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Complexity of computations vs data movementsComputational vs. Data Movement Complexity  

for (i=1; i<N-1; i++) 
  for (j=1;j<N-1; j++) 
    A[i][j] = A[i][j-1] + A[i-1][j]; 

for(it = 1; it<N−1; it +=B) 
  for(jt = 1; jt<N−1; jt +=B) 
    for(i = it; i < min(it+B, N−1); i++) 
      for(j = jt; j < min(jt+B, N−1); j++)  
        A[i][j] = A[i−1][j] + A[i][j−1]; Untiled version  

Tiled Version 
Comp. complexity: (N-1)2 Ops 

◆  Data movement cost different for 
two versions 

◆  Also depends on cache size 

Question: Can we achieve lower 
cache misses than this tiled version? 
How can we know when much 
further improvement is not possible? 
 

Question: What is the lowest 
achievable data movement cost 
among all possible equivalent 
versions of a computation? 
Current performance tools and 
methodologies do not address this 
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Complexity of computations vs data movements

Both have comp. complexity (N − 1)2 OPs

Data movement cost different for two versions
Also depends on cache size

Question: Can we achieve lower cache misses
than this tiled version? How can we know when
much further improvement is not possible?

Question: What is the lowest achievable data
movement cost among all possible equivalent
versions of a #computation?

Current performance tools and methodologies do
not address this
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Modeling data move complexity: DAGComputational vs. Data Movement Complexity  
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Modeling Data Movement Complexity: CDAG  
0:7

Although a CDAG is derived from analysis of dependences between instances of statements executed
by a sequential program, it abstracts away that sequential schedule of operations and only imposes
an essential partial order captured by the data dependences between the operation instances. Control
dependences in the computation need not be represented since the goal is to capture the inherent data
locality characteristics based on the set of operations that actually transpired during an execution of the
program.

Fig. 5: CDAG for Gauss-Seidel code in Fig. 2.
Input vertices are shown in black, all other ver-
tices represent operations performed.

1 2

3
4 5

Fig. 6: Convex-partition of the CDAG for the
code in Fig. 2 for N = 10.

They key idea behind the work presented in this article is to perform analysis on the CDAG of a
computation, attempting to find a different order of execution of the operations that can improve the
reuse-distance profile compared to that of the given program’s sequential execution trace. If this analysis
reveals a significantly improved reuse distance profile, it suggests that suitable source code transforma-
tions have the potential to enhance data locality. On the other hand, if the analysis is unable to improve
the reuse-distance profile of the code, it is likely that it is already as well optimized for data locality as
possible.

The dynamic analysis involves the following steps:

(1) Generate a sequential execution trace of a program.
(2) Form a CDAG from the execution trace.
(3) Perform a multi-level convex partitioning of the CDAG, which is then used to change the schedule

of operations of the CDAG from the original order in the given input code. A convex partitioning of
a CDAG is analogous to tiling the iteration space of a regular nested loop computation. Multi-level
convex partitioning is analogous to multi-level cache-oblivious blocking.

(4) Perform standard reuse-distance analysis of the reordered trace after multi-level convex partitioning.

Finally, Fig. 6 shows the convex partitioning of the CDAG corresponding to the code in Fig. 2.
After such a partitioning, the execution order of the vertices is reordered so that the convex partitions

are executed in some valid order (corresponding to a topological sort of a coarse-grained inter-partition
dependence graph), with the vertices within a partition being executed in the same relative order as the
original sequential execution. Details are presented in the next section.

3. CONVEX PARTITIONING OF CDAG

In this section, we provide details on our algorithm for convex partitioning of CDAGs, which is at
the heart of our proposed dynamic analysis. In the case of loops, numerous efforts have attempted to
optimize data locality by applying loop transformations, in particular involving loop tiling and loop
fusion [Irigoin and Triolet 1988; Wolf and Lam 1991; Kennedy and McKinley 1993; Bondhugula et al.
2008]. Tiling for locality attempts to group points in an iteration space of a loop into smaller blocks
(tiles) allowing reuse (thereby reducing reuse distance) in multiple directions when the block fits in
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◆  CDAG abstraction: 

§  Vertex = operation, edges = data dep.  
◆  2-level memory hierarchy with S fast 

mem locs. & infinite slow mem. locs. 
§  To compute a vertex, predecessor 

vertices must hold values in fast mem. 
§  Limited fast memory => computed values 

may need to be temporarily stored in slow 
memory and reloaded 

◆  Inherent data movement complexity 
of CDAG: Minimal #loads+#stores 
among all possible valid schedules 

DAG abstraction: Vertex = operation, Edges = data dep.
2-level memory hierarchy with C fast mem. locations and
infinite slow mem. locations

To compute a vertex, predecessor must hold values in
fast memory
Limited fast memory ⇒ computed values may need to
be temporarily stored in slow memory and reloaded

Data movement complexity of DAG:
Min. #loads+#stores among all possible valid schedules
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   No known effective solution to problem 

Develop upper bounds on min-cost 

Develop lower bounds on min-cost 
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Data movement upper bounds

Perform acyclic partitioning of the DAG

Assign each node in a single acyclic part

Acyclic partitioning of a DAG ≈ Tiling the iteration
space

Each part is acyclic

Can be executed atomically
No cyclic data dependence among parts

Topologically sorted order of the acyclic parts
⇒ a valid execution order

Rely on Acyclic DAG Partitioner

Data	Movement	Upper	Bounds	
•  Perform	convex	par44oning	of	

the	CDAG		
•  Assign	each	node	in	a	single	

convex	component	
•  Convex	par##oning	of	a	CDAG	≈	

Tiling	the	itera#on	space	
•  Each	component	is	convex	

–  Can	be	executed	atomically	
–  No	cyclic	data	dependence	among	

components	
•  Topologically	sorted	order	of	the	

convex	components	
	 	=>	a	valid	execu#on	order	

•  To	Do:	Develop	scalable	
distributed	convex	par##oning	
algorithm	for	CDAGs	

		
	

	

 


 
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Outline

1 Model

2 Scheduling strategies and experiments

3 Conclusion
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Problem

Model

Directed acyclic task graph: G = (V ,E )

For vi ∈ V ,

predecessors: predi = {vj | (vj , vi ) ∈ E}; cannot start until all predecessors have completed
successors: succi = {vj | (vi , vj) ∈ E}
size of (scratch) memory: wi

produces a data of size outi that will be communicated to all of its successors
total size of input: ini = |predi | if outj = 1 for all tasks

Fast memory of size C , and slow memory large enough

Compute vi ∈ V : must access ini + wi + outi fast memory locations

Limited fast memory → some computed values may need to be temporarily
stored in slow memory and reloaded later → cache misses
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An example

For simplicity in the presentation: wi = 0 and outi = 1

v1

v2 v3 v4

v5 v6

v7

Sample execution order

vertex v1 v2 v3 v4

data size 1

2 3 4
If C = 3, one will need to evict a
data from the cache, hence resulting
in a cache miss

Livesize and traversals

Livesize (live set size): minimum cache size so that there are no cache misses

Traversal v1 → v2 → v3 → v4 → v5 → v6 → v7, livesize = 4

For another traversal, v1 → v7 → v2 → v5 → v6 → v3 → v4, livesize = 3

Task v6 requires 3 cache locations → 3 = minimum cache size to execute this DAG
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Cache eviction and optimization problem

Cache eviction

During execution, if livesize > C , data transferred from cache back into slow memory

The data that will be evicted may affect the number of cache misses

Given a traversal, the optimal strategy (OPT) consists in evicting the data whose next use will
occur farthest in the future during execution [Belady IBM SysJ’66]

MinCacheMiss

Given a DAG G , a cache of size C , find a traversal of G (topological order) that minimizes the
number of cache misses when using the OPT strategy

Finding the optimal traversal to minimize the livesize is an NP-complete problem [Sethi
STOC’73], even though it is polynomial on trees [Jacquelin et al. IPDPS’11]
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DAG-partitioning assisted locality-aware scheduling

A novel approach

Solution to MinCacheMiss = traversal of the graph

Instead of looking for a global traversal of the whole graph, we propose to partition the
DAG in an acyclic way: V divided in k disjoint subsets, or parts

Key: have all parts executable without cache misses, hence the only cache misses can
be incurred by data on the cut between parts

Hence: minimize edge cut of the partition (cut edge: endpoints in different parts)

Livesize

Livesize for the traversal of a part: memory required to execute whole part, assuming
inputs and outputs of the part are evicted if no longer required inside the part

Partition such that, for each part, the livesize fits in cache
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Acycling DAG partitioner

Minimize number of
cache misses: rely on
acyclic DAG partitioner

Input: maximum livesize
of a part Lm

(a) A toy graph (b) A partitioning
ignoring the direc-
tions; it is cyclic

(c) An acyclic
partitioning

Multilevel acyclic DAG partitioning

Recursive bisection until livesize of part ≤ Lm

Multilevel: coarsening, initial partitioning, refinement – all acyclic

[SISC’19]: Herrmann, Özkaya, Uçar, Kaya, Çatalyürek, “Multilevel Algorithms for Acyclic Partitioning of Directed Acyclic Graphs”, SIAM Journal on Scientific
Computing, 41(4):A2117-A2145, 2019.
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Recursive bisection with target liveset size

Target liveset size Lm = 400

GRAPH
liveset = 974

P1
liveset = 670

P0
liveset = 523

P01
liveset = 256

P00
liveset = 402

P10
liveset = 453

P11
liveset = 302

P100

ls=197

P101

ls=297

P01 + P100
liveset = 388

P101

ls=297

P01
liveset = 256

P11
liveset = 302

P11
liveset = 302

P000

ls=222

P001

ls=184

P000

ls=222

P001
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Traversals

Return total order on tasks

Must respect precedence constraints

Three classical approaches

Natural ordering (nat) treats the node id’s as the priority of the node, where the lower id
has a higher priority, hence the traversal is v1 → v2 → · · · → vn, except if node id’s do
not follow precedence constraints (schedule ready task of highest priority first)

DFS traversal ordering (dfs) follows a depth-first traversal strategy among ready tasks

BFS traversal ordering (bfs) follows a breadth-first traversal strategy among ready tasks

May be applied on whole DAG or on a part

Can be extended to schedule parts (each part is a macro-task)

We use same algorithm for parts and tasks within parts
→ Three novel strategies dagP-nat, dagP-dfs, and dagP-bfs
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Graph instances

Instances from the SuiteSparse Matrix Collection (formerly know as UFL):

Graph |V | |E | maxin.deg maxout.deg Lnat Ldfs Lbfs
144 144,649 1,074,393 21 22 74,689 31,293 29,333
598a 110,971 741,934 18 22 81,801 41,304 26,250
caidaRouterLev. 192,244 609,066 321 1040 56,197 34,007 35,935
coAuthorsCites. 227,320 814,134 95 1367 34,587 26,308 27,415
delaunay-n17 131,072 393,176 12 14 32,752 39,839 52,882
email-EuAll 265,214 305,539 7,630 478 196,072 177,720 205,826
fe-ocean 143,437 409,593 4 4 8,322 7,099 3,716
ford2 100,196 222,246 29 27 26,153 4,468 25,001
halfb 224,617 6,081,602 89 119 66,973 25,371 38,743
luxembourg-osm 114,599 119,666 4 5 4,686 2,768 6,544
rgg-n-2-17-s0 131,072 728,753 18 19 759 1,484 1,544
usroads 129,164 165,435 4 5 297 8,024 9,789
vsp-finan512. 139,752 552,020 119 666 25,830 24,714 38,647
vsp-mod2-pgp2. 101,364 389,368 949 1726 41,191 36,902 36,672
wave 156,317 1,059,331 41 38 13,988 22,546 19,875

Note that when reporting the cache miss counts, we do not include compulsory (cold, first
reference) misses, the misses that occur at the first reference to a memory block, as these
misses cannot be avoided.
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Performance of the three baseline traversal algorithms

Geometric mean of cache
misses, normalized by
number of nodes

Smaller cache sizes:
nat is best

Cache size ≥ 3072:
dfs is best
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Relative cache misses of new algorithms

Relative cache misses (geomean of average of 50 runs) for each graph separately

DAG-partitioning assisted algorithm vs baseline with same traversal

Left cache size 512; right cache size 10240; Lm = C
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dagP-* performs almost always better than ∗, and good stability of algorithms

With larger caches, may not need to partition
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Effect of Lm and C on cache miss improvement

Relative cache misses of dagP-* with the given partition livesize

Traversals nat (left), dfs (middle), and bfs (right)
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Lm ≤ C is better: part fits in cache

Further partitioning may help, but increases complexity of partitioning phase

dagP-dfs improves less than others... Indeed, baseline is better, less room for improvement!
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Overall comparison of heuristics

Left: Performance profile comparing baselines and heuristics with Lm = 0.5× C

Ratio of instances in which algo obtains cache miss count no larger than θ times the best
CMC found by any algo for that instance
dagP-dfs best 75% of the time; dagP-* all very good

Right: Average runtime of all graphs for dagP-dfs partitioning
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Conclusion and future work

Conclusion

A DAG-partitioning assisted approach for improving data locality

Experimental evaluation shows significant reduction in the number of cache misses

Future work

Study the effect of a customized DAG-partitioner specifically for
cache optimization purposes

Design traversal algorithms to optimize cache misses

Use a better fitting directed hypergraph representation for the model
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