Improving Locality-Aware Scheduling with Acyclic Directed Graph Partitioning

M. Yusuf Özkaya1, Anne Benoit1,2, Ümit V. Çatalyürek1

1School of Computational Science and Engineering, Georgia Institute of Technology, GA, USA

2LIP, ENS Lyon, France

PPAM 2019
September 8-11, 2019 – Bialystok, Poland
Complexity of computations vs data movements

Untiled version

```
for (i=1; i<N-1; i++)
  for (j=1; j<N-1; j++)
```

Tiled Version

```
for(it = 1; it<N-1; it +=B)
  for(jt = 1; jt<N-1; jt +=B)
    for(i = it; i < min(it+B, N-1); i++)
      for(j = jt; j < min(jt+B, N-1); j++)
```
Complexity of computations vs data movements

- Both have comp. complexity \((N - 1)^2\) OPs
 - Data movement cost different for two versions
 - Also depends on cache size
- Question: Can we achieve lower cache misses than this tiled version? How can we know when much further improvement is not possible?
- Question: What is the lowest achievable data movement cost among all possible equivalent versions of a \#computation?
- Current performance tools and methodologies do not address this

![Graph](https://via.placeholder.com/150)
Modeling data move complexity: DAG

Untiled version

for (i=1; i<\text{N}-1; i++)
for (j=1; j<\text{N}-1; j++)

Tiled version

for (it = 1; it<\text{N}-1; it += \text{B})
for (jt = 1; jt<\text{N}-1; jt += \text{B})
for (i = it; i < \text{min}(it+B, \text{N}-1); i++)
for (j = jt; j < \text{min}(jt+B, \text{N}-1); j++)
\[A[i][j] = A[i-1][j] + A[i][j-1]; \]

- **DAG abstraction**: Vertex = operation, Edges = data dep.
- **2-level memory hierarchy** with \textit{C fast mem. locations} and infinite slow mem. locations
 - To compute a vertex, predecessor must hold values in fast memory
 - Limited fast memory \(\Rightarrow\) computed values may need to be temporarily stored in slow memory and reloaded
- **Data movement complexity of DAG**: \textbf{Min.} \#loads+\#stores among all possible valid schedules
Modeling data move complexity: DAG

A\[i\][j\] = A\[i\][j-1\] + A\[i-1\][j];

Untiled version

for (i=1; i<N-1; i++)
 for (j=1; j<N-1; j++)
 A\[i\][j\] = A\[i\][j-1\] + A\[i-1\][j];

Tiled Version

for(it = 1; it<N-1; it +=B)
 for(jt = 1;jt<N-1; jt+=B)
 for(i = it; i < min(it+B, N-1); i++)
 for(j = jt; j < min(jt+B, N-1); j++)
 A\[i\][j\] = A\[i-1\][j\] + A\[i\][j-1];

Develop upper bounds on min-cost

Minimum possible data movement cost?
No known effective solution to problem

Develop lower bounds on min-cost
Data movement upper bounds

- Perform acyclic partitioning of the DAG
- Assign each node in a single acyclic part
- Acyclic partitioning of a DAG \approx Tiling the iteration space
- Each part is acyclic
 - Can be executed atomically
 - No cyclic data dependence among parts
- Topologically sorted order of the acyclic parts
 \Rightarrow a valid execution order
- Rely on Acyclic DAG Partitioner
Outline

1 Model

2 Scheduling strategies and experiments

3 Conclusion
Directed acyclic task graph: $G = (V, E)$

For $v_i \in V$,
- predecessors: $\text{pred}_i = \{v_j \mid (v_j, v_i) \in E\}$; cannot start until all predecessors have completed
- successors: $\text{succ}_i = \{v_j \mid (v_i, v_j) \in E\}$
- size of (scratch) memory: w_i
- produces a data of size out_i that will be communicated to all of its successors
- total size of input: $\text{in}_i = |\text{pred}_i|$ if $\text{out}_j = 1$ for all tasks

Fast memory of size C, and slow memory large enough

Compute $v_i \in V$: must access $\text{in}_i + w_i + \text{out}_i$ fast memory locations

Limited fast memory → some computed values may need to be temporarily stored in slow memory and reloaded later → cache misses
For simplicity in the presentation: $w_i = 0$ and $out_i = 1$

Sample execution order

<table>
<thead>
<tr>
<th>vertex</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>data size</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Task v_6 requires 3 cache locations \rightarrow minimum cache size to execute this DAG = 3.
An example

For simplicity in the presentation: $w_i = 0$ and $out_i = 1$

Sample execution order:

<table>
<thead>
<tr>
<th>vertex</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>data size</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Livesize and traversals:

$Livesize$ (live set size): minimum cache size so that there are no cache misses

For another traversal,

$v_1 \rightarrow v_7 \rightarrow v_2 \rightarrow v_5 \rightarrow v_6 \rightarrow v_3 \rightarrow v_4$, $livesize = 3$

Task v_6 requires 3 cache locations $\rightarrow 3 = \text{minimum cache size to execute this DAG}$
An example

For simplicity in the presentation: \(w_i = 0 \) and \(\text{out}_i = 1 \)

Sample execution order:

- vertex: \(v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \)
- data size: 1 2 3

Livesize and traversals:
- Livesize = 4
- For another traversal, \(v_1 \rightarrow v_7 \rightarrow v_2 \rightarrow v_5 \rightarrow v_6 \rightarrow v_3 \rightarrow v_4 \), livesize = 3

Task \(v_6 \) requires 3 cache locations → 3 = minimum cache size to execute this DAG
An example

For simplicity in the presentation: $w_i = 0$ and $out_i = 1$

Sample execution order

<table>
<thead>
<tr>
<th>vertex</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>data size</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

If $C = 3$, one will need to evict a data from the cache, hence resulting in a cache miss.

Livesize and traversals

Livesize (live set size): minimum cache size so that there are no cache misses.

For another traversal, $v_1 \rightarrow v_7 \rightarrow v_2 \rightarrow v_5 \rightarrow v_6 \rightarrow v_3 \rightarrow v_4$, livesize $= 3$.

Task v_6 requires 3 cache locations $\rightarrow 3 = \text{minimum cache size to execute this DAG.}$
An example

For simplicity in the presentation: \(w_i = 0 \) and \(\text{out}_i = 1 \)

Sample execution order

<table>
<thead>
<tr>
<th>vertex</th>
<th>(v_1)</th>
<th>(v_2)</th>
<th>(v_3)</th>
<th>(v_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>data size</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

If \(C = 3 \), one will need to evict a data from the cache, hence resulting in a cache miss.
An example

For simplicity in the presentation: \(w_i = 0 \) and \(out_i = 1 \)

Sample execution order

vertex \(v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \)
data size 1 2 3 4

If \(C = 3 \), one will need to evict a data from the cache, hence resulting in a cache miss

Livesize and traversals

- **Livesize** (live set size): minimum cache size so that there are no cache misses
- **Traversal** \(v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5 \rightarrow v_6 \rightarrow v_7 \), livesize = 4
An example

For simplicity in the presentation: $w_i = 0$ and $out_i = 1$

Sample execution order

<table>
<thead>
<tr>
<th>vertex</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>data size</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

If $C = 3$, one will need to evict a data from the cache, hence resulting in a cache miss.

Livesize and traversals

- **Livesize** (*live set size*): minimum cache size so that there are no cache misses
- **Traversal** $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5 \rightarrow v_6 \rightarrow v_7$, livesize $= 4$
- For another traversal, $v_1 \rightarrow v_7 \rightarrow v_2 \rightarrow v_5 \rightarrow v_6 \rightarrow v_3 \rightarrow v_4$, livesize $= 3$
An example

For simplicity in the presentation: \(w_i = 0 \) and \(out_i = 1 \)

Sample execution order

<table>
<thead>
<tr>
<th>vertex</th>
<th>(v_1)</th>
<th>(v_2)</th>
<th>(v_3)</th>
<th>(v_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>data size</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

If \(C = 3 \), one will need to evict a data from the cache, hence resulting in a cache miss.

Livesize and traversals

- **Livesize** (*live set size*): minimum cache size so that there are no cache misses
- **Traversal** \(v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5 \rightarrow v_6 \rightarrow v_7 \), livesize = 4
- For another traversal, \(v_1 \rightarrow v_7 \rightarrow v_2 \rightarrow v_5 \rightarrow v_6 \rightarrow v_3 \rightarrow v_4 \), livesize = 3
- Task \(v_6 \) requires 3 cache locations \(\rightarrow 3 = \) minimum cache size to execute this DAG
Cache eviction and optimization problem

Cache eviction
- During execution, if $\text{livesize} > C$, data transferred from cache back into slow memory.
- The data that will be evicted may affect the number of cache misses.
- Given a traversal, the optimal strategy (OPT) consists in evicting the data whose next use will occur farthest in the future during execution [Belady IBM SysJ’66].

MinCacheMiss
- Given a DAG G, a cache of size C, find a **traversal of G** (topological order) that minimizes the number of **cache misses** when using the OPT strategy.
- Finding the optimal traversal to minimize the livesize is an NP-complete problem [Sethi STOC’73], even though it is polynomial on trees [Jacquelin et al. IPDPS’11].
Outline

1 Model

2 Scheduling strategies and experiments

3 Conclusion
A novel approach

- Solution to $\text{MinCacheMiss} = \text{traversal}$ of the graph
- Instead of looking for a global traversal of the whole graph, we propose to partition the DAG in an acyclic way: V divided in k disjoint subsets, or parts
- Key: have all parts executable without cache misses, hence the only cache misses can be incurred by data on the cut between parts
- Hence: minimize edge cut of the partition (cut edge: endpoints in different parts)

Livesize

- Livesize for the traversal of a part: memory required to execute whole part, assuming inputs and outputs of the part are evicted if no longer required inside the part
- Partition such that, for each part, the livesize fits in cache
Acycling DAG partitioner

- Minimize number of cache misses: rely on acyclic DAG partitioner
- Input: maximum livesize of a part L_m

Multilevel acyclic DAG partitioning

- Recursive bisection until livesize of part $\leq L_m$
- Multilevel: coarsening, initial partitioning, refinement – all acyclic

Recursive bisection with target liveset size

Target liveset size $L_m = 400$
Traversals

- Return **total order on tasks**
- Must respect **precedence constraints**

Three classical approaches

- **Natural ordering (nat)** treats the node id’s as the priority of the node, where the lower id has a higher priority, hence the traversal is $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n$, except if node id’s do not follow precedence constraints (schedule ready task of highest priority first)
- **DFS traversal ordering (dfs)** follows a depth-first traversal strategy among ready tasks
- **BFS traversal ordering (bfs)** follows a breadth-first traversal strategy among ready tasks
Traversals

- Return **total order on tasks**
- Must respect **precedence constraints**

Three classical approaches

- **Natural ordering (nat)** treats the node id’s as the priority of the node, where the lower id has a higher priority, hence the traversal is $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n$, except if node id’s do not follow precedence constraints (schedule ready task of highest priority first)
- **DFS traversal ordering (dfs)** follows a depth-first traversal strategy among ready tasks
- **BFS traversal ordering (bfs)** follows a breadth-first traversal strategy among ready tasks

- May be applied on whole DAG or on a part
- Can be extended to schedule parts (each part is a macro-task)
- We use same algorithm for parts and tasks within parts

 → **Three novel strategies** DAGP-NAT, DAGP-DFS, and DAGP-BFS
Graph instances

Instances from the SuiteSparse Matrix Collection (formerly known as UFL):

| Graph | |V| |E| max\text{in.deg} | max\text{out.deg} | L\text{nat} | L\text{dfs} | L\text{bfs} |
|--------------------|---------|---------|--------|----------------|----------------|-------------|-------------|-------------|
| 144 | 144,649 | 1,074,393 | 21 | 22 | 74,689 | 31,293 | 29,333 |
| 598a | 110,971 | 741,934 | 18 | 22 | 81,801 | 41,304 | 26,250 |
| caidaRouterLev. | 192,244 | 609,066 | 321 | 1040 | 56,197 | 34,007 | 35,935 |
| coAuthorsCites. | 227,320 | 814,134 | 95 | 1367 | 34,587 | 26,308 | 27,415 |
| delanay-n17 | 131,072 | 393,176 | 12 | 14 | 32,752 | 39,839 | 52,882 |
| email-EuAll | 265,214 | 305,539 | 7,630 | 478 | 196,072 | 177,720 | 205,826 |
| fe-ocean | 143,437 | 409,593 | 4 | 4 | 8,322 | 7,099 | 3,716 |
| ford2 | 100,196 | 222,246 | 29 | 27 | 26,153 | 4,468 | 25,001 |
| halfb | 224,617 | 6,081,602 | 89 | 119 | 66,973 | 25,371 | 38,743 |
| luxembourg-osm | 114,599 | 119,666 | 4 | 5 | 4,686 | 2,768 | 6,544 |
| rgg-n-2-17-s0 | 131,072 | 728,753 | 18 | 19 | 759 | 1,484 | 1,544 |
| usroads | 129,164 | 165,435 | 4 | 5 | 297 | 8,024 | 9,789 |
| vsp-finan512. | 139,752 | 552,020 | 119 | 666 | 25,830 | 24,714 | 38,647 |
| vsp-mod2-pgp2. | 101,364 | 389,368 | 949 | 1726 | 41,191 | 36,902 | 36,672 |
| wave | 156,317 | 1,059,331 | 41 | 38 | 13,988 | 22,546 | 19,875 |

Note that when reporting the cache miss counts, we do not include compulsory (cold, first reference) misses, the misses that occur at the first reference to a memory block, as these misses cannot be avoided.
Performance of the three baseline traversal algorithms

- Geometric mean of cache misses, normalized by number of nodes
- Smaller cache sizes: *nat* is best
- Cache size ≥ 3072: *dfs* is best

![Bar chart showing performance of different algorithms with varying cache sizes](chart.png)
Relative cache misses of new algorithms

- Relative cache misses (geomean of average of 50 runs) for each graph separately
- DAG-partitioning assisted algorithm vs baseline with same traversal
- Left cache size 512; right cache size 10240; $L_m = C$

DAGP-* performs almost always better than *, and good stability of algorithms

With larger caches, may not need to partition
Effect of L_m and C on cache miss improvement

- Relative cache misses of DAGP-* with the given partition livesize
- Traversals nat (left), dfs (middle), and bfs (right)

$L_m \leq C$ is better: part fits in cache
Further partitioning may help, but increases complexity of partitioning phase
DAGP-DFS improves less than others... Indeed, baseline is better, less room for improvement!
Overall comparison of heuristics

- **Left:** Performance profile comparing baselines and heuristics with $L_m = 0.5 \times C$
 - Ratio of instances in which algo obtains cache miss count no larger than θ times the best CMC found by any algo for that instance
 - DAGP-DFS best 75% of the time; DAGP-* all very good
- **Right:** Average runtime of all graphs for DAGP-DFS partitioning
Outline

1 Model

2 Scheduling strategies and experiments

3 Conclusion
Conclusion

- A DAG-partitioning assisted approach for improving data locality
- Experimental evaluation shows significant reduction in the number of cache misses

Future work

- Study the effect of a **customized DAG-partitioner** specifically for cache optimization purposes
- Design **traversal algorithms** to optimize cache misses
- Use a better fitting **directed hypergraph** representation for the model