
On the scheduling of graphs of tasks:
A scalable clustering-based approach using DAG partitioning

Anne Benoit

LIP, ENS Lyon, France

PPAM 2019
September 8-11, 2019 – Bialystok, Poland

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
1 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Graphs of tasks are everywhere!

Solve the linear system Ax = b, where A is n × n
nonsingular lower triangular matrix, and b a vector with
n components:

Tasks are nodes, with different completion times

Data dependencies among tasks are represented as edges

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 2 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Scientific workflows

Pegasus, pegasus.isi.edu

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 3 / 33

pegasus.isi.edu
http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Scientific workflows

Pegasus, pegasus.isi.edu

How can we efficiently execute a task graph on a parallel platform? How to schedule it?

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 3 / 33

pegasus.isi.edu
http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Motivation

Context

Applications modeled as a directed acyclic graph (DAG) G = (V ,E)
↪→ Nodes: tasks with different completion times
↪→ Edges: data dependencies among tasks

Need of efficient scheduling techniques

Objective function

Minimize the total execution time, i.e., the makespan of the DAG

Scheduling literature: P|prec , ci ,j |Cmax problem

History

List-based scheduling

Clustering-based scheduling

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 4 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

List-based scheduling example

Tasks ordered based on some predetermined priority

Greedily assign a ready task to an available processor as early as possible
(dont leave a processor idle unnecessarily)

0

3
4

71 7

2

4

1

3 processors

Makespan = 16; Critical path length = 15; Idle time = 1+5+5+8 = 19

2-approximation algorithm

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 5 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

List-based scheduling example

Tasks ordered based on some predetermined priority

Greedily assign a ready task to an available processor as early as possible
(dont leave a processor idle unnecessarily)

0

3
4

71 7

2

4

1

3 processors

Makespan = 16; Critical path length = 15; Idle time = 1+5+5+8 = 19

2-approximation algorithm

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 5 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

List-based scheduling example

Tasks ordered based on some predetermined priority

Greedily assign a ready task to an available processor as early as possible
(dont leave a processor idle unnecessarily)

0

3
4

71 7

2

4

1

3 processors

Makespan = 16; Critical path length = 15; Idle time = 1+5+5+8 = 19

2-approximation algorithm

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 5 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

List-based scheduling example

Tasks ordered based on some predetermined priority

Greedily assign a ready task to an available processor as early as possible
(dont leave a processor idle unnecessarily)

0

3
4

71 7

2

4

1

3 processors

Makespan = 16; Critical path length = 15; Idle time = 1+5+5+8 = 19

2-approximation algorithm

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 5 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

List-based scheduling example

Tasks ordered based on some predetermined priority

Greedily assign a ready task to an available processor as early as possible
(dont leave a processor idle unnecessarily)

0

3
4

71 7

2

4

1

3 processors

Makespan = 16; Critical path length = 15; Idle time = 1+5+5+8 = 19

2-approximation algorithm

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 5 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

List-based scheduling example

Tasks ordered based on some predetermined priority

Greedily assign a ready task to an available processor as early as possible
(dont leave a processor idle unnecessarily)

0

3
4

71 7

2

4

1

3 processors

Makespan = 16; Critical path length = 15; Idle time = 1+5+5+8 = 19

2-approximation algorithm

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 5 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

List-based scheduling example

Tasks ordered based on some predetermined priority

Greedily assign a ready task to an available processor as early as possible
(dont leave a processor idle unnecessarily)

0

3
4

71 7

2

4

1

3 processors

Makespan = 16; Critical path length = 15; Idle time = 1+5+5+8 = 19

2-approximation algorithm

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 5 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Cluster-based scheduling

Account for communications: execute on same processor two tasks with large communications

Kim and Browne’s linear clustering
Sarkar’s greedy clustering

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 6 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Cluster-based scheduling

Account for communications: execute on same processor two tasks with large communications

Kim and Browne’s linear clustering

Sarkar’s greedy clustering

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 6 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Cluster-based scheduling

Account for communications: execute on same processor two tasks with large communications

Kim and Browne’s linear clustering
Sarkar’s greedy clustering

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 6 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

A novel approach

Further motivation

Consider the realistic duplex single-port communication model
↪→ only one send and one receive at a time

Find a way to take global clustering decisions

Idea

Build upon DAG partitioner to design scheduling heuristics
accounting for data locality

Recent paper in IPDPS’19: A scalable clustering-based task
scheduler for homogeneous processors using DAG
partitioning, M. Yusuf Özkaya, Julien Herrmann, Anne Benoit,
Bora Uçar, Ümit V. Çatalyürek, from CSE, Georgia Institute of
Technology, GA, USA, and CNRS and LIP, ENS Lyon, France

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Introduction 7 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Outline

1 Model

2 Algorithms

3 Experiments

4 Conclusion

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Model 8 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Problem

Model

Directed acyclic task graph: G = (V ,E)
wi : task weight – ci ,j : communication cost

Homogeneous platform:

p identical processors
fully connected homogeneous network

Duplex single-port model: Each processor can, in parallel, without contention:

execute a task
send one data to one processor
receive one data from one processor

MinMakespan

Find the task mapping onto processors, the task starting times and communication starting
times, so that the makespan is minimized

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Model 9 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

An example

For each task vi ∈ V , wi = 1

v1

v2 v3 v4

v5 v6

v7

1.5 1

0.5 1

5 1.5

2

time

p2

p1 v1 v5 v7

v2 v6

v3 v4

1 2 3 4 5 6

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Model 10 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Outline

1 Model

2 Algorithms

3 Experiments

4 Conclusion

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Algorithms 11 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Algorithms: the competitors

Winners of the recent comparison done by Wang and Sinnen
[List-scheduling vs. cluster-scheduling, IEEE TPDS, 2018]

List schedulers

bl-est: chooses task with largest bottom-level first (bl), and assigns task on processor
with earliest start time (est)

etf: tries all ready tasks on all processors and picks the combination with the earliest
est first

Cluster-based scheduler

dsc-glb-etf: uses dominant sequence clustering (dsc), then merges clusters with
guided load balancing (glb), and finally orders tasks using earliest EST first (etf).

... And realistic duplex single-port communication model!

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Algorithms 12 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

bl-est: bottom level / earliest start time

Prioritizing phase

Prioritizing tasks according to their bottom level:

bl(i) = wi +

0 if Succ[vi] = ∅;
max

vj∈Succ[vi]
{ci ,j + bl(j)} otherwise. (1)

Assigning tasks to processors

Until the list of ready tasks is not empty:

Select a ready task with the highest priority

Compute start time of the task on each processor (with ASAP strategy for
communications)

Map the task on the processor with earliest start time

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Algorithms 13 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

bl-est example

v1

v2

v3

v4

v7

v5

v6

v8

0.5

0.5

0.5

X

X

2

2

2

2

time

P2

P1 v1 v2

v3

v4 v5 v6

v7

v8

1 2 3 4 5 6 . . . 2 + X

bl-est schedule

Vertices are numbered according to
their priority

bl-est has a local view of the graph

bl-est can be arbitrarily worse than
the best schedule

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Algorithms 14 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

etf: earliest EST first

Dynamic priority list scheduler

Compute EST of each ready task

Schedule task with earliest EST

Similar lack of general view of the graph than bl-est

Higher complexity than bl-est

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Algorithms 15 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Partition-based scheduling

Principle

Partition the DAG into K > p parts to enhance data locality

Weights of parts are balanced with a 10% ratio (other values give similar results)

The edge cut is reduced

The partition is acyclic (dependence graph for parts is acyclic)

Use the global view of the partition in the list-based scheduling

Partition-based scheduler

Once a task of a part has been mapped, enforce that other tasks of the same part share
the same processors

Three variants, used on top of classical list-based scheduler

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Algorithms 16 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

*-Part

v1

v2

v3

v4

v7

v5

v6

v8

0.5

0.5

0.5

X

X

2

2

2

2

time

P2

P1 v1 v2 v3

v4

v7

v5 v6 v8

1 2 3 4 5

bl-est-Part schedule

Assigning tasks to processors

Follow list-scheduler, with additional
constraint:

If a task from the same part has
already been assigned to a
processor, map the task onto the
same processor

Else, behave similarly to list
scheduler

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Algorithms 17 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

*-Busy

Drawback of *-Part

May overload a processor with several on-going parts

When starting a new part, ignores previous decisions

How to deal with this problem?

Maintain list of busy processors (i.e., processors that have been assigned a task from a part but
not all of them yet assigned)

Assigning tasks to processors

Select ready task with highest priority:
If a task from the same part has already been assigned to a proc., map it onto the same proc.

Else, if all processors are busy, behave like list-scheduler

Else, behave like list-scheduler on non-busy processors only

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Algorithms 18 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

bl-est-Part VS bl-est-Busy

p = 2 and K = 3

v1

v2

v4

v3

v5

v6

0.5

1.5

3

3

1

2

time

P2

P1 v1 v2 v3 v4 v5 v6

1 2 3 4 5 6

bl-est-Part schedule

time

P2

P1 v1

v2

v3 v4 v6

v5

1 2 3 4 5 6

bl-est-Busy schedule

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Algorithms 19 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

*-Macro

Concept

Map a whole part before moving to the next one

Priority of a part is the maximum bottom level of its tasks

Maintain list of ready parts

Assigning tasks to processors

Two priority algorithms: one for parts and one for tasks

Select ready part with highest priority

Tentatively schedules the whole part on each processor

Select ready task with highest priority
Incoming communications are scheduled ASAP, ensuring one-port model

Map part on processor with earliest finish time for the last task

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Algorithms 20 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

bl-est-Busy VS bl-Macro

p = 2 and K = 3

v1

v2

v4

v3

v5

v6

0.5

1.5

3

3

1

2

time

P2

P1 v1

v2

v3 v4 v6

v5

1 2 3 4 5

bl-est-Busy schedule

time

P2

P1 v1 v4 v2 v5

v3 v6

1 2 3 4 4.5

bl-Macro schedule

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Algorithms 21 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Outline

1 Model

2 Algorithms

3 Experiments

4 Conclusion

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Experiments 22 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Graph instances

Instances from the SuiteSparse Matrix Collection (denoted UFL):

Degree
Graph |V | |E | max. avg. #source #target
598a 110,971 741,934 26 13.38 6,485 8,344
caidaRouterLev. 192,244 609,066 1,071 6.34 7,791 87,577
delaunay-n17 131,072 393,176 17 6.00 17,111 10,082
email-EuAll 265,214 305,539 7,630 2.30 260,513 56,419
fe-ocean 143,437 409,593 6 5.78 40 861
ford2 100,196 222,246 29 4.44 6,276 7,822
luxembourg-osm 114,599 119,666 6 4.16 3,721 9,171
rgg-n-2-17-s0 131,072 728,753 28 5.56 598 615
usroads 129,164 165,435 7 2.56 6,173 6,040
vsp-mod2-pgp2. 101,364 389,368 1,901 7.68 21,748 44,896

Instances from the Open Community Runtime collection (denoted OCR):

Degree
Graph |V | |E | max. avg. #source #target
cholesky 1,030,204 1,206,952 5,051 2.34 333,302 505,003
fibonacci 1,258,198 1,865,158 206 3.96 2 296,742
quicksort 1,970,281 2,758,390 5 2.80 197,030 3
RSBench 766,520 1,502,976 3,074 3.96 4 5
Smith-water. 58,406 83,842 7 2.88 164 6,885
UTS 781,831 2,061,099 9,727 5.28 2 25
XSBench 898,843 1,760,829 6,801 3.92 5 5

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Experiments 23 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Datasets and CCR

Three datasets

Small dataset: 1600 graph instances with 50 to 1151 nodes, from [Wang and Sinnen]

Medium dataset: subset of UFL/OCR graphs, with 10k to 150k nodes

Big dataset: all UFL and OCR graphs

Communication-to-computation ratio (CCR) definition

For a graph G = (V ,E), the CCR is formally defined as CCR =

∑
(vi ,vj)∈E ci,j∑

vi∈V wi

Create instances with a target CCR for UFL and OCR graphs:

1 randomly assign chosen costs and weights between 1 and 10 to each edge and vertex

2 scale edge costs appropriately to yield the desired CCR

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Experiments 24 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Communication-delay model vs. realistic model

Comm-delay: [Wang&Sinnen] vs our implementation, small data set, CCR=0.1, 1, 10,
Performance profiles (the higher the better)

1.0 1.2 1.4 1.6 1.8
0.0

0.2

0.4

0.6

0.8

1.0

p

ETF [W&S]
BL-EST
ETF
DSC-GLB-ETF

1.0 1.2 1.4 1.6 1.8
0.0

0.2

0.4

0.6

0.8

1.0

p

ETF [W&S]
BL-EST
ETF
DSC-GLB-ETF

1.0 1.2 1.4 1.6 1.8
0.0

0.2

0.4

0.6

0.8

1.0

p

ETF [W&S]
BL-EST
ETF
DSC-GLB-ETF

Similar results to
[W&S] for cluster-
based scheduling vs
list scheduling (static
and dynamic), and
our ETF is better

Duplex single-port: baselines on small data set, CCR=0.1, 1, 10

1.0 1.2 1.4 1.6 1.8
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
ETF
DSC-GLB-ETF

1.0 1.2 1.4 1.6 1.8
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
ETF
DSC-GLB-ETF

1.0 1.2 1.4 1.6 1.8
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
ETF
DSC-GLB-ETF

dsc-glb-etf not
well suited to real-
istic communication
model

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Experiments 25 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Impact of number of parts, CCR, edge cut (big dataset)

Relative performance of proposed heuristics compared to baseline bl-est

Left: CCR=10, p = {2, 4, 8, 16, 32}, number of parts K = α× p, where
α = {1, 2, 3, 4, 6, 8, 10, 12, 14, 16} → New algorithms better than baseline - Pick α ≤ 4

Right: Best α value in {1, 2, 3, 4}, p = {2, 4, 8, 16, 32}, CCR={1, 5, 10, 20}
→ significantly better results than bl-est; bl-Macro less stable, but outperforms all heuristics
for large values of CCR

5 10 15
0.00
0.25
0.50
0.75
1.00

Re
la

tiv
e

M
ak

es
pa

n

5 10 15
0.00
0.25
0.50
0.75
1.00

Re
la

tiv
e

M
ak

es
pa

n

5 10 15
0.00
0.25
0.50
0.75
1.00

Re
la

tiv
e

M
ak

es
pa

n

5 10 15
0.00
0.25
0.50
0.75
1.00

Re
la

tiv
e

M
ak

es
pa

n

5 10 15
0.00
0.25
0.50
0.75
1.00

Re
la

tiv
e

M
ak

es
pa

n

BL-EST-Part
BL-EST-Busy
BL-Macro

1 5 10 20
CCR

0.0

0.5

1.0

Re
la

tiv
e

M
ak

es
pa

n

1 5 10 20
CCR

0.0

0.5

1.0

Re
la

tiv
e

M
ak

es
pa

n

1 5 10 20
CCR

0.0

0.5

1.0

Re
la

tiv
e

M
ak

es
pa

n

1 5 10 20
CCR

0.0
0.5
1.0
1.5

Re
la

tiv
e

M
ak

es
pa

n

1 5 10 20
CCR

0.0
0.5
1.0
1.5
2.0
2.5

Re
la

tiv
e

M
ak

es
pa

n

BL-EST-Part
BL-EST-Busy
BL-Macro

Smaller edge cut in DAG partitioning → better makespan 82% of the time (CCR=10)

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Experiments 26 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Comparing all algorithms: small and medium datasets

Small dataset, CCR={0.1, 1, 10}

1.0 1.2 1.4 1.6 1.8
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
ETF
DSC-GLB-ETF
BL-EST-Part
BL-EST-Busy
BL-Macro
ETF-Part
ETF-Busy
ETF-Macro

1.0 1.2 1.4 1.6 1.8
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
ETF
DSC-GLB-ETF
BL-EST-Part
BL-EST-Busy
BL-Macro
ETF-Part
ETF-Busy
ETF-Macro

1.0 1.2 1.4 1.6 1.8
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
ETF
DSC-GLB-ETF
BL-EST-Part
BL-EST-Busy
BL-Macro
ETF-Part
ETF-Busy
ETF-Macro

→ etf remains the best
with CCR=0.1, etf-Part
becomes better as soon as
CCR=1, striking performance
of *-Macro for CCR=10

Medium dataset, CCR=10, performance profiles of makespan and runtime

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
ETF
DSC-GLB-ETF
BL-EST-Part
BL-EST-Busy
BL-Macro
ETF-Part
ETF-Busy
ETF-Macro

0 200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
ETF
DSC-GLB-ETF
BL-EST-Part
BL-EST-Busy
BL-Macro
ETF-Part
ETF-Busy
ETF-Macro

→ etf and etf-based algorithms perform
better but at the cost of much higher time
complexity; overhead of partitioner negligible
for bl-est variants; XSBench graph: 9.5 sec-
onds to partition, plus 0.5 second for bl-est
variants, while etf takes 4759 seconds on
two processors

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Experiments 27 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Comparing algorithms: big dataset

CCR={1, 5, 10, 20}, bl-est variants only

CCR=1, bl-est performs best, bl-est-Busy is very close

Increasing CCR: need to handle communications correctly

CCR=5: 90% of all cases, bl-est-Busy’s makespan within 1.5× of best result; only 40% of
cases for bl-est

bl-est-Macro works only for high values of CCR

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
BL-EST-Part
BL-EST-Busy
BL-Macro

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
BL-EST-Part
BL-EST-Busy
BL-Macro

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
BL-EST-Part
BL-EST-Busy
BL-Macro

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
BL-EST-Part
BL-EST-Busy
BL-Macro

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Experiments 28 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Comparing algorithms: big dataset with many source nodes

CCR={1, 5, 10, 20}, bl-est variants only, with many source nodes

More than 10% of the nodes are sources

bl-est performs badly

bl-Macro even better: can start efficiently using more processors right from the start

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
BL-EST-Part
BL-EST-Busy
BL-Macro

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0
p

BL-EST
BL-EST-Part
BL-EST-Busy
BL-Macro

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
BL-EST-Part
BL-EST-Busy
BL-Macro

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

p

BL-EST
BL-EST-Part
BL-EST-Busy
BL-Macro

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Experiments 29 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Take-aways from experiments

Proposed meta-heuristics significantly improve baseline makespan

Benefit of good partitioning with minimum edge cut objective shows itself clearly,
especially when CCR is high

*-Part and *-Busy behave consistently, scale well

*-Macro has a higher variance, due to global view during scheduling: does not scale
with number of processors, but outperforms all heuristics with large CCR

*-Macro performs even better with large number of source nodes

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Experiments 30 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Outline

1 Model

2 Algorithms

3 Experiments

4 Conclusion

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Conclusion 31 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Conclusion

Contributions

Usage of partitioning to enhance data locality in list-based scheduling heuristics

Acyclic partitions allow us to design specific list-based sched. techniques (identify data locality)

Three proposed generic meta-heuristics, can be combined with any classical list-scheduling
heuristic and acyclic partitioner

Comparison with baseline heuristics: striking results in terms of makespan improvement

*-Part (resp. *-Busy, *-Macro, best of three) algorithms achieve a makespan 2.6 (resp. 3.1,
3.3, 4) times smaller than bl-est (big dataset, CCR = 20, average over all processor numbers)

Future work

Use convex partitioning instead of acyclic part.: less restrictive, hence exposes more parallelism

Adaptation to heterogeneous processing systems

Further use of the partitioner

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Conclusion 32 / 33

http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

Thanks...

... to the PPAM organizers (Roman and Ewa) for their kind invitation

... to my co-authors (Yusuf, Julien, Bora, Ümit)

For more information:

Email: Anne.Benoit@ens-lyon.fr
Visit: tda.gatech.edu

TDAlab September 10, 2019,
Anne.Benoit@ens-lyon.fr

Scheduling graphs of tasks
Conclusion 33 / 33

mailto:Anne.Benoit@ens-lyon.fr
http://tda.gatech.edu
http://tda.gatech.edu
Anne.Benoit@ens-lyon.fr
http://cse.gatech.edu

	Model
	Algorithms
	Experiments
	Conclusion

