whether the period can be respected, i.e., the cycle-time of each core does not exceed *T*
- Computations: $w_{u,v} = \sum_{1 \le i \le n | alloc(i) = (u,v)} w_i$ (work assigned to $C_{u,v}$, running at speed $s_{u,v}$) \rightarrow check that $\frac{w_{u,v}}{s_{u,v}} \le T$
- Communications: ((u' = u + 1 and v' = v) or (u' = u and v' = v + 1)) $b_{(u,v)\leftrightarrow(u',v')} = \sum_{1 \le i,j \le n \mid (u,v)\leftrightarrow(u',v')\in path_{i,j}} \delta_{i,j}$ (communication on link $(u, v) \leftrightarrow (u', v')$) \rightarrow check that $\frac{b_{(u,v)\leftrightarrow(u',v')}}{BW} \le T$

Framework Complexity Heuristics Simulations Conclusion Application Platform Mapping Objective

Objective functions: period of the application

- Data sets arrive at regular time intervals: period T
- Given a mapping and an execution speed for each core, check whether the period can be respected, i.e., the cycle-time of each core does not exceed *T*
- Computations: $w_{u,v} = \sum_{1 \le i \le n | alloc(i) = (u,v)} w_i$ (work assigned to $C_{u,v}$, running at speed $s_{u,v}$) \rightarrow check that $\frac{w_{u,v}}{s_{u,v}} \le T$
- Communications: ((u' = u + 1 and v' = v) or (u' = u and v' = v + 1)) $b_{(u,v)\leftrightarrow(u',v')} = \sum_{1 \le i,j \le n \mid (u,v)\leftrightarrow(u',v')\in path_{i,j}} \delta_{i,j}$ (communication on link $(u, v) \leftrightarrow (u', v')$) $\rightarrow \text{ check that } \frac{b_{(u,v)\leftrightarrow(u',v')}}{BW} \le T$

Framework Complexity Heuristics Simulations Conclusion Application Platform Mapping Objective

Objective functions: period of the application

- Data sets arrive at regular time intervals: period T
- Given a mapping and an execution speed for each core, check whether the period can be respected, i.e., the cycle-time of each core does not exceed *T*
- Computations: $w_{u,v} = \sum_{1 \le i \le n | alloc(i) = (u,v)} w_i$ (work assigned to $C_{u,v}$, running at speed $s_{u,v}$) \rightarrow check that $\frac{w_{u,v}}{s_{u,v}} \le T$
- Communications: ((u' = u + 1 and v' = v) or (u' = u and v' = v + 1)) $b_{(u,v)\leftrightarrow(u',v')} = \sum_{1 \le i,j \le n \mid (u,v)\leftrightarrow(u',v')\in path_{i,j}} \delta_{i,j}$ (communication on link $(u, v) \leftrightarrow (u', v')$) \rightarrow check that $\frac{b_{(u,v)\leftrightarrow(u',v')}}{BW} \le T$

Application Platform Mapping Objective

Objective functions: energy consumption

• Energy consumed by computations

$$E^{(\text{comp})} = |\mathcal{A}| \times P^{(\text{comp})}_{\text{leak}} \times T + \sum_{\mathcal{C}_{u,v} \in \mathcal{A}} \frac{w_{u,v}}{s_{u,v}} \times P^{(\text{comp})}_{s_{u,v}},$$

where $\ensuremath{\mathcal{A}}$ is the set of active cores

• Energy consumed by communications

$$E^{(\text{comm})} = P_{\text{leak}}^{(\text{comm})} \times T + \left(\sum_{u,v} \sum_{u',v'} b_{(u,v)\leftrightarrow(u',v')}\right) \times E^{(\text{bit})}$$

Objective functions: energy consumption

• Energy consumed by computations

$$E^{(\text{comp})} = |\mathcal{A}| \times P_{\text{leak}}^{(\text{comp})} \times T + \sum_{\mathcal{C}_{u,v} \in \mathcal{A}} \frac{w_{u,v}}{s_{u,v}} \times P_{s_{u,v}}^{(\text{comp})},$$

where $\ensuremath{\mathcal{A}}$ is the set of active cores

• Energy consumed by communications

$$E^{(\text{comm})} = P^{(\text{comm})}_{\text{leak}} \times T + \left(\sum_{u,v} \sum_{u',v'} b_{(u,v)\leftrightarrow(u',v')}\right) \times E^{(\text{bit})}$$

Optimization problem

$\operatorname{MinEnergy}(\mathcal{T})$

• Given

- a (bounded-elevation) SPG
- a $p \times q$ CMP
- a period threshold T

• Find a mapping such that

- the maximal cycle-time does not exceed T
- the energy $E = E^{(\text{comp})} + E^{(\text{comm})}$ is minimum

Optimization problem

MINENERGY(T)

• Given

- a (bounded-elevation) SPG
- a $p \times q$ CMP
- a period threshold T
- Find a mapping such that
 - the maximal cycle-time does not exceed T
 - the energy $E = E^{(\text{comp})} + E^{(\text{comm})}$ is minimum

→ 3 → 4 3

Optimization problem

MINENERGY(T)

- Given
 - a (bounded-elevation) SPG
 - a $p \times q$ CMP
 - a period threshold T
- Find a mapping such that
 - the maximal cycle-time does not exceed T
 - the energy $E = E^{(\text{comp})} + E^{(\text{comm})}$ is minimum

Outline of the talk

Framework

- Application model
- Platform
- Mapping strategies
- Objective functions

2 Complexity results

- Uni-directional uni-line CMP
- Bi-directional uni-line CMP
- Bi-directional square CMP

3 Heuristics

④ Simulations

Framework Complexity Heuristics Simulations Conclusion uni-dir/uni-line bi-dir/uni-line bi-dir/square

Uni-directional uni-line CMP (1 imes q)

• Polynomial with bounded elevation:

dynamic programming algorithm

$$\mathcal{E}(G,k) = \min_{G'\subseteq G} \left(\mathcal{E}(G',k-1)\oplus \mathcal{E}^{\mathrm{cal}}(G\setminus G')
ight) \; ,$$

- G' is admissible: no more than $n^{y_{max}}$ such graphs
- where
- outgoing communications of G' do not exceed BW
 energy of communications accounted in the

Framework Complexity Heuristics Simulations Conclusion uni-dir/uni-line bi-dir/uni-line bi-dir/square

Uni-directional uni-line CMP $(1 \times q)$

• Polynomial with bounded elevation:

dynamic programming algorithm

$$\mathcal{E}(G,k) = \min_{G' \subseteq G} \left(\mathcal{E}(G',k-1) \oplus \mathcal{E}^{\mathrm{cal}}(G \setminus G')
ight) \; ,$$

- G' is admissible: no more than $n^{y_{max}}$ such graphs
- where
- outgoing communications of G' do not exceed BW
 energy of communications accounted in the ⊕

Framework Complexity Heuristics Simulations Conclusion uni-dir/uni-line bi-dir/uni-line bi-dir/square

Uni-directional uni-line CMP $(1 \times q)$

• Polynomial with bounded elevation:

dynamic programming algorithm

$$\mathcal{E}(G,k) = \min_{G'\subseteq G} \left(\mathcal{E}(G',k-1)\oplus \mathcal{E}^{\mathrm{cal}}(G\setminus G')
ight) \; ,$$

- G' is admissible: no more than $n^{y_{max}}$ such graphs
- where
- outgoing communications of G' do not exceed BW
 energy of communications accounted in the ⊕

Framework Complexity Heuristics Simulations Conclusion uni-dir/uni-line bi-dir/uni-line bi-dir/square

Uni-directional uni-line CMP (1 imes q)

• Polynomial with bounded elevation:

dynamic programming algorithm

$$\mathcal{E}(G,k) = \min_{G'\subseteq G} \left(\mathcal{E}(G',k-1)\oplus \mathcal{E}^{\mathrm{cal}}(G\setminus G')
ight) \; ,$$

• G' is admissible: no more than $n^{y_{max}}$ such graphs • outgoing communications of G' do not exceed BW

• energy of communications accounted in the \oplus

Polynomial: $O(q \times n^{2y_{max}+1})$

• Previous algorithm: exponential complexity

Previous algorithm: exponential complexity

- NP-complete with bounded elevation: reduction from 2-PARTITION
- We enforce $In, A_1, \ldots, A_{n+1}, Out$ to be mapped consecutively
- 2-partition of the blue nodes on both sides

Framework Complexity Heuristics Simulations Conclusion uni-dir/uni-line bi-dir/square

Bi-directional square CMP $(p \times p)$

- The previous result implies the NP-completeness for 1 × q CMPs, and hence CMPs of arbitrary shapes (p × q)
- Square: not a direct consequence, but still NP-complete; reuse the uni-line proof by enforcing a line in the square
- Surprisingly involved proof

Outline of the talk

Framework

- Application model
- Platform
- Mapping strategies
- Objective functions

2 Complexity results

- Uni-directional uni-line CMP
- Bi-directional uni-line CMP
- Bi-directional square CMP

3 Heuristics

4 Simulations

- **Random** heuristic: random speeds for each cores; random assignments preserving a DAG-partition and matching period for computations; comm. always following an XY routing
- **Greedy** heuristic: given a speed *s*, starting from $C_{1,1}$, process as many stages as possible, partition following stages between right and down cores, iterate on those cores Try all possible speed values and keep the best solution
- 2D dynamic programming algorithm, **DPA2D**: map the SPG onto an $x_{max} \times y_{max}$ grid, following labels, and then map the grid onto the CMP thanks to a double nested DP algorithm
- 1D heuristics (2D CMP configured as a snake):
 DPA1D: Optimal solution on uni-directional uni-line CMP
 DPA2D1D: Previous 2D DP heuristic on the snake

通 ト イヨ ト イヨト

- **Random** heuristic: random speeds for each cores; random assignments preserving a DAG-partition and matching period for computations; comm. always following an XY routing
- **Greedy** heuristic: given a speed *s*, starting from $C_{1,1}$, process as many stages as possible, partition following stages between right and down cores, iterate on those cores Try all possible speed values and keep the best solution
- 2D dynamic programming algorithm, DPA2D: map the SPG onto an x_{max} × y_{max} grid, following labels, and then map the grid onto the CMP thanks to a double nested DP algorithm
- 1D heuristics (2D CMP configured as a snake):
 DPA1D: Optimal solution on uni-directional uni-line CMP
 DPA2D1D: Previous 2D DP heuristic on the snake

- **Random** heuristic: random speeds for each cores; random assignments preserving a DAG-partition and matching period for computations; comm. always following an XY routing
- **Greedy** heuristic: given a speed *s*, starting from $C_{1,1}$, process as many stages as possible, partition following stages between right and down cores, iterate on those cores Try all possible speed values and keep the best solution
- 2D dynamic programming algorithm, **DPA2D**: map the SPG onto an $x_{max} \times y_{max}$ grid, following labels, and then map the grid onto the CMP thanks to a double nested DP algorithm
- 1D heuristics (2D CMP configured as a snake):
 DPA1D: Optimal solution on uni-directional uni-line CMP
 DPA2D1D: Previous 2D DP heuristic on the snake

通 ト イヨ ト イヨト

- **Random** heuristic: random speeds for each cores; random assignments preserving a DAG-partition and matching period for computations; comm. always following an XY routing
- Greedy heuristic: given a speed s, starting from $C_{1,1}$, process as many stages as possible, partition following stages between right and down cores, iterate on those cores Try all possible speed values and keep the best solution
- 2D dynamic programming algorithm, **DPA2D**: map the SPG onto an $x_{max} \times y_{max}$ grid, following labels, and then map the grid onto the CMP thanks to a double nested DP algorithm
- 1D heuristics (2D CMP configured as a snake):
 - DPA1D: Optimal solution on uni-directional uni-line CMP
 - DPA2D1D: Previous 2D DP heuristic on the snake

(人間) トイヨト イヨト

(人間) システン イラン

(人間) システン イラン

(人間) システン イラン

(本語)と 本語(と) 本語(と

- 4 回 ト - 4 回 ト - 4 回 ト

<ロ> (日) (日) (日) (日) (日)

<ロ> (日) (日) (日) (日) (日)

2

DPA2D

▲ □ ▶ → □ ▶

2

- ∢ ≣ →

DPA1D, DPA2D1D

Framework Complexity Heuristics Simulations Conclusion

DPA1D, DPA2D1D

Framework Complexity Heuristics Simulations Conclusion

DPA1D, DPA2D1D

Outline of the talk

Framework

- Application model
- Platform
- Mapping strategies
- Objective functions

2 Complexity results

- Uni-directional uni-line CMP
- Bi-directional uni-line CMP
- Bi-directional square CMP

3 Heuristics

④ Simulations

• Random SPGs

- Average over 100 applications
- SPGs with 150 nodes
- Elevation: from 1 to 30

• Real-life SPGs: the Streamlt suite

- 12 different streaming applications
- From 8 to 120 nodes
- Elevation: from 1 to 17

• CMP configuration

- 4×4 CMP following the Intel Xscale model
- Five possible speeds per core

• Impact of the computation-to-communication ratio (CCR)

• Random SPGs

- Average over 100 applications
- SPGs with 150 nodes
- Elevation: from 1 to 30

• Real-life SPGs: the StreamIt suite

- 12 different streaming applications
- From 8 to 120 nodes
- Elevation: from 1 to 17

• CMP configuration

- $\bullet~4\times4$ CMP following the Intel Xscale model
- Five possible speeds per core

• Impact of the computation-to-communication ratio (CCR)

• Random SPGs

- Average over 100 applications
- SPGs with 150 nodes
- Elevation: from 1 to 30
- Real-life SPGs: the StreamIt suite
 - 12 different streaming applications
 - From 8 to 120 nodes
 - Elevation: from 1 to 17

• CMP configuration

- 4×4 CMP following the Intel Xscale model
- Five possible speeds per core

• Impact of the computation-to-communication ratio (CCR)

• Random SPGs

- Average over 100 applications
- SPGs with 150 nodes
- Elevation: from 1 to 30
- Real-life SPGs: the StreamIt suite
 - 12 different streaming applications
 - From 8 to 120 nodes
 - Elevation: from 1 to 17
- CMP configuration
 - 4×4 CMP following the Intel Xscale model
 - Five possible speeds per core
- Impact of the computation-to-communication ratio (CCR)

Random SPGs; computation intensive (CCR=10)

Framework Complexity Heuristics Simulations Conclusion

Random SPGs; balanced (CCR=1)

Almost similar

DPA2D1D is further from the best heuristic: cannot use all communication links

A B A A B A

3

Random SPGs; communication intensive (CCR=0.1)

- Random and the 1D heuristics do not perform well for large ymax
- DPA2D remains the best for large y_{max}

э

Framework Complexity Heuristics Simulations Conclusion

Streamlt; computation intensive (CCR=10)

э

StreamIt; balanced (CCR=1)

3.5 3

Streamlt; communication intensive (CCR=0.1)

э

- Further simulations on larger applications (up to 200 stages), larger CMPs (6×6), which confirm the results
- Number of failures (out of 1000 instances per CCR value)

CCR	Random	Greedy	DPA2D	DPA1D	DPA2D1D
10	29	28		758	1
1	29	28	78	760	
0.1		287	348	670	

- Execution times: 1ms for Random and Greedy, 50ms for DPA2D and DPA2D1D, 10s for DPA1D
- **Greedy**: general-purpose heuristic, fast and succeeds on most graphs; **DPA1D**: best for small elevation, optimal with no communication, but very costly; **DPA2D1D**: useful when the elevation gets higher; **DPA2D**: most efficient when communication increases, judiciously handles 2D comms

프 에 에 프 어

- Further simulations on larger applications (up to 200 stages), larger CMPs (6×6), which confirm the results
- Number of failures (out of 1000 instances per CCR value)

CCR	Random	Greedy	DPA2D	DPA1D	DPA2D1D
10	29	28	85	758	1
1	29	28	78	760	3
0.1	300	287	348	670	458

- Execution times: 1ms for Random and Greedy, 50ms for DPA2D and DPA2D1D, 10s for DPA1D
- **Greedy**: general-purpose heuristic, fast and succeeds on most graphs; **DPA1D**: best for small elevation, optimal with no communication, but very costly; **DPA2D1D**: useful when the elevation gets higher; **DPA2D**: most efficient when communication increases, judiciously handles 2D comms

- Further simulations on larger applications (up to 200 stages), larger CMPs (6×6), which confirm the results
- Number of failures (out of 1000 instances per CCR value)

CCR	Random	Greedy	DPA2D	DPA1D	DPA2D1D
10	29	28	85	758	1
1	29	28	78	760	3
0.1	300	287	348	670	458

- Execution times: 1ms for Random and Greedy, 50ms for DPA2D and DPA2D1D, 10s for DPA1D
- **Greedy**: general-purpose heuristic, fast and succeeds on most graphs; **DPA1D**: best for small elevation, optimal with no communication, but very costly; **DPA2D1D**: useful when the elevation gets higher; **DPA2D**: most efficient when communication increases, judiciously handles 2D comms

3 K (3 K

- Further simulations on larger applications (up to 200 stages), larger CMPs (6×6), which confirm the results
- Number of failures (out of 1000 instances per CCR value)

CCR	Random	Greedy	DPA2D	DPA1D	DPA2D1D
10	29	28	85	758	1
1	29	28	78	760	3
0.1	300	287	348	670	458

- Execution times: 1ms for Random and Greedy, 50ms for DPA2D and DPA2D1D, 10s for DPA1D
- Greedy: general-purpose heuristic, fast and succeeds on most graphs; DPA1D: best for small elevation, optimal with no communication, but very costly; DPA2D1D: useful when the elevation gets higher; DPA2D: most efficient when communication increases, judiciously handles 2D comms

• Exhaustive complexity study

- Efficient heuristics, from general-purpose to more specialized ones
- Simulations on both randomly generated and real-life SPGs
- Integer linear program (ILP) to solve the problem, intractable for CMPs larger than 2 × 2 (large number of variables to express communication paths)

- Exhaustive complexity study
- Efficient heuristics, from general-purpose to more specialized ones
- Simulations on both randomly generated and real-life SPGs
- Integer linear program (ILP) to solve the problem, intractable for CMPs larger than 2 × 2 (large number of variables to express communication paths)

- Exhaustive complexity study
- Efficient heuristics, from general-purpose to more specialized ones
- Simulations on both randomly generated and real-life SPGs
- Integer linear program (ILP) to solve the problem, intractable for CMPs larger than 2 × 2 (large number of variables to express communication paths)

- Exhaustive complexity study
- Efficient heuristics, from general-purpose to more specialized ones
- Simulations on both randomly generated and real-life SPGs
- Integer linear program (ILP) to solve the problem, intractable for CMPs larger than 2 × 2 (large number of variables to express communication paths)

- Investigate general mappings, and assess the difference with DAG-partition mappings (in theory and in practice)
- Simplify the ILP to assess the absolute performance of the heuristics
- Propose a more accurate power consumption model for communications: allow for bandwidth scaling, similarly to the frequency scaling of cores
- Study some multi-path routing policies, and compare with single-path or XY routing
- Mappings that make a trade-off between performance, energy consumption, and also reliability (failures, variations)

- Investigate general mappings, and assess the difference with DAG-partition mappings (in theory and in practice)
- Simplify the ILP to assess the absolute performance of the heuristics
- Propose a more accurate power consumption model for communications: allow for bandwidth scaling, similarly to the frequency scaling of cores
- Study some multi-path routing policies, and compare with single-path or XY routing
- Mappings that make a trade-off between performance, energy consumption, and also reliability (failures, variations)

- Investigate general mappings, and assess the difference with DAG-partition mappings (in theory and in practice)
- Simplify the ILP to assess the absolute performance of the heuristics
- Propose a more accurate power consumption model for communications: allow for bandwidth scaling, similarly to the frequency scaling of cores
- Study some multi-path routing policies, and compare with single-path or XY routing
- Mappings that make a trade-off between performance, energy consumption, and also reliability (failures, variations)

• • = • • = •

- Investigate general mappings, and assess the difference with DAG-partition mappings (in theory and in practice)
- Simplify the ILP to assess the absolute performance of the heuristics
- Propose a more accurate power consumption model for communications: allow for bandwidth scaling, similarly to the frequency scaling of cores
- Study some multi-path routing policies, and compare with single-path or XY routing
- Mappings that make a trade-off between performance, energy consumption, and also reliability (failures, variations)

- Investigate general mappings, and assess the difference with DAG-partition mappings (in theory and in practice)
- Simplify the ILP to assess the absolute performance of the heuristics
- Propose a more accurate power consumption model for communications: allow for bandwidth scaling, similarly to the frequency scaling of cores
- Study some multi-path routing policies, and compare with single-path or XY routing
- Mappings that make a trade-off between performance, energy consumption, and also reliability (failures, variations)