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Motivation
00000

Scheduling

@ Online scheduling techniques: decide where and when to execute tasks (jobs) on
resources — at the heart of batch schedulers

@ Basic problem: schedule independent tasks on parallel HPC platforms

e Objective functions:
o Utilization (platform's perspective) — fraction of time when the platform is
computing
o Stretch (user's perspective) — minimize maximum (or average) stretch of tasks, i.e.,
response time normalized by the task length

I B [
Task arrival [ ]

| | t
T T T T T
n r2 3 s

Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling HCERES



Motivation
00000

Scheduling

@ Online scheduling techniques: decide where and when to execute tasks (jobs) on
resources — at the heart of batch schedulers

@ Basic problem: schedule independent tasks on parallel HPC platforms

e Objective functions:
o Utilization (platform's perspective) — fraction of time when the platform is
computing
o Stretch (user's perspective) — minimize maximum (or average) stretch of tasks, i.e.,
response time normalized by the task length

I e
[

Task arrival
% % T T T t
rn r r3 ra s
Schedule ASAP M I
chedule Ms I

Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling HCERES



Motivation
00000

Scheduling

@ Online scheduling techniques: decide where and when to execute tasks (jobs) on
resources — at the heart of batch schedulers

@ Basic problem: schedule independent tasks on parallel HPC platforms

e Objective functions:
o Utilization (platform's perspective) — fraction of time when the platform is
computing
o Stretch (user's perspective) — minimize maximum (or average) stretch of tasks, i.e.,
response time normalized by the task length

I e
[

Task arrival
% % T T T t
rn r r3 ra s
Schedule ASAP M1 m———
chedule Ms I

Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling HCERES



Motivation
00000

Scheduling

@ Online scheduling techniques: decide where and when to execute tasks (jobs) on
resources — at the heart of batch schedulers

@ Basic problem: schedule independent tasks on parallel HPC platforms

e Objective functions:
o Utilization (platform's perspective) — fraction of time when the platform is
computing
o Stretch (user's perspective) — minimize maximum (or average) stretch of tasks, i.e.,
response time normalized by the task length

I e
[

Task arrival
% % T T T t
r r r3 ry rs
Schedule ASAP M1 mE———
chedule Ms T )

Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling HCERES



Motivation
00000

Scheduling

@ Online scheduling techniques: decide where and when to execute tasks (jobs) on
resources — at the heart of batch schedulers

@ Basic problem: schedule independent tasks on parallel HPC platforms

e Objective functions:
o Utilization (platform's perspective) — fraction of time when the platform is
computing
o Stretch (user's perspective) — minimize maximum (or average) stretch of tasks, i.e.,
response time normalized by the task length

I e
[

Task arrival
% % T t
rn r r3 ra s
Schedule ASAP M1 m———
chedule Ms T )

Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling HCERES



Motivation
00000

Scheduling

@ Online scheduling techniques: decide where and when to execute tasks (jobs) on
resources — at the heart of batch schedulers

@ Basic problem: schedule independent tasks on parallel HPC platforms

@ Objective functions:

o Utilization (platform's perspective) — fraction of time when the platform is
computing

o Stretch (user's perspective) — minimize maximum (or average) stretch of tasks, i.e.,
response time normalized by the task length

I B [
]
[
| | . . t
rn r 3 s

Min max stretch M S R
Mo

Task arrival

Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling HCERES
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New challenge: Variable capacity

@ Today's datacenters assume resource capacity as a fixed quantity:
Kw/h

Time of day
@ Emerging approaches = Variable power
o Exploit renewable energy
e Reduce carbon emissions
Kw/h Nb proc.
—
Time of day Time
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Variable capacity scheduling

e Green computing: the available power evolves in time (solar or wind energy, etc...)

@ How to schedule efficiently when the available power varies, which means the
number of machines that can be powered varies with time?

@ Need to be ready for these variations: if a machine is shut down, need to
re-execute its tasks, and start new tasks when a new machine is turned on

M;
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Risk aware?

© Which machine to shutdown?
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Risk aware?

© Which machine to shutdown?

Machine shutdown
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@ How to schedule jobs to minimize impact?
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Small example
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Main questions

@ When power decreases, which machines to power off? Which jobs to interrupt?
And to re-schedule?

@ Are we notified ahead of a power change?
e Resource variation in power obeys specific parameters whose evolution is dictated by
a mix of technical availability and economic conditions
o Accurate external predictor (precision, recall)? Maybe too optimistic ®

@ Re-scheduling interrupted jobs
o Can we take a proactive checkpoint before the interruption?
e Which priority should be given to each interrupted job?
o Which geometry and which nodes for re-execution?
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Outline

o Without checkpoints
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Without checkpoints
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Framework

@ No possibility to checkpoint jobs or to anticipate a resource variation
Nb proc.

Time
@ Set of rigid jobs, each using a given number of cores (work w; on ¢; cores)
@ ldentical multicore machines, number of machines alive evolves with time

@ Number of alive machines not known until it changes

Design of risk-aware strategies that account for the risk,
assigning new tasks to the good target machine,
depending upon the optimization criteria
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Objective functions

e Platform utilization: Not a good criteria anymore (some tasks may be interrupted
and some work lost)

Machine shutdown
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@ Objective function: Goodput = effective utilization, accounts only for tasks
that are completed or still running — fraction of useful work up to time T

o Jcomp, T set of jobs that are completed at time T (¢; < T)
o Jstarted, 7 Set of jobs running and not completed at time T (s; < T < ¢;)
e Total number of units of work that can be executed in [0, T]: n. Zte[o.Tq] Majive(t)

ZTfejcomp,T wiCi + ET;EJszansd,T(T - S,‘)C,'
Ne Yo, 7—1) Malive (1)

GoopruT(T) =
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@ Objective function: Goodput = effective utilization, accounts only for tasks
that are completed or still running — fraction of useful work up to time T

o
° Keep an eye on maximum stretch

° J] Ma/ive(t)
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Without checkpoints
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Algorithms

Main idea:

@ Take a decision at each event (task arrival or completion,
machine addition or removal)

@ Order machines for a guided choice:

Q6  ©@

safer machines riskier machines

Risk-aware job allocation strategies J
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Basic heuristics

e FIRSTFITAWARE (natural approach):
e Ordered list of machines
e Jobs mapped to leftmost (safer) machines whenever possible
e Rightmost (riskier) machines are shutdown whenever necessary

@ FIRSTFITUNAWARE: Shutdown random machines whenever necessary
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Basic heuristics

e FIRSTFITAWARE (natural approach):
e Ordered list of machines
e Jobs mapped to leftmost (safer) machines whenever possible
e Rightmost (riskier) machines are shutdown whenever necessary

@ FIRSTFITUNAWARE: Shutdown random machines whenever necessary

@ Can we do better than first fit?
e Interrupting a long job is a big performance loss
e Schedule smaller jobs on machines that are likely to be turned off
e Schedule longer jobs on risk-free machines
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Without checkpoints
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Sophisticated heuristics

@ TARGETSTRETCH: Add one queue per machine, target value for max stretch
potential bad utilization
No flexibility for mapping to another free machine

=
®
®
o

safer machines riskier machines
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Sophisticated heuristics

@ TARGETSTRETCH: Add one queue per machine, target value for max stretch
potential bad utilization

No flexibility for mapping to another free machine

@ TARGETASAP:
e Start job immediately on target machine or closest machine in neighborhood
e If not possible, assign on target machine if target stretch not exceeded
o Otherwise, assign on machine where it can start ASAP (within acceptable distance)

safer machines riskier machines
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Sophisticated heuristics

@ TARGETSTRETCH: Add one queue per machine, target value for max stretch
potential bad utilization

No flexibility for mapping to another free machine

@ TARGETASAP:
e Start job immediately on target machine or closest machine in neighborhood
e If not possible, assign on target machine if target stretch not exceeded
o Otherwise, assign on machine where it can start ASAP (within acceptable distance)

@ Variant PACKEDTARGETASAP: group machines into packs, and assign jobs to
first machines of the pack, to leave machines empty for future large jobs

Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling HCERES



Without checkpoints
00000e

Sophisticated heuristics

@ TARGE cTCH: Add one queue per machine, target value for max stretch
potential bad ut ion

No flexibility for map®gg to another free machine

@ TARGETASAP:

o Start job immediately onQtget machine or closest machine in neighborhood
o If not nossible. assien on tarcet machine if tarcet stretch not exceeded

o Othej Technical and kind of painful able distance)
e Variant P despite all simplifying hypotheses ® sign jobs to
first mach.. -
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Sophisticated heuristics

Simulation results using resource variation trace and job traces (Borg)
Significant gains over first-fit algorithms: map the right job to the right machine
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e With checkpoints
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With checkpoints
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Model

@ Avoid losing work: Jobs can be checkpointed and recovered
e Maximize goodput — Useful work, excluding time to checkpoint/recover

@ Problem: Schedule infinite parallel rigid jobs under variable number of processors,
during each section; maximize goodput and minimum vyield (fairness)

@ Perfect knowledge of the duration of each section, and bound on #proc difference

@ Never lose work (i.e., checkpoint enough before section change, and never shut off
a non-checkpointed job)
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With checkpoints
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Algorithms

@ Sophisticated dynamic programming algorithms to optimize goodput and/or yield
at the end of a section

Run(!) T
Run(o) Ckp £ > / Run(2\)\*
Ckpt(©®) Rec®) [/ Rec® =
Id1e(® Rec+Ckpt () 2 1d1e®@
evst(?) Idle® Nevst(d
Nevst(®)
processors
s = i G _ R h
10 3 Ja G | R Ja G 4 ----
5 é Js Js Js
0 T —Tin time

Anne.Benoit@ens-lyon.fr Variable Capacity Scheduling HCERES 16 / 20



With checkpoints
[e]ele] ]

Simulations

@ Evaluation on job traces, with both infinite and finite jobs
@ Improvement of novel strategies over greedy approaches
@ Bi-criteria dynamic programming algorithm DP BiC very efficient

Greedy Goodput DP Goodput £ Target Yield DP BiC
A Greedy Yield @ DP Yield < Target Goodput

Relative Yield
g
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Relative Goodput
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Many challenging scheduling problems when resources subject to variable capacity ©

Workshop report: Scheduling Variable Capacity Resources for Sustainability;, March 29-31, 2023, U. Chicago Paris Center

Case studies: restricted instances
Risk-Aware Scheduling Algorithms for Variable Capacity Resources; PMBS workshop at SC'23

Scheduling Jobs Under a Variable Number of Processors; |IEEE Trans. on Parallel and Distributed Systems, 2025
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Research directions

Platforms and resources: New and more complex definitions of capacity;
understand and model capacity changes

Flexible workloads: Exploit flexible start dates, allow migration or deferral, support
multiple precision levels

Scheduling models and metrics: Consider new multi-criteria metrics for both
performance and sustainability (including carbon cost); Account for uncertainty

Policy and societal factors: Mechanisms that help people accept constraints linked
to environmental rules; Beware of the superficial feeling of abundance: abuse of
computational resources, rebound effect
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