Trade-offs between performance, reliability, and energy consumption

Anne Benoit

LIP, Ecole Normale Supérieure de Lyon, France
Georgia Institute of Technology, Atlanta, USA

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/

HPPAC workshop @ IPDPS’18, Vancouver, May 21, 2018
Energy: a crucial issue

- Data centers ("Cloud Begins with Coal", M. Mills)
 - 250 – 350 TWh in 2013
 - ≈ consumption of Turkey (242), Spain (267), or Italy (309)
 - ≈ 530 Mt of CO₂ (carbontrust) → Canada

- Nowadays: more than 90 billion kilowatt-hours of electricity a year; requires 34 giant (500 megawatt) coal-powered plants

- Explosion of artificial intelligence; AI is hungry for processing power! Need to double data centers in next four years → how to get enough power?

- Energy and power awareness ≃ crucial for both environmental and economical reasons

- Workshop on High-Performance, Power-Aware Computing!
Performance: Exascale platforms

- Hierarchical
 - 10^5 or 10^6 nodes
 - Each node equipped with 10^4 or 10^3 cores

- Failure-prone

<table>
<thead>
<tr>
<th>MTBF – one node</th>
<th>1 year</th>
<th>10 years</th>
<th>120 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBF – platform of 10^6 nodes</td>
<td>30sec</td>
<td>5mn</td>
<td>1h</td>
</tr>
</tbody>
</table>

More nodes \Rightarrow Shorter MTBF (Mean Time Between Failures)

Exascale \neq Petascale $\times 1000$
Even at Petascale (courtesy F. Cappello)

Fault tolerance becomes critical at Petascale (MTTI <= 1 day)
Poor fault tolerance design may lead to huge overhead

Today, 20% or more of the computing capacity in a large high-performance computing system is wasted due to failures and recoveries.

Dr. E.N. (Mootaz) Elnozahyet al. System Resilience at Extreme Scale, DARPA
Even at Petascale (courtesy F. Cappello)

Classic approach for FT: Checkpoint-Restart

Typical “Balanced Architecture” for PetaScale Computers

- Compute nodes
- Total memory: 100-200 TB
- Network(s)
- 40 to 200 GB/s
- Parallel file system (1 to 2 PB)
- I/O nodes

Without optimization, Checkpoint-Restart needs about 1h! (~30 minutes each)

<table>
<thead>
<tr>
<th>Systems</th>
<th>Perf.</th>
<th>Ckpt time</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoadRunner</td>
<td>1PF</td>
<td>~20 min.</td>
<td>Panasas</td>
</tr>
<tr>
<td>LLNL BG/L</td>
<td>500 TF</td>
<td>>20 min.</td>
<td>LLNL</td>
</tr>
<tr>
<td>LLNL Zeus</td>
<td>11TF</td>
<td>26 min.</td>
<td>LLNL</td>
</tr>
<tr>
<td>YYY BG/P</td>
<td>100 TF</td>
<td>~30 min.</td>
<td>YYY</td>
</tr>
</tbody>
</table>
An inconvenient truth

Top ranked supercomputers in the US (June 2017)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Laboratory</th>
<th>Technology</th>
<th>Processors</th>
<th>PFlops/s</th>
<th>MTBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Titan</td>
<td>ORNL</td>
<td>Cray XK7</td>
<td>37,376</td>
<td>17.59</td>
<td>≈ 1 day</td>
</tr>
<tr>
<td>5</td>
<td>Sequoia</td>
<td>LLNL</td>
<td>BG/Q</td>
<td>98,304</td>
<td>17.17</td>
<td>≈ 1 day</td>
</tr>
<tr>
<td>6</td>
<td>Cori</td>
<td>LBNL</td>
<td>Cray XC40</td>
<td>11,308</td>
<td>14.01</td>
<td>≈ 1 day</td>
</tr>
<tr>
<td>9</td>
<td>Mira</td>
<td>ANL</td>
<td>BG/Q</td>
<td>49,152</td>
<td>8.59</td>
<td>≈ 1 day</td>
</tr>
</tbody>
</table>

The first exascale computer \(10^{18}\) FLOPS is expected by 2020:

- Larger processors count: millions of processors
- MTBF is expected to drop dramatically
- Down to **the hour** or even worse

Coping with faults:

- Make applications more fault tolerant, design better **resilience techniques**...
- ... And don’t forget to be green!
An inconvenient truth

Top ranked supercomputers in the US (June 2017)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Laboratory</th>
<th>Technology</th>
<th>Processors</th>
<th>PFlops/s</th>
<th>MTBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Titan</td>
<td>ORNL</td>
<td>Cray XK7</td>
<td>37,376</td>
<td>17.59</td>
<td>≈ 1 day</td>
</tr>
<tr>
<td>5</td>
<td>Sequoia</td>
<td>LLNL</td>
<td>BG/Q</td>
<td>98,304</td>
<td>17.17</td>
<td>≈ 1 day</td>
</tr>
<tr>
<td>6</td>
<td>Cori</td>
<td>LBNL</td>
<td>Cray XC40</td>
<td>11,308</td>
<td>14.01</td>
<td>≈ 1 day</td>
</tr>
<tr>
<td>9</td>
<td>Mira</td>
<td>ANL</td>
<td>BG/Q</td>
<td>49,152</td>
<td>8.59</td>
<td>≈ 1 day</td>
</tr>
</tbody>
</table>

The first exascale computer (10^{18} FLOPS) is expected by 2020:

- Larger processors count: millions of processors
- MTBF is expected to drop dramatically
- Down to the hour or even worse

Coping with faults:

- Make applications more fault tolerant, design better resilience techniques...
- ... And don’t forget to be green!
Coping with fail-stop errors

Periodic checkpoint, rollback, and recovery:

- Coordinated checkpointing (the platform is a giant macro-processor)
- Assume instantaneous interruption and detection
- Rollback to last checkpoint and re-execute

Cooperatively checkpointing (the platform is a giant macro-processor)
Coping with fail-stop errors

Periodic checkpoint, rollback, and recovery:

- Coordinated checkpointing (the platform is a giant macro-processor)
- Assume instantaneous interruption and detection
- Rollback to last checkpoint and re-execute
Coping with fail-stop errors

Periodic checkpoint, rollback, and recovery:

- Coordinated checkpointing (the platform is a giant macro-processor)
- Assume instantaneous interruption and detection
- Rollback to last checkpoint and re-execute
Optimal checkpoint interval (for time)

Theorem. [Young 1974, Daly 2006]

- \(T^* = \sqrt{2\mu C} \)
- \(\mu \): Platform MTBF, \(C \): Checkpointing time

Is this optimal for energy consumption?
Optimal checkpoint interval (for time)

Theorem. [Young 1974, Daly 2006]

- $T^* = \sqrt{2\mu C}$
- μ: Platform MTBF, C: Checkpointing time

Is this optimal for energy consumption?
Outline

1. Optimal checkpointing period: time vs. energy
 - Framework
 - Optimal period for execution time
 - Optimal period for energy
 - Experiments

2. A different re-execution speed can help
 - Model and optimization problem
 - Optimal pattern size and speeds
 - Simulations
 - Extensions: both fail-stop and silent errors

3. Summary and need for trade-offs
Motivation

- Coordinated *periodic* checkpointing: what is the optimal checkpointing period if you optimize for Energy consumption?
- Is there a tradeoff between optimizing for Energy and optimizing for Time?
Outline

1. Optimal checkpointing period: time vs. energy
 - Framework
 - Optimal period for execution time
 - Optimal period for energy
 - Experiments

2. A different re-execution speed can help
 - Model and optimization problem
 - Optimal pattern size and speeds
 - Simulations
 - Extensions: both fail-stop and silent errors

3. Summary and need for trade-offs
Power model

- P_{Static}: base power (platform switched on)
 - Trend: goes down (w.r.t. other powers)
- P_{Cal}: overhead due to CPU (computations)
- $P_{\text{I/O}}$: overhead due to file I/O (checkpoint or recovery)
- P_{Down}: overhead when one machine is down (rebooting)

Meneses, Sarood and Kalé:

- Base power $L = P_{\text{Static}}$
- Maximum power $H = P_{\text{Static}} + P_{\text{Cal}}$
- $P_{\text{I/O}} = 0$ (and $P_{\text{Down}} = 0$)

Coordinated checkpointing

- Periodic checkpointing policy of period \(T \)
- Independent and identically distributed failures
- Applies to a single processor with MTBF \(\mu = \mu_{ind} \)
- Applies to a platform with \(p \) processors with MTBF \(\mu = \frac{\mu_{ind}}{p} \)
 - tightly-coupled application
 - progress \(\Leftrightarrow \) all processors available
Cost of checkpointing

- Time spent working
- Time spent checkpointing

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st chunk</td>
<td>Computing the 1st chunk</td>
</tr>
<tr>
<td>1st chunk</td>
<td>Checkpointing the 1st chunk</td>
</tr>
<tr>
<td>2nd chunk</td>
<td>Processing the 2nd chunk</td>
</tr>
</tbody>
</table>

Introduction
Optimal period
Re-execution speed
Conclusion

HPPAC’18 Anne.Benoit@ens-lyon.fr Performance, reliability, energy consumption
Cost of checkpointing

Blocking model: while a checkpoint is taken, no computation can be performed.
Cost of checkpointing

Non-blocking model: while a checkpoint is taken, computations are not impacted (e.g., first copy state to RAM, then copy RAM to disk)
General model: while a checkpoint is taken, computations are slowed-down: during a checkpoint of duration C, the same amount of computation is done as during a time ωC without checkpointing ($0 \leq \omega \leq 1$).
Outline

1. **Optimal checkpointing period: time vs. energy**
 - Framework
 - **Optimal period for execution time**
 - Optimal period for energy
 - Experiments

2. **A different re-execution speed can help**
 - Model and optimization problem
 - Optimal pattern size and speeds
 - Simulations
 - Extensions: both fail-stop and silent errors

3. **Summary and need for trade-offs**
Expected execution time

- T_{base}: execution time without any overhead
- $T_{\text{final}} = T_{\text{ff}} + T_{\text{fails}}$: total execution time
 - Time for fault-free execution
 \[T_{\text{ff}} = T_{\text{base}} \frac{T}{T - (1 - \omega)C} \]
 - Time lost due to failures
 \[T_{\text{fails}} = \frac{T_{\text{final}}}{\mu} (D + R + \text{RE-EXEC}) \]
Computing Waste

Time spent working Time spent checkpointing Time spent working with slowdown

\[T - C \quad C \]

\[P_0 \quad P_1 \quad P_2 \quad P_3 \]
Waste in the absence of failure

Time elapsed since last checkpoint: \(T \)

Amount of computation saved: \((T - C) + \omega C\)

\[
\mathcal{T}_{ff} = \mathcal{T}_{\text{base}} \frac{T}{T - (1 - \omega)C}
\]
Waste due to failures

Failure can happen

1. During computation phase
2. During checkpointing phase

Re-Exec: Time needed for re-execution
Waste due to failures

Failure can happen

1. During computation phase
2. During checkpointing phase

Re-Exec: Time needed for re-execution
Waste due to failures in computation phase

Coordinated checkpointing protocol: when one processor is victim of a failure, all processors lose their work and must roll-back to last checkpoint.
Waste due to failures in computation phase

Coordinated checkpointing protocol: All processors must recover from last checkpoint
Waste due to failures in computation phase

Redo the work destroyed by the failure, that was done in the checkpointing phase before the computation phase
Waste due to failures in computation phase

But no checkpoint is taken in parallel, hence this re-computation is faster than the original computation
Waste due to failures in computation phase

Re-execute the computation phase
Waste due to failures in computation phase

Re-execute the computation phase

\[\text{RE-EXEC: } \text{RE-EXEC}_{\text{coord-fail-in-work}} = T_{\text{lost}} + \omega C \]

Expectation: \(T_{\text{lost}} = \frac{1}{2} (T - C) \)

\[\text{RE-EXEC}_{\text{coord-fail-in-work}} = \frac{T - C}{2} + \omega C \]
Waste due to failures

- Time spent working
- Time spent checkpointing
- Time spent working with slowdown
- Downtime
- Recovery time
- Re-executing slowed-down work

Failure can happen

1. During computation phase
2. During checkpointing phase

RE-EXEC: Time needed for re-execution
Waste due to failures in checkpointing phase

\[\text{RE-EXEC}_{\text{coord-fail-in-checkpoint}} = (T - C) + T_{\text{lost}} + \omega C \]

Expectation: \(T_{\text{lost}} = \frac{1}{2} C \)

\[\text{RE-EXEC}_{\text{coord-fail-in-checkpoint}} = (T - C) + \frac{C}{2} + \omega C \]

\[= T - \frac{C}{2} + \omega C \]
Re-Exec

- Failure in the computation phase (probability: \(\frac{T-C}{T} \))

\[
\text{Re-Exec}_{\text{coord-fail-in-work}} = \frac{T-C}{2} + \omega C
\]

- Failure in the checkpointing phase (probability: \(\frac{C}{T} \))

\[
\text{Re-Exec}_{\text{coord-fail-in-checkpoint}} = T - \frac{C}{2} + \omega C
\]

\[
\text{Re-Exec} = \frac{T-C}{T} \left(\frac{T-C}{2} + \omega C \right) + \frac{C}{T} \left(T - \frac{C}{2} + \omega C \right)
\]

\[
\text{Re-Exec} = \omega C + \frac{T}{2}
\]
ALGOT: Strategy with $\mathcal{T}_{\text{Time}}^{\text{opt}}$

\[
\mathcal{T}_{\text{final}} = \mathcal{T}_{\text{base}} \frac{T}{T - (1 - \omega)C} + \frac{\mathcal{T}_{\text{final}}}{\mu} \left(\frac{D + R + \omega C + \frac{T}{2}}{\mu} \right)
\]

\[= \frac{T}{(T - a) \left(b - \frac{T}{2\mu} \right)} \mathcal{T}_{\text{base}}\]

\[a = (1 - \omega)C\text{ and } b = 1 - \frac{D + R + \omega C}{\mu}\]

\[\mathcal{T}_{\text{Time}}^{\text{opt}} = \sqrt{2(1 - \omega)C(\mu - (D + R + \omega C))}\]
Outline

1 Optimal checkpointing period: time vs. energy
 - Framework
 - Optimal period for execution time
 - Optimal period for energy
 - Experiments

2 A different re-execution speed can help
 - Model and optimization problem
 - Optimal pattern size and speeds
 - Simulations
 - Extensions: both fail-stop and silent errors

3 Summary and need for trade-offs
Consumed energy

\[E_{\text{final}} = T_{\text{Cal}} P_{\text{Cal}} + T_{I/O} P_{I/O} + T_{\text{Down}} P_{\text{Down}} + T_{\text{final}} P_{\text{Static}} \]
\[= \left(T_{\text{base}} + \frac{T_{\text{final}}}{\mu} \left(\omega C + \frac{T^2 - C^2}{2T} + \frac{\omega C^2}{2T} \right) \right) P_{\text{Cal}} \]
\[+ \left(\frac{T_{\text{final}}}{\mu} \left(R + \frac{C^2}{2T} \right) + C \frac{T_{\text{base}}}{T - (1 - \omega)C} \right) P_{I/O} \]
\[+ \frac{T_{\text{final}}}{\mu} D P_{\text{Down}} + T_{\text{final}} P_{\text{Static}} \]

\[T_{\text{final}} \neq T_{\text{Cal}} + T_{I/O} + T_{\text{Down}}, \text{ unless } \omega = 0 \]
CPU and I/O activities are overlapped (and both consumed) when checkpointing
\[P_{\text{Cal}} = \alpha P_{\text{Static}}, \ P_{\text{I/O}} = \beta P_{\text{Static}}, \ P_{\text{Down}} = \gamma P_{\text{Static}} \]

\[\frac{(T-a)^2(b-T)}{P_{\text{Static}} T_{\text{base}}} E'_{\text{final}} = \frac{-abT^2}{\mu^2} \left((\alpha \omega C + \beta R + \gamma D + \mu) + \frac{\alpha T}{2} + \frac{\alpha(1-\omega)C^2}{2T} + \frac{\beta C^2}{2T} \right) \]

\[+ \frac{(T-a)(b-T)}{2\mu^2} \left(\alpha + \frac{\alpha(1-\omega)-\beta C^2}{T} \right) - \beta C \left(b - \frac{T}{2\mu} \right)^2 \]

\[= T^3 \left(\frac{1}{4\mu} - \frac{1}{4\mu^2} \right) + T^2 \left(\frac{\alpha \omega C + \beta R + \gamma D + \mu}{2\mu^2} + \frac{b+a}{2\mu} - \frac{\beta C}{4\mu^2} + \frac{1}{2\mu} \right) \]

\[+ T \left(-\frac{ab}{2\mu} - \frac{ab}{2\mu^2} + \frac{\beta C}{\mu} - 2 \left(\frac{\alpha(1-\omega)-\beta}{4\mu^2} \right) \right) - \beta C b^2 \]

\[- \frac{ab(\alpha \omega C + \beta R + \gamma D + \mu)}{\mu} - \left(\frac{b}{2\mu} - \frac{a}{4\mu^2} \right) (\alpha(1-\omega) - \beta) C^2 \]

\[+ \frac{1}{4} \left((\alpha(1-\omega) - \beta) \frac{C}{2\mu} - (\alpha(1-\omega) - \beta) \frac{C}{2\mu} \right) \]

\[= T^2 \left(\frac{\alpha \omega C + \beta R + \gamma D + \mu}{2\mu^2} + \frac{b}{2\mu} + \frac{a-\beta C}{4\mu^2} + \frac{1}{2\mu} \right) \]

\[+ T \left(\frac{(\beta C-a)b}{\mu} - 2 \left(\frac{\alpha(1-\omega)-\beta}{4\mu^2} \right) \right) \]

\[- \frac{ab(\alpha \omega C + \beta R + \gamma D + \mu)}{\mu} - \beta C b^2 \]

\[+ \left(\frac{b}{2\mu} + \frac{a}{4\mu^2} \right) (\alpha(1-\omega) - \beta) C^2 . \]
\[P_{\text{Cal}} = \alpha P_{\text{Static}}, \quad P_{\text{I/O}} = \beta P_{\text{Static}}, \quad P_{\text{Down}} = \gamma P_{\text{Static}} \]

\[
\frac{(T-a)^2 (b-a) \mu}{P_{\text{Static}} T_{\text{base}}} = -\frac{ab+T^2}{2\mu} \left((\alpha \omega C + \beta R + \gamma D + \mu) + \frac{\alpha T}{2T} - \frac{\beta C^2}{2T} \right) \\
+ \frac{\alpha}{\mu} (\frac{b-T}{2\mu}) \left(\alpha + \frac{\alpha (1-\omega) - \beta C}{2} \right) - \beta C \left(\frac{b-T}{2\mu} \right)^2 \\
= T^3 \left(\frac{1}{4\mu} - \frac{1}{4\mu} \right) \left(\frac{b+\frac{\beta C+\beta R+\gamma D}{2\mu}}{2\mu} + \frac{b+\frac{\beta C+\beta R+\gamma D}{2\mu}}{4\mu^2} \right) \\
+ T \left(\frac{\alpha (1-\omega) - \beta C}{2\mu} + \frac{\beta C-a}{\mu} \right) \left(\frac{b}{2\mu} \right) \\
+ \frac{1}{T} \left(\frac{\alpha (1-\omega) - \beta C}{2\mu} \right) - \left(\frac{\alpha (1-\omega) - \beta C}{2\mu} \right) \\
= T^2 \left(\frac{\alpha \omega C + \beta R + \gamma D}{2\mu^2} + \frac{b}{2\mu} + \frac{a-\beta C}{4\mu^2} + \frac{1}{2\mu} \right) \\
+ T \left(\frac{\beta C-a}{\mu} \right) \left(\frac{b}{2\mu} \right) \\
We let Maple compute \(T_{\text{opt}}^{\text{Energy}} \)
Outline

1. Optimal checkpointing period: time vs. energy
 - Framework
 - Optimal period for execution time
 - Optimal period for energy
 - Experiments

2. A different re-execution speed can help
 - Model and optimization problem
 - Optimal pattern size and speeds
 - Simulations
 - Extensions: both fail-stop and silent errors

3. Summary and need for trade-offs
Parameters: power

\[\rho = \frac{P_{\text{Static}} + P_{\text{I/O}}}{P_{\text{Static}} + P_{\text{Cal}}} = \frac{1 + \beta}{1 + \alpha} \]

- 20 Mega-watts for Exascale platform with 10^6 nodes
- Nominal power = 20 milli-watts per node
- $1/2 \rightarrow 1/4$ of that power in static consumption

- Scenario 1: $P_{\text{Static}} = 10$, $P_{\text{Cal}} = 10$, $P_{\text{I/O}} = 100 \Rightarrow \rho = 5.5$
- Scenario 2: $P_{\text{Static}} = 5$, $P_{\text{Cal}} = 10$, $P_{\text{I/O}} = 100 \Rightarrow \rho = 7$
Parameters: resilience

- **MTBF**
 - $N = 45,208$ processors: one fault per day
 - Individual (processor) MTBF $\mu_{\text{ind}} \approx 125$ years.
 - Total number of processors N: from $N = 219,150$ to $N = 2,191,500 \Rightarrow \mu = 300$ min down to $\mu = 30$ min
 - $C = R = 10$ min, $D = 1$ min, and $\omega = 1/2$.
Impact of ratio ρ

How much slower, if we optimize for energy instead of optimizing for time
Impact of ratio ρ

How much more energy consumption, if we optimize for time instead of optimizing for energy.
AlgoT over AlgoE

How much slower, if we optimize for energy instead of optimizing for time

How much more energy consumption, if we optimize for time instead of optimizing for energy
Scalability ($\rho = 5.5$)

$\mu = 120$ min for 10^6 nodes, $C = R = 1$ min, $D = 0.1$ min, $\omega = 1/2$
Scalability ($\rho = 7$)

\[E_{\text{final}}(T_{\text{time}})/E_{\text{final}}(T_{\text{energy}}) \]

\[T_{\text{final}}(T_{\text{energy}})/T_{\text{final}}(T_{\text{time}}) \]

Number of nodes

\[\mu = 120 \text{ min for } 10^6 \text{ nodes}, \ C = R = 1 \text{ min}, \ D = 0.1 \text{ min}, \ \omega = 1/2 \]
Conclusion

- Coordinated checkpointing, non-blocking
- Different optimal periods for time and energy
- Save more than 20% of energy with 10% increase in time
- Expect more gains for large-scale platforms

- Variety of resilience and power consumption parameters 😞
- Quite flexible analytical model 😊
- Easy to instantiate for other scenarios 😊
Conclusion

- Coordinated checkpointing, non-blocking
- Different optimal periods for time and energy
- Save more than 20% of energy with 10% increase in time
- Expect more gains for large-scale platforms

- Variety of resilience and power consumption parameters 😞
- Quite flexible analytical model 😊
- Easy to instantiate for other scenarios 😊
Outline

1. Optimal checkpointing period: time vs. energy
 - Framework
 - Optimal period for execution time
 - Optimal period for energy
 - Experiments

2. A different re-execution speed can help
 - Model and optimization problem
 - Optimal pattern size and speeds
 - Simulations
 - Extensions: both fail-stop and silent errors

3. Summary and need for trade-offs
Silent errors

- Another major challenge for Exascale: frequent striking of silent errors
- How to deal with these errors? Add a verification to the classical Checkpoint/Restart protocol
- Verification mechanism: general-purpose (replication, triplication) or application-specific
- Verified checkpoints: a verification is performed just before each checkpoint
Silent vs Fail-stop errors

- C: time to checkpoint; λ: error rate (platform MTBF $\mu = 1/\lambda$);
- V: time to verify; R: time to recover

- **Optimal checkpointing period** W for fail-stop errors (Young/Daly): $W = \sqrt{2C/\lambda}$ ($V = 0$)

- **Silent errors**: $W = \sqrt{(V + C)/\lambda}$ ($C \rightarrow V + C$; missing factor 2)
Back to energy consumption

- Power requirement of current petascale platforms = small town
- Need to reduce energy consumption of future platforms
- Popular technique: dynamic voltage and frequency scaling (DVFS)
- Lower speed \rightarrow energy savings: when computing at speed σ, power proportional to σ^3 and execution time proportional to $1/\sigma$
- \rightarrow (dynamic) energy proportional to σ^2
- Also account for static energy: trade-offs to be found
- Realistic approach: minimize energy while guaranteeing a performance bound

\Rightarrow At which speed should we execute the workload?
Back to energy consumption

- Power requirement of current petascale platforms = small town
- Need to reduce energy consumption of future platforms
- Popular technique: dynamic voltage and frequency scaling (DVFS)
- **Lower speed → energy savings:** when computing at speed σ, power proportional to σ^3 and execution time proportional to $1/\sigma$
 \rightarrow (dynamic) energy proportional to σ^2
- Also account for **static energy:** trade-offs to be found
- Realistic approach: minimize energy while guaranteeing a performance bound
- \Rightarrow At which speed should we execute the workload?
Outline

1. Optimal checkpointing period: time vs. energy
 - Framework
 - Optimal period for execution time
 - Optimal period for energy
 - Experiments

2. A different re-execution speed can help
 - Model and optimization problem
 - Optimal pattern size and speeds
 - Simulations
 - Extensions: both fail-stop and silent errors

3. Summary and need for trade-offs
Framework

- Divisible-load applications, blocking model
- Subject to silent data corruption
- Checkpoint/restart strategy: periodic patterns that repeat over time
- Verified checkpoints
- Is it better to use two different speeds rather than only one? What are the optimal checkpointing period and optimal execution speeds?
Model

Set of speeds \(S = \{s_1, \ldots, s_K\} \): \(\sigma_1 \in S \) speed for first execution, \(\sigma_2 \in S \) speed for re-executions

- Silent errors: exponential distribution of rate \(\lambda \)
- Verification: \(V \) units of work; Checkpointing: time \(C \);
 Recovery: time \(R \)
- \(P_{\text{idle}} \) and \(P_{\text{io}} \) constant; and \(P_{\text{cpu}}(\sigma) = \kappa \sigma^3 \)
- Energy for \(W \) units of work at speed \(\sigma \): \(\frac{W}{\sigma}(P_{\text{idle}} + \kappa \sigma^3) \)
 Energy of a verification at speed \(\sigma \): \(\frac{V}{\sigma}(P_{\text{idle}} + \kappa \sigma^3) \)
 Energy of a checkpoint: \(C(P_{\text{idle}} + P_{\text{io}}) \)
 Energy of a recovery: \(R(P_{\text{idle}} + P_{\text{io}}) \)

With a silent error

\[
\begin{align*}
\frac{V}{\sigma_1} & \quad C & \quad \frac{W}{\sigma_1} & \quad \frac{V}{\sigma_1} & \quad R & \quad \frac{W}{\sigma_2} & \quad \frac{V}{\sigma_2} & \quad C & \quad \frac{W}{\sigma_1} & \quad \frac{V}{\sigma_1} & \quad C \\
\end{align*}
\]

Time
Model

- Set of speeds $S = \{s_1, \ldots, s_K\}$: $\sigma_1 \in S$ speed for first execution, $\sigma_2 \in S$ speed for re-executions
- Silent errors: exponential distribution of rate λ
- Verification: V units of work; Checkpointing: time C; Recovery: time R
- P_{idle} and P_{io} constant; and $P_{\text{cpu}}(\sigma) = \kappa \sigma^3$
- Energy for W units of work at speed σ: $\frac{W}{\sigma}(P_{\text{idle}} + \kappa \sigma^3)$
 - Energy of a verification at speed σ: $\frac{V}{\sigma}(P_{\text{idle}} + \kappa \sigma^3)$
 - Energy of a checkpoint: $C(P_{\text{idle}} + P_{\text{io}})$
 - Energy of a recovery: $R(P_{\text{idle}} + P_{\text{io}})$

Silent error Detection

With a silent error
Model

- Set of speeds $S = \{s_1, \ldots, s_K\}$: $\sigma_1 \in S$ speed for first execution, $\sigma_2 \in S$ speed for re-executions
- Silent errors: exponential distribution of rate λ
- Verification: V units of work; Checkpointing: time C; Recovery: time R

\begin{itemize}
 \item P_{idle} and P_{io} constant; and $P_{cpu}(\sigma) = \kappa \sigma^3$
 \item Energy for W units of work at speed σ: $\frac{W}{\sigma} (P_{idle} + \kappa \sigma^3)$
 \item Energy of a verification at speed σ: $\frac{V}{\sigma} (P_{idle} + \kappa \sigma^3)$
 \item Energy of a checkpoint: $C(P_{idle} + P_{io})$
 \item Energy of a recovery: $R(P_{idle} + P_{io})$
\end{itemize}

With a silent error

```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{V}{\sigma_1}$</td>
<td>$C$</td>
<td>$\frac{W}{\sigma_1}$</td>
<td>$\frac{V}{\sigma_1}$</td>
<td>$R$</td>
</tr>
</tbody>
</table>
```

Time
Model

- Set of speeds $S = \{s_1, \ldots, s_K\}$: $\sigma_1 \in S$ speed for first execution, $\sigma_2 \in S$ speed for re-executions
- Silent errors: exponential distribution of rate λ
- Verification: V units of work; Checkpointing: time C; Recovery: time R
- P_{idle} and P_{io} constant; and $P_{cpu}(\sigma) = \kappa \sigma^3$
- Energy for W units of work at speed σ: $\frac{W}{\sigma}(P_{idle} + \kappa \sigma^3)$
- Energy of a verification at speed σ: $\frac{V}{\sigma}(P_{idle} + \kappa \sigma^3)$
- Energy of a checkpoint: $C(P_{idle} + P_{io})$
- Energy of a recovery: $R(P_{idle} + P_{io})$

With a silent error
Model

- Set of speeds $S = \{s_1, \ldots, s_K\}$: $\sigma_1 \in S$ speed for first execution, $\sigma_2 \in S$ speed for re-executions
- Silent errors: exponential distribution of rate λ
- Verification: V units of work; Checkpointing: time C; Recovery: time R
- P_{idle} and P_{io} constant; and $P_{\text{cpu}}(\sigma) = \kappa \sigma^3$
- Energy for W units of work at speed σ: $\frac{W}{\sigma} (P_{\text{idle}} + \kappa \sigma^3)$
 - Energy of a verification at speed σ: $\frac{V}{\sigma} (P_{\text{idle}} + \kappa \sigma^3)$
 - Energy of a checkpoint: $C(P_{\text{idle}} + P_{\text{io}})$
 - Energy of a recovery: $R(P_{\text{idle}} + P_{\text{io}})$

Silent error

Detection

With a silent error
Optimization problem BiCrit:

\[
\text{MINIMIZE } \frac{\mathcal{E}(W, \sigma_1, \sigma_2)}{W} \quad \text{s.t. } \frac{\mathcal{T}(W, \sigma_1, \sigma_2)}{W} \leq \rho,
\]

- \(\mathcal{E}(W, \sigma_1, \sigma_2)\) is the expected energy consumed to execute \(W\) units of work at speed \(\sigma_1\), with eventual re-executions at speed \(\sigma_2\).
- \(\mathcal{T}(W, \sigma_1, \sigma_2)\) is the expected execution time to execute \(W\) units of work at speed \(\sigma_1\), with eventual re-executions at speed \(\sigma_2\).
- \(\rho\) is a performance bound, or admissible degradation factor.
Outline

1 Optimal checkpointing period: time vs. energy
 - Framework
 - Optimal period for execution time
 - Optimal period for energy
 - Experiments

2 A different re-execution speed can help
 - Model and optimization problem
 - Optimal pattern size and speeds
 - Simulations
 - Extensions: both fail-stop and silent errors

3 Summary and need for trade-offs
Computing expected execution time

Proposition (1)

For the BiCrit problem with a single speed,

\[\mathcal{T}(W, \sigma, \sigma) = C + e^{\frac{\lambda W}{\sigma}} \left(\frac{W + V}{\sigma} \right) + \left(e^{\frac{\lambda W}{\sigma}} - 1 \right) R \]

Proposition (2)

For the BiCrit problem,

\[\mathcal{T}(W, \sigma_1, \sigma_2) = C + \frac{W + V}{\sigma_1} + \left(1 - e^{-\frac{\lambda W}{\sigma_1}} \right) e^{\frac{\lambda W}{\sigma_2}} \left(R + \frac{W + V}{\sigma_2} \right) \]
Proof of Proposition 1

Proof.

The recursive equation to compute $T(W, \sigma, \sigma)$ writes:

$$T(W, \sigma, \sigma) = \frac{W + V}{\sigma} + p(W/\sigma) \left(R + T(W, \sigma, \sigma) \right) + (1 - p(W/\sigma))C,$$

where $p(W/\sigma) = 1 - e^{-\frac{\lambda W}{\sigma}}$. The reasoning is as follows:

- We always execute W units of work followed by the verification, in time $\frac{W + V}{\sigma}$;
- With probability $p(W/\sigma)$, a silent error occurred and is detected, in which case we recover and start anew;
- Otherwise, with probability $1 - p(W/\sigma)$, we simply checkpoint after a successful execution.

Solving this equation leads to the expected execution time.
Proof.

The recursive equation to compute $\mathcal{T}(W, \sigma_1, \sigma_2)$ writes:

$$
\mathcal{T}(W, \sigma_1, \sigma_2) = \frac{W + V}{\sigma_1} + p(W/\sigma_1)(R + \mathcal{T}(W, \sigma_2, \sigma_2)) \\
+ (1 - p(W/\sigma_1))C,
$$

where $p(W/\sigma_1) = 1 - e^{-\lambda W/\sigma_1}$. The reasoning is as follows:

- We always execute W units of work followed by the verification, in time $\frac{W + V}{\sigma_1}$;
- With probability $p(W/\sigma_1)$, a silent error occurred and is detected, in which case we recover and start anew at speed σ_2;
- Otherwise, with probability $1 - p(W/\sigma_1)$, we simply checkpoint after a successful execution.

Solving this equation leads to the expected execution time.
Computing expected energy consumption

Proposition

For the BiCrit problem,

\[\mathcal{E}(W, \sigma_1, \sigma_2) = \left(C + \left(1 - e^{-\frac{\lambda W}{\sigma_1}} \right) e^{\frac{\lambda W}{\sigma_2}} R \right) (P_{io} + P_{idle}) \]
\[+ \frac{W + V}{\sigma_1} (\kappa \sigma_1^3 + P_{idle}) \]
\[+ \frac{W + V}{\sigma_2} \left(1 - e^{-\frac{\lambda W}{\sigma_1}} \right) e^{\frac{\lambda W}{\sigma_2}} (\kappa \sigma_2^3 + P_{idle}) \]

Power spent during checkpoint or recovery: \(P_{io} + P_{idle} \); power spent during computation and verification at speed \(\sigma \):
\(P_{cpu}(\sigma) + P_{idle} = \kappa \sigma^3 + P_{idle} \). From Proposition 2, we get the expression of \(\mathcal{E}(W, \sigma_1, \sigma_2) \).
Finding optimal pattern length (1)

To get closed-form expression for optimal value of W, use of first-order approximations, using Taylor expansion $e^{\lambda W} = 1 + \lambda W + O(\lambda^2 W^2)$:

$$\frac{T(W, \sigma_1, \sigma_2)}{W} = \frac{1}{\sigma_1} + \frac{\lambda W}{\sigma_1 \sigma_2} + \frac{\lambda R}{\sigma_1} + \frac{\lambda V}{\sigma_1 \sigma_2} + \frac{C + V/\sigma_1}{W} + O(\lambda^2 W)$$ \hspace{1cm} (1)

$$\frac{\mathcal{E}(W, \sigma_1, \sigma_2)}{W} = \frac{\kappa \sigma_1^3 + P_{idle}}{\sigma_1} + \frac{\lambda W}{\sigma_1 \sigma_2} \left(\kappa \sigma_2^3 + P_{idle} \right)$$

$$+ \frac{\lambda R}{\sigma_1} \left(P_{io} + P_{idle} \right) + \frac{\lambda V}{\sigma_1 \sigma_2} \left(\kappa \sigma_1^3 + P_{idle} \right)$$

$$+ \frac{C(P_{io} + P_{idle}) + V(\kappa \sigma_1^3 + P_{idle})/\sigma_1}{W} + O(\lambda^2 W)$$ \hspace{1cm} (2)
Finding optimal pattern length (2)

Theorem

Given σ_1, σ_2 and ρ, consider the equation $aW^2 + bW + c = 0$, where $a = \frac{\lambda}{\sigma_1 \sigma_2}$, $b = \frac{1}{\sigma_1} + \lambda \left(\frac{R}{\sigma_1} + \frac{V}{\sigma_1 \sigma_2} \right) - \rho$ and $c = C + \frac{V}{\sigma_1}$.

- If there is no positive solution to the equation, i.e., $b > -2\sqrt{ac}$, then BiCrit has no solution.
- Otherwise, let W_1 and W_2 be the two solutions of the equation with $W_1 \leq W_2$ (at least W_2 is positive and possibly $W_1 = W_2$). Then, the optimal pattern size is

$$W_{\text{opt}} = \min(\max(W_1, W_e), W_2),$$

where

$$W_e = \sqrt{\frac{C(P_{io} + P_{idle}) + \frac{V}{\sigma_1}(\kappa \sigma_1^3 + P_{idle})}{\frac{\lambda}{\sigma_1 \sigma_2}(\kappa \sigma_2^3 + P_{idle})}}.$$
Finding optimal pattern length (3)

Proof.

Neglecting lower-order terms, Equation (2) is minimized when $W = W_e$ given by Equation (4).

Two cases:

- ρ is too small \Rightarrow no solution
- $W_2 > 0$:
 - $W_e < W_1$
 - $W_1 \leq W_e \leq W_2$
 - $W_e > W_2$

Using that the energy overhead is a convex function, we get the result (W_{opt} is in the interval $[W_1, W_2]$)
Finding optimal speed pair

- Speed pair \((s_i, s_j)\), with \(1 \leq i, j \leq K\): \(\rho_{i,j}\) is the minimum performance bound for which the BiCRIT problem with \(\sigma_1 = s_i\) and \(\sigma_2 = s_j\) admits a solution.
- For each speed pair, compute \(W_1, W_2\) the roots of \(aW^2 + bW + c\); discard pairs with \(\rho < \rho_{i,j}\).
- For each remaining speed pair \((\sigma_1, \sigma_2)\), compute \(W_{\text{opt}}\) and associated energy overhead.
- Select speed pair \((\sigma_1^*, \sigma_2^*)\) that minimizes energy overhead.
- **Time** \(O(K^2)\), where \(K\) is the number of available speeds, usually a small constant.
Outline

1. Optimal checkpointing period: time vs. energy
 - Framework
 - Optimal period for execution time
 - Optimal period for energy
 - Experiments

2. A different re-execution speed can help
 - Model and optimization problem
 - Optimal pattern size and speeds
 - Simulations
 - Extensions: both fail-stop and silent errors

3. Summary and need for trade-offs
Simulation setup

- **Platform parameters**, based on real platforms

<table>
<thead>
<tr>
<th>Platform</th>
<th>λ</th>
<th>C = R</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hera</td>
<td>3.38e-6</td>
<td>300s</td>
<td>15.4</td>
</tr>
<tr>
<td>Atlas</td>
<td>7.78e-6</td>
<td>439s</td>
<td>9.1</td>
</tr>
<tr>
<td>Coastal</td>
<td>2.01e-6</td>
<td>1051s</td>
<td>4.5</td>
</tr>
<tr>
<td>Coastal SSD</td>
<td>2.01e-6</td>
<td>2500s</td>
<td>180.0</td>
</tr>
</tbody>
</table>

- **Power parameters**, determined by the processor used

<table>
<thead>
<tr>
<th>Processor</th>
<th>Normalized speeds</th>
<th>$P(\sigma)$ (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Xscale</td>
<td>0.15, 0.4, 0.6, 0.8, 1</td>
<td>$1550\sigma^3 + 60$</td>
</tr>
<tr>
<td>Transmeta Crusoe</td>
<td>0.45, 0.6, 0.8, 0.9, 1</td>
<td>$5756\sigma^3 + 4.4$</td>
</tr>
</tbody>
</table>

- **Default values**: P_{io} equivalent to power used when running at lowest speed; $\rho = 3$
Simulation results, using Hera/XScale configuration

A different re-execution speed **does help**!
And all speed pairs can be optimal solutions (depending on ρ)!

<table>
<thead>
<tr>
<th>σ_1</th>
<th>Best σ_2</th>
<th>W_{opt}</th>
<th>$\frac{\varepsilon(W_{\text{opt}},\sigma_1,\sigma_2)}{W_{\text{opt}}}$</th>
<th>σ_1</th>
<th>Best σ_2</th>
<th>W_{opt}</th>
<th>$\frac{\varepsilon(W_{\text{opt}},\sigma_1,\sigma_2)}{W_{\text{opt}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.4</td>
<td>1711</td>
<td>466</td>
<td>0.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>2764</td>
<td>416</td>
<td>0.4</td>
<td>0.4</td>
<td>2764</td>
<td>416</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
<td>3639</td>
<td>674</td>
<td>0.6</td>
<td>0.4</td>
<td>3639</td>
<td>674</td>
</tr>
<tr>
<td>0.8</td>
<td>0.4</td>
<td>4627</td>
<td>1082</td>
<td>0.8</td>
<td>0.4</td>
<td>4627</td>
<td>1082</td>
</tr>
<tr>
<td>1</td>
<td>0.4</td>
<td>5742</td>
<td>1625</td>
<td>1</td>
<td>0.4</td>
<td>5742</td>
<td>1625</td>
</tr>
</tbody>
</table>

$\rho = 8$

<table>
<thead>
<tr>
<th>σ_1</th>
<th>Best σ_2</th>
<th>W_{opt}</th>
<th>$\frac{\varepsilon(W_{\text{opt}},\sigma_1,\sigma_2)}{W_{\text{opt}}}$</th>
<th>σ_1</th>
<th>Best σ_2</th>
<th>W_{opt}</th>
<th>$\frac{\varepsilon(W_{\text{opt}},\sigma_1,\sigma_2)}{W_{\text{opt}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.6</td>
<td>0.8</td>
<td>4251</td>
<td>690</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.8</td>
<td>0.4</td>
<td>4627</td>
<td>1082</td>
<td>0.8</td>
<td>0.4</td>
<td>4627</td>
<td>1082</td>
</tr>
<tr>
<td>1</td>
<td>0.4</td>
<td>5742</td>
<td>1625</td>
<td>1</td>
<td>0.4</td>
<td>5742</td>
<td>1625</td>
</tr>
</tbody>
</table>

$\rho = 1.775$

$\rho = 1.4$
Simulations - Impact of the parameters (1)

Opt. solution (speed pair, pattern size, and energy overhead) as a function of the checkpointing time \(c \) in Atlas/Crusoe configuration.

Opt. solution (speed pair, pattern size, and energy overhead) as a function of the verification time \(v \) in Atlas/Crusoe configuration.

Dotted line: one single speed; up to 35% improvement with two speeds
Simulations - Impact of the parameters (2)

Optimal W

Energy overhead

Opt. solution (speed pair, pattern size, and energy overhead) as a function of the error rate λ in Atlas/Crusoe configuration.

Opt. solution (speed pair, pattern size, and energy overhead) as a function of the performance bound ρ in Atlas/Crusoe configuration.

Two speeds: checkpoint less frequently and provide energy savings
Simulations - Impact of the parameters (3)

Optimal solution (speed pair, pattern size, and energy overhead) as a function of the idle power P_{idle} in Atlas/Crusoe configuration.

Increase of W and E with P_{idle} and P_{io}; P_{io} has no impact on speeds.
Outline

1. Optimal checkpointing period: time vs. energy
 - Framework
 - Optimal period for execution time
 - Optimal period for energy
 - Experiments

2. A different re-execution speed can help
 - Model and optimization problem
 - Optimal pattern size and speeds
 - Simulations
 - Extensions: both fail-stop and silent errors

3. Summary and need for trade-offs
Extensions: With fail-stop errors

- \(f \): proportion of fail-stop errors
- \(s \): proportion of silent errors

Proposition (3)

With fail-stop and silent errors,

\[
\frac{T(W, \sigma_1, \sigma_2)}{W} = \cdots + \left(\frac{(f + s)}{\sigma_1 \sigma_2} - \frac{f}{2\sigma_1^2} \right) \lambda W + O(\lambda^2 W). \tag{5}
\]

\[
\frac{E(W, \sigma_1, \sigma_2)}{W} = \cdots + \left(\frac{(f + s)(\kappa \sigma_2^3 + P_{idle})}{\sigma_1 \sigma_2} - \frac{f(\kappa \sigma_1^3 + P_{idle})}{2\sigma_1^2} \right) \lambda W + O(\lambda^2 W) \tag{6}
\]
Limit of the first-order approximation

For BiCrit, the first-order approximation leads to a solution iff

\[
\left(2 \left(1 + \frac{s}{f}\right)\right)^{-1/2} < \frac{\sigma_2}{\sigma_1} < 2 \left(1 + \frac{s}{f}\right)
\]

Use second-order approximation? Open problem in the general case!
Interesting case

Theorem

When considering only fail-stop errors with rate λ, the optimal pattern size W to minimize the time overhead $T(W, \sigma, 2\sigma) \over W$ is

$$W_{\text{opt}} = \sqrt[3]{12C \over \lambda^2 \sigma}$$

- Young/Daly’s formula: $W_{\text{opt}} = \sqrt{2C / \lambda \sigma} = O(\lambda^{-1/2})$
- Here: $W_{\text{opt}} = O(\lambda^{-2/3})$
Conclusion

- A different re-execution speed indeed helps saving energy while satisfying a performance constraint.
- Silent errors: extension of Young/Daly formula → general closed-form solution to get optimal speed pair and optimal checkpointing period (first-order).
- Extensive simulations: up to 35% energy savings, any speed pair can be optimal.
- BiCrit still open for general case with both silent and fail-stop errors.
- Interesting case with fail-stop errors and double re-execution speed: $O(\lambda^{-2/3})$ vs $O(\lambda^{-1/2})$.
- New methods needed to capture the general case.
Outline

1. Optimal checkpointing period: time vs. energy
 - Framework
 - Optimal period for execution time
 - Optimal period for energy
 - Experiments

2. A different re-execution speed can help
 - Model and optimization problem
 - Optimal pattern size and speeds
 - Simulations
 - Extensions: both fail-stop and silent errors

3. Summary and need for trade-offs
Summary and need for trade-offs

- Two major challenges for Exascale systems:
 - Resilience: need to handle failures
 - Energy: need to reduce energy consumption

- The main objective is often performance, such as execution time, but other criteria must be accounted for

- Two scenarios where looking at energy consumption may impact the decisions that are taken with respect to resilience
 - Adopt a different checkpointing period to optimize energy consumption
 - Use a different re-execution speed after a failure

- Still a lot of challenges to address, and techniques to be developed for many kinds of high-performance applications, making trade-offs between performance, reliability, and energy consumption
Two major challenges for Exascale systems:

- **Resilience**: need to handle failures
- **Energy**: need to reduce energy consumption

The main objective is often performance, such as execution time, but other criteria must be accounted for.

Two scenarios where looking at energy consumption may impact the decisions that are taken with respect to resilience:

- Adopt a different checkpointing period to optimize energy consumption
- Use a different re-execution speed after a failure

Still a lot of challenges to address, and techniques to be developed for many kinds of high-performance applications, making trade-offs between performance, reliability, and energy consumption.
Summary and need for trade-offs

- Two major challenges for Exascale systems:
 - **Resilience**: need to handle failures
 - **Energy**: need to reduce energy consumption

- The main objective is often **performance**, such as execution time, but other criteria must be accounted for

- Two scenarios where looking at energy consumption may impact the decisions that are taken with respect to resilience
 - Adopt a different checkpointing period to optimize energy consumption
 - Use a different re-execution speed after a failure

- Still a lot of challenges to address, and techniques to be developed for many kinds of high-performance applications, making trade-offs between **performance**, **reliability**, and **energy consumption**
Thanks...

... to my co-authors
- Guillaume Aupy
- Thomas Hérault
- Jack Dongarra
- Yves Robert
- Aurélien Cavelan
- Valentin Le Fèvre
- Hongyang Sun

... and to HPPAC organizers for their kind invitation!