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Exascale platforms

@ Hierarchical
e 10° or 10° nodes
e Each node equipped with 10* or 103 cores

@ Failure-prone

MTBF — one node | 1 year | 10 years | 120 years
MTBF — platform 30sec 5mn 1h
of 10° nodes

More nodes = Shorter MTBF (Mean Time Between Failures)

@ Energy efficiency
Thermal power close to the one of a nuclear reactor!
A critical issue to address if we want to achieve Exascale.
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Exascale platforms

@ Hierarchical
e 10° or 10° nodes
b node equipped with 10* or 103 cores

@ Failure-prone

MTBF - one node # | 10 years | 120 years
MTBF — platform : 5mn 1h

Between Failures)
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Resilience

Outline

@ Introduction and motivation: resilience
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Resilience

Even for today’s platforms (courtesy F. Cappello)

hl?;#f:&ﬂ‘%mwAfso.a’n issue at Petasc AERNA

28\ Fault tolerance becomes critical at Petascale (MTTI <= 1day)
Poor fault tolerance design may lead to huge overhead

Qverhead of checkpoint/restart

| Cost of non optimal checkpoint intervals: |'°*
Ir 710%

Today, 20% or more of the computing capacity in a large high-performance
computing system is wasted due to failures and recoveries.
Dr. E.N. (Mootaz) Elnozahyet al. System Resilience at Extreme Scale,

DARPA
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Resilience

Even for today’s platforms (courtesy F. Cappello)

Typical “Balanced Architecture” for PetaScale Computers

Compute nodes

40 to 200 GB/s
Parallel file system

Total memory: (1to 2 PB)

100-200 TB

. 1/0 nodes
Tt R —

Without optimization, Checkpoint-Restart needs
__about 1h! (~30 minutes each) i

Systems Perf. Ckpt time Source t .
RoadRunner 1PF ~20 min. Panasas
LLNL BG/L 500 TF >20 min. LLNL LLNL BG/L
LLNL Zeus 11TF 26 min. LLNL =
YYY BG/P 100 TF ~30 min. YYY
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Scenario for 2015

Phase-change memory
- read bandwidth 100GB/sec
- write bandwidth 10GB/sec

@ Checkpoint size 128GB

C: checkpoint save time: C = 12sec

R: checkpoint recovery time: R = 1.2sec
D: down/reboot time: D = 15sec
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Resilience

Error sources (courtesy F. Cappello)

« Analysis of error and failure logs

* In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware
problems, albeit rarer, need 6.3-100.7 hours to solve.”

* In 2007 (Garth Gibson, ICPP Keynote): um::> Hl—lﬂﬂ ——
Software
80| EINetwork
[JEnvironmend
_ EHuman
g ol —‘ H H || ‘ | B Unknown
& 0,
g 50%
* In 2008 (Oliner and J. Stearley, DSN Conf.): 8 "
Raw Filtered &
Type Count % Count e 20)
_@E 174586 516 1 0 04 1999 | 18.78
<__ Software 144,899 0.08 6,814 | 64, o8
Tndeterminate 3350044 | 1.88 | 1,832 | 17.21 Pink Blue Red Green Black Al

Relative frequency of root

cause by system type.
Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other.
Hardware errors, Disks, processors, memory, network

Conclusion: Both Hardware and Software failures have to be considered
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Resilience

A few definitions

@ Many types of failures: software error, hardware malfunction,
memory corruption

@ Many possible behaviors: silent, transient, unrecoverable
@ Restrict to failures that lead to application failures

@ This includes all hardware failures, and some software ones
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Energy

Outline

© Introduction and motivation: energy
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Energy
Energy: a crucial issue

Data centers

e 330,000, 000,000 Watts hour in 2007: more than France
e 533,000,000 tons of CO: in the top ten countries

e Exascale computers (10! floating operations per second)

o Need effort for feasibility
o 1% of power saved ~» 1 million dollar per year

@ Lambda user

o 1 billion personal computers
e 500,000, 000,000,000 Watts hour per year

@ ~ crucial for both environmental and economical reasons

Anne.Benoit@ens-lyon.fr IPDPS 2014 Resilient and energy-aware algorithms



Energy
Energy: a crucial issue

o Data centers
e 330,000, 00 nore than France
e 533,000, 00 h countries

@ Exascale compy - bns per second)
o Need effort .\
o 1% of powe r year

@ Lambda user

e 1 billion per
e 500,000, 00 bar

@ ~ crucial for both environmental and economical reasons
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Energy
Power dissipation of a processor

° P:Pleak+den

® P, constant

* Fayn = 8 x V2Xf\
constant upply frequency

voltage
@ Standard approximation: P = Pl + ¢ 2<a<3)
@ Energy E = P x time

e Dynamic Voltage and Frequency Scaling (DVFS) to reduce
dynamic power
o Real life: discrete speeds
o Continuous speeds can be emulated

@ Processor shutdown to reduce static power
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Energy

Speed models for DVFS

When can we change speed?
Anytime Beginning of tasks
[Smin, Smax] CONTINUOUS -

Type of speeds {517 e sm} VDD-HOPPING | DISCRETE, INCREMENTAL

e CONTINUOUS: great for theory
@ Other "discrete” models more realistic
@ VDD-HOPPING simulates CONTINUOUS

@ INCREMENTAL is a special case of DISCRETE with
equally-spaced speeds: forall 1 < qg<m, sg41 —5q=0
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Tri-criteria

Outline

© Tri-criteria problem: execution time, reliability, energy
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Tri-criteria
Framework

DAG: G = (V, E)
n = |V]| tasks T; of weight w;

p identical processors fully connected

e DVFS, CONTINUOUS model:
interval of available continuous speeds [Smin, Smax]

One speed per task
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Tri-criteria

Makespan

Execution time of T; at speed s;:

If T; is executed twice on the same processor at speeds s; and s;:

Wi 14
di =—+ -
S; S;

Constraint on makespan:
end of execution before deadline D

Anne.Benoit@ens-lyon.fr IPDPS 2014 Resilient and energy-aware algorithms



Tri-criteria

Reliability

@ Transient failure: local, no impact on the rest of the system
@ Reliability R; of task T; as a function of speed s
@ Threshold reliability (and hence speed s;e1)

R,'(S)

Ri(srell)

I S

Smin Srel  Smax
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Tri-criteria

Re-execution: a task is re-executed on the same processor, just
after its first execution

With two executions, reliability R; of task T; is:

Ri=1-(1-Ri(s))(1 - Ri(s))

1

Constraint on reliability:
RELIABILITY: R; > Rj(sre1), and at most one re-execution
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Tri-criteria

@ Energy to execute task T; once at speed s;:
2
E,'(S;) = W;S§

i

— Dynamic part of classical energy models

@ With re-executions, it is natural to take the worst-case
scenario:

ENERGY : E; = w; (5,2 + sf2)
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Tri-criteria

Energy and reliability: set of possible speeds

Energy W,'Sl-2 + W,'SI-2 = 2E,'(S,')

W,'SI-2 = E,'(S,')

Ei(srel)

Frrrry Speed
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Tri-criteria
TRI-CRIT-CONT

Given G = (V,E)

Find
@ A schedule of the tasks
@ A set of tasks | = {i | T; is executed twice}
@ Execution speed s; for each task T;

@ Re-execution speed s/ for each task in /
such that
2 2 2
D wils? +57) + D wisi
icl il

is minimized, while meeting reliability and deadline constraints
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Tri-criteria

Complexity results

@ One speed per task

@ Re-execution at same speed as first execution, i.e., s; = s,f

@ TRI-CRIT-CONT is NP-hard even for a linear chain, but not
known to be in NP (because of continuous model)

@ Polynomial-time solution for a fork
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Tri-criteria

Energy-reducing heuristics

Two steps:
e Mapping (NP-hard) — List scheduling
@ Speed scaling + re-execution (NP-hard) — Energy reducing

@ The list scheduling heuristic maps tasks onto processors at
speed Snax, and we keep this mapping in step two
@ Step two = slack reclamation: use of deceleration and

re-execution
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Tri-criteria

Deceleration and re-execution

@ Deceleration: select a set of tasks that we execute at speed
max(Sre1, smax%m): slowest possible speed meeting both
reliability and deadline constraints

@ Re-execution: greedily select tasks for re-execution
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Tri-criteria

Super-weight (SW) of a task

@ SW: sum of the weights of the tasks (including T;) whose
execution interval is included into T;'s execution interval

@ SW of task slowed down = estimation of the total amount of
work that can be slowed down together with that task

®

T

®

D

u

W

L
'S ] time
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Tri-criteria

Selected heuristics

@ A.SUS-Crit: efficient on DAGs with low degree of parallelism
o Set the speed of every task to max(s;e1, smax%m)
e Sort the tasks of every critical path according to their SW and
try to re-execute them
e Sort all the tasks according to their weight and try to

re-execute them

@ B.SUS-Crit-Slow: good for highly parallel tasks: re-execute,
then decelerate

e Sort the tasks of every critical path according to their SW and
try to re-execute them. If not possible, then try to slow them
down

e Sort all tasks according to their weight and try to re-execute
them. If not possible, then try to slow them down
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Tri-criteria
Results

We compare the impact of:
@ the number of processors p

@ the ratio D of the deadline over the minimum deadline Dy,
(given by the list-scheduling heuristic at speed Smax)

on the output of each heuristic

Results normalized by heuristic running each task at speed spmax;
the lower the better
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Tri-criteria

A.SUS-Crit A.SUS-Crit
B.SUS-Crit-Slow e B.SUS-Crit-Slow e

Eg/Eg_fmax
Eg/Eg_fmax
°
>
T

Number of processors Number of processors

With increasing p, D = 1.2 (left), D = 2.4 (right)

@ A better when number of processors is small

@ B better when number of processors is large

@ Superiority of B for tight deadlines: decelerates critical tasks
that cannot be re-executed
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Tri-criteria

Summary

@ Tri-criteria energy/makespan/reliability optimization problem

@ Various theoretical results

@ Two-step approach for polynomial-time heuristics:

e List-scheduling heuristic
o Energy-reducing heuristics

@ Two complementary energy-reducing heuristics for
TRI-CRIT-CONT
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Checkpointing

Outline

@ Checkpointing and energy consumption
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Checkpointing

Framework

Execution of a divisible task (W operations)

Failures may occur

e Transient failures

o Resilience through checkpointing
@ Objective: minimize expected energy consumption E(E),
given a deadline bound D

@ Probabilistic nature of failure hits: expectation of energy
consumption is natural (average cost over many executions)

Deadline bound: two relevant scenarios (soft or hard deadline)
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Checkpointing
Soft vs hard deadline

@ Soft deadline: met in expectation, i.e., E(T) < D
(average response time)

@ Hard deadline: met in the worst case, i.e., Ty < D

VS

Hard (worst-case) | Soft (expected)
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Checkpointing
Execution time, one single chunk

One single chunk of size W

@ Checkpoint overhead: execution time T¢

@ Instantaneous failure rate: \

o First execution at speed s: Texee = & + T¢

o Failure probability: Ppj = A Texec = )\( + T¢)

@ In case of failure: re-execute at speed 0: Treexec = % + Tc
@ And we assume success after re-execution

® E(T) = Texee + Prail Treexee = (% + Tc) + A& + Te)(¥ + Te¢)
® Tue = Texee + Treexee = (X + Te) + (X + Te)
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Checkpointing
Energy consumption, one single chunk

One single chunk of size W

@ Checkpoint overhead: energy consumption E¢

@ First execution at speed s: % X s34+ Ec = Ws?+ E¢
@ Re-execution at speed o: Wao? + Ec, with probability Pk
(Prail = ATexee = M + T¢))

o E(E) = (Ws?+ Ec) + A (% + T¢) (Wo? + E¢)
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Checkpointing
Multiple chunks

@ Execution times: sum of execution times for each chunk
(worst-case or expected)

@ Expected energy consumption: sum of expected energy for
each chunk

@ Coherent failure model: consider two chunks Wy + Wo = W
o Probability of failure for first chunk: PL; = )\( + T¢)

o For second chunk: P2, = \(*2 + T¢)

@ With a single chunk of size W: Ppy = A(% + T¢), differs

from Pflail + Péil only because of extra checkpoint

@ Trade-off: many small chunks (more T¢ to pay, but small
re-execution cost) vs few larger chunks (fewer T¢, but
increased re-execution cost)
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Checkpointing
Optimization problem

@ Decisions that should be taken before execution:

o Chunks: how many (n)? which sizes (W; for chunk 7)?
o Speeds of each chunk: first run (s;)? re-execution (o;)?

o Input: W, T¢ (checkpointing time), Ec (energy spent for
checkpointing), A (instantaneous failure rate), D (deadline)

< n=4

LA AL
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Checkpointing
Optimization problem

@ Decisions that should be taken before execution:

o Chunks: how many (n)? which sizes (W; for chunk 7)?
o Speeds of each chunk: first run (s;)? re-execution (o;)?

o Input: W, T¢ (checkpointing time), Ec (energy spent for
checkpointing), A (instantaneous failure rate), D (deadline)

‘ speed
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Checkpointing
Optimization problem

@ Decisions that should be taken before execution:

o Chunks: how many (n)? which sizes (W; for chunk 7)?
o Speeds of each chunk: first run (s;)? re-execution (o;)?

o Input: W, T¢ (checkpointing time), Ec (energy spent for
checkpointing), A (instantaneous failure rate), D (deadline)

speed
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Checkpointing
Models

@ Chunks
IS VS e
Single chunk of size W Multiple chunks (n and W;'s)

@ Speed per chunk

_ﬂ_ﬂi

Single speed (s) Multiple speeds (s and o)

@ Deadline bound

_ﬂﬂi

Hard (Tye < D)

Soft (E(T i
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Checkpointing
Single chunk and single speed

Consider first that s = o (single speed): need to find optimal speed

e E(E) is a function of s:

E(E)(s) = (Ws? + Ec)(1 + M% + T¢))
@ Lemma: this function is convex and has a unique minimum s*
(function of A\, W, E¢, T¢)

sF = AW —(3v3V/2712 —4a—27a+2)'/3 21/3 _1
6(1+ATc) 21/3 (3v3v/2722—4a—272+2)1/3 '

2
where a = AE¢ (%)

e E(T) and T,.: decreasing functions of s

@ Minimum speed se., and s, required to match deadline D
(function of D, W, T, and X for se,p)

— Optimal speed: maximum between s* and Se,p, OF Sy
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Checkpointing
Single chunk and multiple speeds

Consider now that s # o (multiple speeds): two unknowns

e [E(E) is a function of s and o
E(E)(s,0) = (Ws? + Ec) + N(% + T¢)(Wo? + Ec)

@ Lemma: energy minimized when deadline tight
(both for wc and exp)

@ ~ o expressed as a function of s:

Gop= — N =W
w7 —(H+ATC) (D=2T¢)s—W

S

— Minimization of single-variable function, can be solved
numerically (no expression of optimal s)
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Checkpointing
General problem with multiple chunks

Divisible task of size W
Split into n chunks of size Wj: > ; W; = W

Chunk i is executed once at speed s;, and re-executed (if
necessary) at speed o;

@ Unknowns: n, W;, s;, o}

n n W,
o E(E) =Y (Wis?+Ec)+AY_ <S + TC) (Wio? + Ec)
i=1 i=1 7'
| et

Anne.Benoit@ens-lyon.fr IPDPS 2014 Resilient and energy-aware algorithms



Checkpointing
Multiple chunks and single speed

With a single speed, o; = s; for each chunk

@ Theorem: in optimal solution, n equal-sized chunks
(W; = W), executed at same speed s; = s
e Proof by contradiction: consider two chunks W and W,
executed at speed s; and s;, with either s; # s5,
or s1 = s, and Wy # W,
e = Strictly better solution with two chunks of size
w = (Wi + W>)/2 and same speed s

@ Only two unknowns, s and n

1+ 2XTc + /420 11

@ Minimum speed with n chunks: 53, = TG e
—nic c

— Minimization of double-variable function, can be solved
numerically both for expected and hard deadline
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Checkpointing

Multiple chunks and multiple speeds

Need to find n, W;, s;, o}

@ With expected deadline:

o All re-execution speeds are equal (0; = o) and tight deadline
o All chunks have same size and are executed at same speed

@ WIth hard deadline:

o If s; =s and o; = o, then all W;'s are equal
o Conjecture: equal-sized chunks, same first-execution /
re-execution speeds

@ o as a function of s, bound on s given n

— Minimization of double-variable function, can be solved
numerically
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Checkpointing

Simulation settings

@ Large set of simulations: illustrate differences between models

@ Maple software to solve problems

@ We plot relative energy consumption as a function of A
e The lower the better

o Given a deadline constraint (hard or expected), normalize with
the result of single-chunk single-speed

e Impact of the constraint: normalize expected deadline with
hard deadline

@ Parameters varying within large ranges
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Checkpointing

Comparison with single-chunk single-speed

@ Results identical for any value
of W/D

SCMSed -»~ MCSSed MCMSed

SCMShd o= MCSShd -+ MCMShd @ For expected deadline, with
small A (< 1072), using
multiple chunks or multiple
{ speeds do not improve energy

7] ratio: re-execution term
w negligible;
increasing A: improvement
with multiple chunks

Model (/SCSS)

100-¢% @@ 8o 46 eb 4@ LR

025+ @ For hard deadline, better to run

e+00 at high speed during second
execution: use multiple speeds;
use multiple chunks if frequent
failures

1e-03
lambda
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Checkpointing

Expected vs hard deadline constraint

@ Important differences for single
L scss wcss speed models, confirming
RS2 sows oS previous conclusions: with hard
Lo0Sg g deadline, use multiple speeds

@ Multiple speeds: no difference
: for small A: re-execution at
. maximum speed has little
impact on expected energy
consumption;
. increasing A: more impact of
1eic0 re-execution, and expected
deadline may use slower
re-execution speed, hence
reducing energy consumption
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Conclusion

Outline

© Conclusion
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Conclusion

Conclusion

@ Resilience and energy consumption are two of the main
challenges for Exascale platforms

o Tri-criteria heuristics aiming at minimizing the energy
consumption, with re-execution to deal with reliability

@ Checkpointing techniques for reliability while minimizing
energy consumption
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Conclusion

On-going and future research directions

@ Investigate other reliability models (for instance, local
constraints on reliability of each task, or global reliability of
success of the execution of the DAG)

e Consider both re-execution and replication (recent results for
linear chains and independent tasks: approximation
algorithms)

@ Checkpointing at the exascale: find the optimal checkpointing
period (with the goal of minimizing the energy consumption)

Anne.Benoit@ens-lyon.fr IPDPS 2014 Resilient and energy-aware algorithms



Conclusion

What we had:

Energy-efficient
scheduling
+
frequency
scaling

What we aim at: E’ ~ 4
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