
Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Revisiting checkpointing techniques and I/O
bandwidth-sharing strategies for HPC platforms

Anne Benoit

LIP, Ecole Normale Supérieure de Lyon, France

Anne.Benoit@ens-lyon.fr

http://graal.ens-lyon.fr/~abenoit/

LIP Seminar, May 10, 2023

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 1/ 52

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

A brief word about myself

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 2/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Motivation: Dealing with failures

Consider one processor (e.g. in your laptop)

Mean Time Between Failures (MTBF) = 100 years
(Almost) no failures in practice ,

Why bother about failures?

Theorem: The MTBF decreases linearly with the number of
processors! With 36500 processors:

MTBF = 1 day
A failure every day on average!

A large simulation can run for weeks, hence it will face
failures /

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 3/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Motivation: Dealing with failures

Consider one processor (e.g. in your laptop)

Mean Time Between Failures (MTBF) = 100 years
(Almost) no failures in practice ,

Why bother about failures?

Theorem: The MTBF decreases linearly with the number of
processors! With 36500 processors:

MTBF = 1 day
A failure every day on average!

A large simulation can run for weeks, hence it will face
failures /

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 3/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Intuition

Time

p1

p2

p3

t

If three processors have around 20 faults during a time t (µ = t
20)...

Time

p

t

...during the same time, the platform has around 60 faults (µp = t
60)

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 4/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Different kind of failures to handle

Fail-stop errors, a.k.a. failures:

Component failures (node, network, power, ...)
Application fails and data is lost

Silent data corruptions:

Bit flip (Disk, RAM, Cache, Bus, ...)
Detection is not immediate, and we may get wrong results

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 5/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

So, how to deal with failures?

Failures usually handled by adding redundancy:

Re-execute when a failure strikes (we may loose a lot of work at
each failure)

Replicate the work (for instance, use only half of the processors, and
the other half is used to redo the same computation – waste of
resources?)

Checkpoint the application: Periodically save the state of the
application on stable storage, so that we can restart in case of
failure without loosing everything

Time

C R W C W C

Fail-stop error

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 6/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

When should we checkpoint?

How often should we checkpoint to minimize the waste, i.e.,
the time lost because of resilience techniques and failures?

Optimal checkpointing period well understood in theory,
but we need to revisit it in some real-world settings

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 7/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Another practical problem: Checkpoint contention

Context:

Several applications running simultaneously on an
HPC platform

The applications post concurrent I/O operations, for instance
checkpoints (but works for any I/O operations)

Demands exceed total available I/O bandwidth

Question:

What is the best way to share the bandwidth between
applications?

State-of-the-art strategies are far from optimal!

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 8/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
With arbitrary failure distributions
For workflows

2 Revisiting I/O bandwidth-sharing strategies
Bandwidth-sharing strategies
Lower bounds on competitive ratios
Performance of strategies in practice

3 Conclusion

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 9/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

The famous Young/Daly formula

Periodic checkpointing with period T = W + C

C : Checkpoint time; R: Recovery time

µp = µ
p : Application MTBF with p processors

Time

C R W C W C

Fail-stop error

Optimal period WYD =
√
2µpC (Young 1974, Daly 2006)

Well-understood for memoryless distributions (Exp for instance)

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 10/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
With arbitrary failure distributions
For workflows

2 Revisiting I/O bandwidth-sharing strategies
Bandwidth-sharing strategies
Lower bounds on competitive ratios
Performance of strategies in practice

3 Conclusion

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 11/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Framework: Non memoryless distributions

What happens if D is no longer memoryless?

In practice, processor failures have been shown to obey Weibull or
LogNormal distributions...

Non-constant instantaneous failure rate! /

Weibull(k , λ): Weibull dis-
tribution law of shape param-
eter k and scale parameter λ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a
ilu

re
 P

ro
b
a
b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

If k < 1: failure rate decreases with time
”infant mortality”: defective items fail early

If k = 1: Weibull(1, λ) = Exp(λ) constant failure rate

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 12/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Weibull with one processor

Periodic checkpointing is not optimal:
if the instantaneous failure rate decreases with time, the
length of work chunks (before taking a checkpoint) should
increase

Some dynamic policies have been designed but there are no
closed-form formula /
At least, platform failures are IID with one processor ,

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 13/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Weibull with two processors

P1
X1 �

P2
X2 �

(Spare)P3
X3 �

t

Two processors, each with failures X ∼ Weibull(k , λ)

Platform:

First failure at time t = min(X1,X2) is Weibull(k , 2λ)
Replace P1 by fresh spare P3 (rejuvenate)
Second failure is not Weibull because of different history on P2

and P3 at time t
Platform failures are not IID
. . . unless we rejuvenate P2 together with P1 after first failure

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 14/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Weibull with two processors

P1
X1 �

P2
X2 �

(Spare)P3
X3 �

t

Two processors, each with failures X ∼ Weibull(k , λ)

Platform:

First failure at time t = min(X1,X2) is Weibull(k , 2λ)
Replace P1 by fresh spare P3 (rejuvenate)
Second failure is not Weibull because of different history on P2

and P3 at time t
Platform failures are not IID
. . . unless we rejuvenate P2 together with P1 after first failure

Nobody will rejuvenate
100K processors after
each failure

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 14/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Platform MTBF?

Rebooting only faulty processor

Processor failures: IID, obey D with mean µ

Platform failures:
⇒ superposition of p IID processor distributions
⇒ IID only for Exponential

Define µp by

lim
F→+∞

F

n(F)
= µp

n(F) = number of platform failures until time F is exceeded

Theorem: This limit exists and µp =
µ

p
for arbitrary (regular) distributions

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 15/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Back to Young/Daly

Time

p1

p2

p3

t

If three processors have around 20 faults during a time t (µ = t
20)...

Time

p

t

...during the same time, the platform has around 60 faults (µp = t
60)

Since µp = µ
p for arbitrary (regular) distributions . . .

. . . why not use periodic checkpointing à la Young/Daly WYD =
√

2µpC
. . . and hope for the best?

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 16/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

State-of-the-art

Assume constant instantaneous fault rate (after infant
mortality and before aging . . .)

Pretend to rejuvenate all processors at each failure

Assume that platform failures are Weibull (what are they on
each processor?)

Ignore problem and use Young/Daly (with confidence?)

How far is this periodic checkpoint strategy from optimal?

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 17/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

A solution

Problem: Checkpoint parallel jobs under any failure
probability distribution, for an efficient execution

Solution: Dynamic checkpointing strategy – Take decisions
from one failure to the next!

After each failure, maximize expected efficiency before the
next failure or the end of the job (jobs of finite length)

Efficiency = Work done until next failure
Time to next failure

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 18/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Technicalities

Discretization with time quantum

From one failure to the next, processors keep the same
difference in history
⇒ Next heuristic to optimize efficiency
⇒ Dynamic programming in O(pW 4), where W is expressed
in quanta

Asymptotically optimal ,

At last, a statement about the optimality of the approach for
general distributions! , , ,

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 19/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

How does it work in practice?

Aggregated results (the higher the better):
Ratio of execution time YoungDaly / Next (geom. mean, geom. stdev)

Next always adapts to actual instantaneous failure rate: accounts
for the failure history of processors

Better strategy in all cases

More significant differences for the realistic distribution laws
(LogNormal 2.51 and Weibull 0.5)

Parameters to vary: platform age, job duration, job size, checkpoint
duration, individual MTBF

See [Benoit, Perotin, Robert, Vivien. Checkpointing strategies to protect
parallel jobs from non-memoryless fail-stop errors. Inria RR-9465, 2022.
Under revision at TOPC, https://inria.hal.science/hal-03610883v2]

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 20/ 52

https://inria.hal.science/hal-03610883v2

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
With arbitrary failure distributions
For workflows

2 Revisiting I/O bandwidth-sharing strategies
Bandwidth-sharing strategies
Lower bounds on competitive ratios
Performance of strategies in practice

3 Conclusion

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 21/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Framework

Back to memoryless failures ,
So far, we have dealt with a tightly-coupled application

What about a workflow made of several (parallel) tasks?

Fork-join graph

F

T1 T2 TN

J

· · ·

N identical parallel tasks

T1:
W C W C · · · W C

T2:
W C W C · · · W C

· · ·
TN :

W C W C · · · W C

Optimal Young/Daly period Wopt for each task...
Is it good enough?

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 22/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Example with N identical tasks

T1:
W C W C W C W C W C W C W C

T2:
W C W C W C W C W C W C W C

T3:
W C W C W C W C W C W C W C

T4:
W C W C W C W C W C W C W C

T5:
W C W C W C W C W C W C W C

· · ·
(skipping N − 6 tasks)

· · ·

TN :
W C W C W C W C W C W C W C

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 23/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Example with N identical tasks

T1:
W C W C W C W C W C W C W C

T2:
W C W C W C W C W C W C W C

T3:
W C W C W C W C W C W C W C

T4:
W C W C W C W C W C W C W C

T5:
W C W C W C W C W C W C W C

· · ·
(skipping N − 6 tasks)

· · ·

TN :
W C W C W C W C W C W C W C

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 23/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Example with N identical tasks

T1:
W C W C W C W C W C W C W C

T2:
W C W C W C W C W C W C W C

T3:
W C W C W C W C W C W C W C

T4:
W C W C W C W C W C W C W C

T5:
W C W C W C W C W C W C W C

· · ·
(skipping N − 6 tasks)

· · ·

TN :
W C W C W C W C W C W C W C

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 23/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Example with N identical tasks

T1:
W C W C W C W C W C W C W C

T2:
W C W C W C W C W C W C W C

T3:
W C W C W C W C W C W C W C

T4:
W C W C W C W C W C W C W C

T5:
W C W C W C W C W C W C W C

· · ·
(skipping N − 6 tasks)

· · ·

TN :
W C W C W C W C W C W C W C

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 23/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Example with N identical tasks

T1:
W C W C W C W C W C W C W C

T2:
W C W C W C W C W C W C W C

T3:
W C W C W C W C W C W C W C

T4:
W C W C W C W C W C W C W C

T5:
W C W C W C W C W C W C W C

· · ·
(skipping N − 6 tasks)

· · ·

TN :
W C W C W C W C W C W C W C

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 23/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Example with N identical tasks

T1:
W C W C W C W C W C W C W C

T2:
W C W C W C W C W C W C W C

T3:
W C W C W C W C W C W C W C

T4:
W C W C W C W C W C W C W C

T5:
W C W C W C W C W C W C W C

· · ·
(skipping N − 6 tasks)

· · ·

TN :
W C W C W C W C W C W C W C

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 23/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Example with N identical tasks

T1:
W C W C W C W C W C W C W C

T2:
W C W C W C W C W C W C W C

T3:
W C W C W C W C W C W C W C

T4:
W C W C W C W C W C W C W C

T5:
W C W C W C W C W C W C W C

· · ·
(skipping N − 6 tasks)

· · ·

TN :
W C W C W C W C W C W C W C

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 23/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Example with N identical tasks

T1:
W C W C W C W C W C W C W C

T2:
W C W C W C W C W C W C W C

T3:
W C W C W C W C W C W C W C

T4:
W C W C W C W C W C W C W C

T5:
W C W C W C W C W C W C W C

· · ·
(skipping N − 6 tasks)

· · ·

TN :
W C W C W C W C W C W C W C

Expected number of failures per task: 2
Expected maximal number of failures over all
N tasks: ≫ 2 (and grows with N)

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 23/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Parallel tasks

Intuition

Multiple tasks execute simultaneously

Higher risk that one of them is severely delayed
⇒ Take more checkpoints to mitigate this risk

Solution

The number of failures of each task follows the
Negative Binomial Distribution.

The maximum of N such identical variables is known
⇒ Estimation of the number of checkpoints to take

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 24/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

General workflow graphs

Algorithm: CheckMore strategy

Start with a failure-free schedule S
Partition it into virtual slices with equal-length tasks

Use previous result on parallel tasks

Schedule tasks ASAP but keep the initial ordering of S

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 25/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

General workflow graphs

See [Benoit, Perotin, Robert, Sun. Checkpointing Workflows à la Young/Daly

Is Not Good Enough. ACM TOPC 2022] for evaluation of new strategies

Models needed to assess techniques at scale
without bias ,

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 26/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
With arbitrary failure distributions
For workflows

2 Revisiting I/O bandwidth-sharing strategies
Bandwidth-sharing strategies
Lower bounds on competitive ratios
Performance of strategies in practice

3 Conclusion

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 27/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Problem overview

Context: Applications posting concurrent I/O operations; how to
best share the bandwidth?

What objective(s) function(s)?

How to assess only the impact of bandwidth-sharing strategies
(BwSS)?

Interplay with batch scheduling: A chicken-and-egg problem

Change in BwSS impacts application completion times, which
impacts opportunities for the batch scheduler, which impacts
opportunities for BwSS

The solution

Study performance in a window [Tbegin,Tend] during which no
application can start nor complete

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 28/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Framework

A set of m applications, A1, . . . ,Am, released at times τ1, . . . , τm

Each application Ai executes an alternating sequence of work
phases and I/O operations:

v
(0)
i w

(1)
i v

(1)
i w

(2)
i

· · ·

v
(j)
i volume of j-th I/O: known when I/O is posted

w
(j)
i duration of j-th work: not known until it terminates

Application Ai uses pi nodes

Total bandwidth B; node bandwidth b; bi = min (B, pib) is the max
bandwidth that can be granted to Ai

Bandwidth allocation changes whenever an I/O is posted, an I/O
completes, or the I/O scheduler triggers an event

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 29/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Objectives

Main objective function: MinYield (ratio actual progress / ideal
progress)

Yield of Ai at time t: yi (t) =
W

(done)
i (t)+

V
(transferred)
i

(t)

bi

t−τi

MinYield: Maximize minimum yield at the end of the window:
Maximizemin1≤i≤m yi (Tend)

Other objective functions: Maximize platform utilization or sum of
actual progress of applications

Utilization: Maximize

∑m
1≤i pi

(
W

(done)
i (Tend)−W

(done)
i (Tbegin)

)
(Tend−Tbegin)

∑m
1≤i pi

Efficiency:

Maximize

∑m
1≤i pi

(
W

(done)
i (Tend)−W (done)

i (Tbegin)+
V
(transferred)
i

(Tend)−V
(transferred)
i

(Tbegin)

bi

)
(Tend−Tbegin)

∑m
1≤i pi

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 30/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
With arbitrary failure distributions
For workflows

2 Revisiting I/O bandwidth-sharing strategies
Bandwidth-sharing strategies
Lower bounds on competitive ratios
Performance of strategies in practice

3 Conclusion

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 31/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Greedy strategies

FairShare: app. Ai is allocated a bandwidth min
(
1, B∑

j bj

)
bi

FCFS: greedily allocate the bandwidth to applications sorted by
non-decreasing Ri (time when last I/O operation was posted)

GreedyCom: greedily allocate the bandwidth to applications
sorted by non-decreasing ratio Vi/bi , i.e., by remaining time to
complete the pending I/O (priority to short coms)

GreedyYield: greedily allocate the bandwidth to applications
sorted by non-decreasing yields yi (t)

PeriodicGreedyYield (δ): GreedyYield + events triggered

every δ seconds. δ =
Tend−Tbegin

2#I/O in [Tbegin,Tend]

LookAheadGreedyYield: for each Ai , compute the minimum
yield Zi that can be achieved if Ai is given priority and allocated its
maximum bandwidth bi , and where the remaining bandwidth B − bi
is allocated following GreedyYield for the other applications

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 32/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Greedy strategies

FairShare: app. Ai is allocated a bandwidth min
(
1, B∑

j bj

)
bi

FCFS: greedily allocate the bandwidth to applications sorted by
non-decreasing Ri (time when last I/O operation was posted)

GreedyCom: greedily allocate the bandwidth to applications
sorted by non-decreasing ratio Vi/bi , i.e., by remaining time to
complete the pending I/O (priority to short coms)

GreedyYield: greedily allocate the bandwidth to applications
sorted by non-decreasing yields yi (t)

PeriodicGreedyYield (δ): GreedyYield + events triggered

every δ seconds. δ =
Tend−Tbegin

2#I/O in [Tbegin,Tend]

LookAheadGreedyYield: for each Ai , compute the minimum
yield Zi that can be achieved if Ai is given priority and allocated its
maximum bandwidth bi , and where the remaining bandwidth B − bi
is allocated following GreedyYield for the other applications

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 32/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Greedy strategies

FairShare: app. Ai is allocated a bandwidth min
(
1, B∑

j bj

)
bi

FCFS: greedily allocate the bandwidth to applications sorted by
non-decreasing Ri (time when last I/O operation was posted)

GreedyCom: greedily allocate the bandwidth to applications
sorted by non-decreasing ratio Vi/bi , i.e., by remaining time to
complete the pending I/O (priority to short coms)

GreedyYield: greedily allocate the bandwidth to applications
sorted by non-decreasing yields yi (t)

PeriodicGreedyYield (δ): GreedyYield + events triggered

every δ seconds. δ =
Tend−Tbegin

2#I/O in [Tbegin,Tend]

LookAheadGreedyYield: for each Ai , compute the minimum
yield Zi that can be achieved if Ai is given priority and allocated its
maximum bandwidth bi , and where the remaining bandwidth B − bi
is allocated following GreedyYield for the other applications

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 32/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

More involved strategies

Set-10 strategy [Boito et al., 2022]

Estimates average iteration length for each application (hoping
that applications are periodic)
Partition apps according to these lengths, and grant bandwidth
to a single application per set (FCFS)

BestNextEv strategy [Benoit et al., 2023]

Sophisticated algorithm partitioning the interval of remaining
time, and find next predictable event (not the I/O arrival),
where the min yield is maximized
Strategy to optimally compute bandwidth allocation
maximizing the minimum yield at a given time t
Need to partition the interval and search for events

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 33/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
With arbitrary failure distributions
For workflows

2 Revisiting I/O bandwidth-sharing strategies
Bandwidth-sharing strategies
Lower bounds on competitive ratios
Performance of strategies in practice

3 Conclusion

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 34/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratios

A strategy S has a competitive ratio ρ for Obj (to be maximized)
if, for any instance I, Obj(S, I)× ρ ≥ Obj(Optimal, I)

Lower bound: provide an example with an instance s.t.
Obj(S, I)× ρlb < Obj(Optimal, I)

Example, with window [Tbegin,Tend] = [0, 1]; m applications
released at time 0 (with m ≥ 4 and m even);
All applications satisfy bi = B = 1 and pi = 1

Two categories of applications, m
2 applications of each type:

Cat. A:

2
m 1

Cat. B:

2
m

ϵ
m/2−1 1

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 35/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example

Category A: m
2 applications

2
m 1

Category B: m
2 applications

2
m

ϵ
m/2−1 1

Total requested I/O volume at time 0: 2

Total bandwidth = 1: at most m
2 applications can complete their first

I/O operation by time 1

Best case for utilization and efficiency: m
2 applications can complete their

first I/O operation by time 1: which ones?

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 36/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example – Cat. A

I/Os of Category A applications are completed

time0 1

2
m

EfficiencyA =

∑
i∈A∪B(V

(transferred)
i +W

(done)
i)

m
=

∑m/2
i=1 (

2
m

+ m−2i
m

)

m
=

m + 2

4m

UtilizationA =

∑
i∈A∪B W

(done)
i

m
=

∑m/2
i=1

m−2i
m

m
=

m − 2

4m

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 37/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example – Cat. A

I/Os of Category A applications are completed

time0 1

2
m

EfficiencyA =

∑
i∈A∪B(V

(transferred)
i +W

(done)
i)

m
=

∑m/2
i=1 (

2
m

+ m−2i
m

)

m
=

m + 2

4m

UtilizationA =

∑
i∈A∪B W

(done)
i

m
=

∑m/2
i=1

m−2i
m

m
=

m − 2

4m

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 37/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example – Cat. A

I/Os of Category A applications are completed

time0 1

2
m 1

EfficiencyA =

∑
i∈A∪B(V

(transferred)
i +W

(done)
i)

m
=

∑m/2
i=1 (

2
m

+ m−2i
m

)

m
=

m + 2

4m

UtilizationA =

∑
i∈A∪B W

(done)
i

m
=

∑m/2
i=1

m−2i
m

m
=

m − 2

4m

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 37/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example – Cat. A

I/Os of Category A applications are completed

time0 1

2
m 1

EfficiencyA =

∑
i∈A∪B(V

(transferred)
i +W

(done)
i)

m
=

∑m/2
i=1 (

2
m

+ m−2i
m

)

m
=

m + 2

4m

UtilizationA =

∑
i∈A∪B W

(done)
i

m
=

∑m/2
i=1

m−2i
m

m
=

m − 2

4m

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 37/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example – Cat. A

I/Os of Category A applications are completed

time0 1

2
m 1

EfficiencyA =

∑
i∈A∪B(V

(transferred)
i +W

(done)
i)

m
=

∑m/2
i=1 (

2
m

+ m−2i
m

)

m
=

m + 2

4m

UtilizationA =

∑
i∈A∪B W

(done)
i

m
=

∑m/2
i=1

m−2i
m

m
=

m − 2

4m

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 37/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example – Cat. A

I/Os of Category A applications are completed

time0 1

2
m 1

EfficiencyA =

∑
i∈A∪B(V

(transferred)
i +W

(done)
i)

m
=

∑m/2
i=1 (

2
m

+ m−2i
m

)

m
=

m + 2

4m

UtilizationA =

∑
i∈A∪B W

(done)
i

m
=

∑m/2
i=1

m−2i
m

m
=

m − 2

4m

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 37/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example – Cat. B

I/Os of Category B applications are completed

time0 1

2
m

ϵ
m/2−1

EfficiencyB =

∑
i∈A∪B(V

(transferred)
i +W

(done)
i)

m
=

∑m/2
i=1 (

2
m

+ ϵ
m/2−1

)

m
=

1 + ϵ

m

UtilizationB =

∑
i∈A∪B W

(done)
i

m
=

ϵ

m

... Almost no work is done!

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 38/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example – Cat. B

I/Os of Category B applications are completed

time0 1

2
m

ϵ
m/2−1

EfficiencyB =

∑
i∈A∪B(V

(transferred)
i +W

(done)
i)

m
=

∑m/2
i=1 (

2
m

+ ϵ
m/2−1

)

m
=

1 + ϵ

m

UtilizationB =

∑
i∈A∪B W

(done)
i

m
=

ϵ

m

... Almost no work is done!

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 38/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example – Cat. B

I/Os of Category B applications are completed

time0 1

2
m

ϵ
m/2−1

EfficiencyB =

∑
i∈A∪B(V

(transferred)
i +W

(done)
i)

m
=

∑m/2
i=1 (

2
m

+ ϵ
m/2−1

)

m
=

1 + ϵ

m

UtilizationB =

∑
i∈A∪B W

(done)
i

m
=

ϵ

m

... Almost no work is done!

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 38/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example – Cat. B

I/Os of Category B applications are completed

time0 1

2
m

ϵ
m/2−1

EfficiencyB =

∑
i∈A∪B(V

(transferred)
i +W

(done)
i)

m
=

∑m/2
i=1 (

2
m

+ ϵ
m/2−1

)

m
=

1 + ϵ

m

UtilizationB =

∑
i∈A∪B W

(done)
i

m
=

ϵ

m

... Almost no work is done!

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 38/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example – Conclusion

Obj(S, I)× ρlb < Obj(Optimal, I)

EfficiencyB × m

4
=

1 + ϵ

m
× m

4
<

m + 2

4m
= EfficiencyA < Opt

UtilizationB × m

4ϵ
=

ϵ

m
× m

4ϵ
<

m − 2

4m
= UtilizationA < Opt

MinYieldB = MinYieldA = 0×∞ < Opt

(strictly positive yield obtained by sharing the bandwidth between all
applications, so that they can all progress)

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 39/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example – Conclusion

Obj(S, I)× ρlb < Obj(Optimal, I)

EfficiencyB × m

4
=

1 + ϵ

m
× m

4
<

m + 2

4m
= EfficiencyA < Opt

UtilizationB × m

4ϵ
=

ϵ

m
× m

4ϵ
<

m − 2

4m
= UtilizationA < Opt

MinYieldB = MinYieldA = 0×∞ < Opt

(strictly positive yield obtained by sharing the bandwidth between all
applications, so that they can all progress)

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 39/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example – Conclusion

Obj(S, I)× ρlb < Obj(Optimal, I)

EfficiencyB × m

4
=

1 + ϵ

m
× m

4
<

m + 2

4m
= EfficiencyA < Opt

UtilizationB × m

4ϵ
=

ϵ

m
× m

4ϵ
<

m − 2

4m
= UtilizationA < Opt

MinYieldB = MinYieldA = 0×∞ < Opt

(strictly positive yield obtained by sharing the bandwidth between all
applications, so that they can all progress)

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 39/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Competitive ratio example – Conclusion

Obj(S, I)× ρlb < Obj(Optimal, I)

EfficiencyB × m

4
=

1 + ϵ

m
× m

4
<

m + 2

4m
= EfficiencyA < Opt

UtilizationB × m

4ϵ
=

ϵ

m
× m

4ϵ
<

m − 2

4m
= UtilizationA < Opt

MinYieldB = MinYieldA = 0×∞ < Opt

(strictly positive yield obtained by sharing the bandwidth between all
applications, so that they can all progress)

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 39/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Lower bounds on competitive ratios

MinYield Efficiency Utilization

FairShare
m√

m − 3 without history
m
4 ∞

FCFS ∞ m ∞
Set-10 ∞ m ∞

GreedyYield ∞ m ∞
GreedyCom ∞ m

4 ∞
LookAheadGreedyYield ∞ m ∞

PeriodicGreedyYield (δ → 0) 2 m ∞
BestNextEv m

2 − 4 m ∞

Any strategy 3
2

m
4 ∞

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 40/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
With arbitrary failure distributions
For workflows

2 Revisiting I/O bandwidth-sharing strategies
Bandwidth-sharing strategies
Lower bounds on competitive ratios
Performance of strategies in practice

3 Conclusion

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 41/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

I/O pressure and synthetic traces

Window [Tbegin,Tend], with m applications

Vi : Volume that Ai would be able to transfer if it was executed in
dedicated mode throughout the window; V =

∑m
i=1 Vi

I/O pressure: W = V
B(Tend−Tbegin)

Synthetic traces: Follow the methodology of [Boito et al. 2022]:
m = 60 applications; Tend − Tbegin = 2 000 000

For each application Ai :

Randomly generate average iteration length (normal distrib.)
Time spent on I/O: random parameter ui uniformly picked
in [0, 1]

Fraction of I/O: ϕi =
uiW

GOAL∑m
k=1 uk

Noise parameter νi to generate iterations of different lengths

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 42/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Impact of I/O pressure

0.2 0.5 0.8 0.9 1.0 1.1
WGOAL

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
IN

YI
EL

D

0.2 0.5 0.8 0.9 1.0 1.1
WGOAL

0.80

0.85

0.90

0.95

1.00

EF
FI

CI
EN

CY
0.2 0.5 0.8 0.9 1.0 1.1

WGOAL

0.75

0.80

0.85

0.90

0.95

1.00

UT
IL

IZ
AT

IO
N

New greedy strategies (except GreedyCom) very good for
MinYield, much better than state-of-the-art competitors FCFS,
FairShare and Set-10.

Efficiency and Utilization: GreedyCom is the best
(favors short communications)

Complex strategy BestNextEv not superior to simpler strategies

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 43/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

APEX workloads – http://www.nersc.gov/assets/apex-workflows-v2.pdf

Two very different workloads:

NERSC – Large number of small apps (e.g., 24 cores for 4 hours);
Some large apps (e.g., 16,512 cores, or 1/8 of the platform, for 48
hours); Some very long running apps (e.g., 10 days over 8,000 cores)

TRILAB – More homogeneous set of apps (4096 to 32768 cores);
Run for a significantly longer time (from 64h for the smallest
duration, and up to 12 days)

Application I/Os – All inputs read at the beginning; Checkpoints
performed every hour; All outputs written at the end

Celio system:

Workloads represent small I/O pressure (about 0.15 in average)

Ratio between PFS bandwidth and computing performance of HPC
platforms has a clearly decreasing trend ⇒ scaled versions of Celio

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 44/ 52

http://www.nersc.gov/assets/apex-workflows-v2.pdf

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

NERSC: MinYield of all strategies

Ratio of the MinYield with the FairShare strategy

LookAheadGY, PeriodicGY, and BestNextEv: very high
probability of increasing MinYield compared to FairShare

Higher performance increase with higher I/O pressure

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 45/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

TRILAB: MinYield of all strategies

Ratio of the MinYield with the FairShare strategy

Better than with NERSC, in particular GreedyCom: no performance
drop, except with pressure > 1; LookAheadGY very good

Again, higher I/O pressure ⇒ need for efficient strategies

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 46/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Efficiency of all strategies for NERSC and TRILAB

In terms of Efficiency, GreedyCom is again the most efficient
(but at the price of a lower MinYield)

See [Benoit, Herault, Perotin, Robert, Vivien. Revisiting I/O
bandwidth-sharing strategies for HPC applications. Inria RR-9502, 2023.
Submitted; https://inria.hal.science/hal-04038011v2]

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 47/ 52

https://inria.hal.science/hal-04038011v2

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Outline

1 When checkpointing à la Young/Daly is not enough
With arbitrary failure distributions
For workflows

2 Revisiting I/O bandwidth-sharing strategies
Bandwidth-sharing strategies
Lower bounds on competitive ratios
Performance of strategies in practice

3 Conclusion

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 48/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Conclusion – Take-aways

Current and future HPC platforms demand simultaneous
resource scheduling and resilience strategies for parallel applications

Young/Daly formula commonly used to determine the optimal
checkpointing period, but it is not always the best strategy in
practice (periodic checkpointing might not be good!)

Checkpoints ⇒ I/O contention; Importance of bandwidth-sharing
strategies, and first (lower bounds on) competitive ratios on the
theoretical side

In practice, LookAheadGreedyYield achieves excellent min
yield on all scenarios; it achieves better utilization and efficiency
than FairShare for NERSC and synthetic workloads, and the
same performance for TRILAB;
GreedyCom achieves the best performance for utilization and
efficiency overall, but achieves poor min yield

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 49/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Conclusion – Impact of failures

High-performance computers: grow bigger and bigger, as
Exaflop/s have been reached in June 2022 by Frontier (ORNL) –
More than 8 millions cores, and obtains 52.23 gigaflops/watt

High performance obtained at the price of huge energy
consumption, even with power-efficient systems

Failures: Redundant work and hence even larger energy
consumption

Explosion of artificial intelligence; AI is hungry for processing power!
Need to double data centers in next four years
→ how to get enough power?

Energy and power awareness ; crucial for both
environmental and economical reasons

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 50/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

Future work

Need for robust and resilient scheduling techniques for large-scale
computing platforms ⇒ Two main axes for my future researches:

1 Designing robust multi-criteria optimization algorithms
(performance, reliability, energy), focusing in particular on
edge-cloud platforms, when there are uncertainties about
application properties but also on power sources (variable
capacity resources; on-going project CNRS – U. Chicago)

2 Designing new resilience techniques for Exascale, combining
checkpoint with replication, and understanding how to
efficiently select the resources to be used (PEPR NumPEx)

Still a lot of algorithmic challenges to address, and techniques to be
developed for many kinds of high-performance applications – both
theoretical results and practical ones are expected ,

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 51/ 52

Introduction Checkpointing: Young/Daly revisited Revisiting I/O bandwidth-sharing strategies Conclusion

My vision on the future of HPC

Heading towards Zetta-scale? Rather than even bigger
supercomputers, use of cluster collections, and distribution of
computations; workflow migration, growing impact of I/Os

Seems mandatory to play with flexibility (position paper following
workshop with academics/industrials)

Flexible power in data centers (machines at risk, decide which
jobs to kill/migrate)
Flexible workloads (Google: mandatory application part, but
also optional, more flexible part)

Care about energy consumption

Handle failures the best possible way
Beware of the rebound effect and encourage sobriety

Thanks!

LIP Seminar, May 10, 2023 Anne.Benoit@ens-lyon.fr Revisiting checkpointing and I/O bw-sharing 52/ 52

	Introduction
	When checkpointing à la Young/Daly is not enough
	With arbitrary failure distributions
	For workflows

	Revisiting I/O bandwidth-sharing strategies
	Bandwidth-sharing strategies
	Lower bounds on competitive ratios
	Performance of strategies in practice

	Conclusion

