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Motivations

@ Mapping pipelined applications onto parallel platforms:
practical applications, but difficult challenge
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@ Mapping pipelined applications onto parallel platforms:
practical applications, but difficult challenge

@ Both performance (throughput) and reliability objectives:
even more difficult!

@ Use of replication: mapping an application stage onto more
than one processor
e redundant computations: increase reliability
e round-robin computations (over consecutive data sets):

increase throughput
e bi-criteria problem: need to trade-off between two kinds of

replication
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Main contributions

@ Theoretical side:
assess problem hardness with different mapping rules and
platform characteristics
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Main contributions

@ Theoretical side:
assess problem hardness with different mapping rules and
platform characteristics

@ Practical side:
heuristics on most general (NP-complete) case,
exact algorithm based on A*,
experiments to assess heuristics performance
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Framework Application Platform Mapping Objective

Outline of the talk

@ Framework
@ Application
o Platform
@ Mapping
@ Objective
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Framework Application Platform Mapping Objective

Applicative framework

wy 7 Wi Wn

@ Pipeline of n stages S1,...,S8,
@ Stage S; performs a number w; of computations

@ Communication costs are negligible in comparison with
computation costs
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Framework on Platform Mapping

Target platform

@ Platform with p processors Py, ..., P,, fully interconnected as
a (virtual) clique

@ For 1 < u < p, processor P, has speed s, and failure
probability 0 < f, < 1

o Failure probability: independent of the duration of the
application, meant to run for a long time (cycle-stealing
scenario)
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Framework Application Platform Ma

Target platform

@ Platform with p processors Py, ..., Pp, fully interconnected as
a (virtual) clique

@ For 1 < u < p, processor P, has speed s, and failure
probability 0 < f, < 1

o Failure probability: independent of the duration of the
application, meant to run for a long time (cycle-stealing
scenario)

@ SpeedHom platform: identical speeds s, =sfor 1 <u<p
(as opposed to SpeedHet)

@ FailureHom platform: identical failure probabilities
(as opposed to FailureHet)
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Framework Application Platform Mapping Objective

Mapping problem

@ Interval mapping: consecutive stages mapped together:
partition of [1..n] into m < p intervals /;
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Framework

Mapping problem

@ Interval mapping: consecutive stages mapped together:
partition of [1..n] into m < p intervals /;

@ /; mapped onto set of processors A;, organized into ¢; teams
e processors within a team perform redundant computations
(replication for reliability)
o different teams assigned to same interval execute distinct data
sets in a round-robin fashion (replication for performance)

@ A processor cannot participate in two different teams
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Framework

Mapping problem

@ Interval mapping: consecutive stages mapped together:
partition of [1..n] into m < p intervals /;

@ /; mapped onto set of processors A;, organized into ¢; teams

e processors within a team perform redundant computations
(replication for reliability)

o different teams assigned to same interval execute distinct data
sets in a round-robin fashion (replication for performance)

@ A processor cannot participate in two different teams

o (=3 ", (jis the total number of teams
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Framework

Example of mapping

n = 5 stages divided into m = 3 intervals
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Framework

Example of mapping

n = 5 stages divided into m = 3 intervals
p = 11 processors organized in £ = 6 teams
b1 =3,0b=103=2
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Framework Application Platform Mapping Objective

Objective functions

@ Period of the application:

Dlicp Wi

iel; ™1

P = max —
1<j<m | £; X minp,ca; Su
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Framework Application Platform Mapping Objective

Objective functions

@ Period of the application:

Dlicp Wi

iel; ™1

P = max —
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Round-robin distribution: each team compute one data set every
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Framework Application Platform Mapping Objective

Objective functions

@ Period of the application:

Dlicp Wi

iel; ™1

P = max —
1<j<m | £; X minp,ca; Su

Round-robin distribution: each team compute one data set every
other /; ones, computation slowed down by slowest processor for
interval

@ Failure probability:

F=1-JJ a-I] @

1<k<t P.ETk

Computation successful if at least one surviving processor per team
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Framework / cation Platform a g Objective

The problem

@ Determine the best interval mapping, over all possible
partitions into intervals and processor assignments

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication



Framework / cation Platform a g Objective

The problem

@ Determine the best interval mapping, over all possible
partitions into intervals and processor assignments

@ Mono-criterion: minimize period or failure probability
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Framework Application Platform Mapping Objective

The problem

@ Determine the best interval mapping, over all possible
partitions into intervals and processor assignments

@ Mono-criterion: minimize period or failure probability

@ Bi-criteria: (i) given a threshold period, minimize failure
probability or (ii) given a threshold failure probability,
minimize period
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Comp\exity C ol 3i-critel oximation

Outline of the talk

© Complexity results
@ Mono-criterion
@ Bi-criteria
@ Approximation results
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Complexity Mono-criterion Bi-criteria Approximation

Mono-criterion complexity results

@ Failure probability: easy on any kind of platforms: group all
stages as a single interval, processed by one single team with
all p processors
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Complexity Mono-criterion Bi-criteria Approximation

Mono-criterion complexity results

@ Failure probability: easy on any kind of platforms: group all
stages as a single interval, processed by one single team with
all p processors

@ Period: one processor per team

e SpeedHom platform: one interval processed by p teams

e SpeedHet platforms: NP-hard in the general case, polynomial
if w; = w for 1 < < n (see previous work [Algorithmica2010])
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Complexity criterion Bi-criteria Approximation

Bi-criteria complexity results

@ Preliminary result: for SpeedHom platforms, there exists an
optimal bi-criteria mapping with one single interval
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Complexity Vlono-criterion Bi-criteria Approximation

Bi-criteria complexity results

@ Preliminary result: for SpeedHom platforms, there exists an
optimal bi-criteria mapping with one single interval

e Proof. starting from an optimal solution with several intervals,
merge intervals, and the single interval is processed by all
teams of optimal solution
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Complexity

Bi-criteria complexity results

@ Preliminary result: for SpeedHom platforms, there exists an
optimal bi-criteria mapping with one single interval

e Proof. starting from an optimal solution with several intervals,
merge intervals, and the single interval is processed by all
teams of optimal solution

o Failure probability remains the same (same teams)

o New period cannot be greater than optimal period
(SpeedHom platform)
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Complexity

Bi-criteria complexity results

@ Preliminary result: for SpeedHom platforms, there exists an
optimal bi-criteria mapping with one single interval

e Proof. starting from an optimal solution with several intervals,
merge intervals, and the single interval is processed by all
teams of optimal solution

o Failure probability remains the same (same teams)

o New period cannot be greater than optimal period
(SpeedHom platform)

@ Not true on SpeedHet platforms:
example with wy = sy =landw =5 =2, F* =1
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Complexity

Bi-criteria complexity results

@ Preliminary result: for SpeedHom platforms, there exists an
optimal bi-criteria mapping with one single interval

e Proof. starting from an optimal solution with several intervals,
merge intervals, and the single interval is processed by all
teams of optimal solution

o Failure probability remains the same (same teams)

o New period cannot be greater than optimal period
(SpeedHom platform)

@ Not true on SpeedHet platforms:
example with wy = sy =landw =5 =2, F* =1

e period 1 with two intervals
o period 3/2 with one single interval
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Complexity Mono-criterion Bi-criteria Approximation

SpeedHom-FailureHom platforms

e SpeedHom-FailureHom: Polynomial time algorithm
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SpeedHom-FailureHom platforms

e SpeedHom-FailureHom: Polynomial time algorithm

@ Fixed period P*
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Complexity

SpeedHom-FailureHom pIatforms

e SpeedHom-FailureHom: Polynomial time algorithm

@ Fixed period P*
e one single interval with minimum number of teams

o greedily assign processors to teams to have balanced teams
e algorithm in O(p)
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Complexity

SpeedHom-FailureHom pIatforms

e SpeedHom-FailureHom: Polynomial time algorithm

@ Fixed period P*
e one single interval with minimum number of teams

o greedily assign processors to teams to have balanced teams
e algorithm in O(p)

@ Converse problem: fixed F*
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Complexity on Bi-criteria Approximation

SpeedHom-FailureHom platforms

e SpeedHom-FailureHom: Polynomial time algorithm

@ Fixed period P*
e one single interval with minimum number of teams

P* x s

o greedily assign processors to teams to have balanced teams
e algorithm in O(p)

@ Converse problem: fixed F*
e one single interval...
e ...but must try all possible number of teams 1 < /¢ < p
o algorithm in O(plog p)
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Complexity Mono-criterion Bi-criteria Approximation

With heterogeneous platforms

@ SpeedHet-FailureHom is NP-hard
because SpeedHet is NP-hard for period minimization
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Complexity jon Bi-criteria Approximation

With heterogeneous platforms

@ SpeedHet-FailureHom is NP-hard
because SpeedHet is NP-hard for period minimization

o SpeedHom-FailureHet becomes NP-hard as well:

balancing processors within teams is combinatorial;
reduction from 3-PARTITION

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication



Complexity jon Bi-criteria Approximation

With heterogeneous platforms

@ SpeedHet-FailureHom is NP-hard
because SpeedHet is NP-hard for period minimization

o SpeedHom-FailureHet becomes NP-hard as well:

balancing processors within teams is combinatorial;
reduction from 3-PARTITION

@ Intermediate result: best reliability always obtained by
balancing failure probabilities of each team
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Complexity R io 3i-crite Approximation

Approximation results

@ SpeedHom: always optimal with single interval

@ SpeedHet: period minimization problem (NP-hard)

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication



Complexity ria  Approximation

Approximation results

@ SpeedHom: always optimal with single interval
@ SpeedHet: period minimization problem (NP-hard)

@ The optimal single-interval mapping can be found:

e sort processors by non-increasing speeds
e for 1 < i < p, compute period using i fastest processors

o time O(plogp)
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Complexity Mono-criterion Bi-criteria Approximation

Approximation results

@ SpeedHom: always optimal with single interval

@ SpeedHet: period minimization problem (NP-hard)

@ The optimal single-interval mapping can be found:

e sort processors by non-increasing speeds
e for 1 < i < p, compute period using i fastest processors
o time O(plogp)

@ Theorem: single-interval mapping is a n-approximation
algorithm for period minimization; this factor cannot be
improved
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Complexity Mono-cri i-criteria  Approximation

Approximation results

@ SpeedHom: always optimal with single interval

@ SpeedHet: period minimization problem (NP-hard)

@ The optimal single-interval mapping can be found:

e sort processors by non-increasing speeds
e for 1 < i < p, compute period using i fastest processors
o time O(plogp)

@ Theorem: single-interval mapping is a n-approximation
algorithm for period minimization; this factor cannot be
improved

@ Proof sketch: start from an optimal solution, with m < n

intervals, and build a single interval solution, with period
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Practical Heuristics A* Evaluation

Outline of the talk

© Practical side
@ Heuristics
@ Optimal algorithm using A*
@ Evaluation results
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Practical Heuristics A* Evaluation

Heuristics

o SpeedHet-FailureHet platforms
@ Minimize F under a fixed upper period P*

e Counterpart problem: binary search over P*
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Practical Heuristics A* Evaluation

Heuristics

SpeedHet-FailureHet platforms

Minimize F under a fixed upper period P*

Counterpart problem: binary search over P*

Two heuristics:
o ONEINTERVAL: stages grouped as a single interval (motivated
by complexity results)
o MULTIINTERVAL: solution with multiple intervals (recall that
single interval may be far from optimal)
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Practical Heuristics A* Evaluation

ONEINTERVAL

@ One single interval
@ Determine number of teams: try all values ¢ between 1 and p

e For a given £, discard processors too slow for period
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Practical

ONEINTERVAL

@ One single interval
@ Determine number of teams: try all values ¢ between 1 and p

e For a given £, discard processors too slow for period

@ Assign processors to teams to minimize failure probability

e From complexity results: balance reliability across teams

e NP-hard problem but efficient greedy heuristic: sort processors
by non-decreasing failure probability and assign next processor
to team with highest failure probability
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Practical Heuristics A* E\

ONEINTERVAL

One single interval

Determine number of teams: try all values ¢ between 1 and p

For a given ¢, discard processors too slow for period

Assign processors to teams to minimize failure probability
e From complexity results: balance reliability across teams
e NP-hard problem but efficient greedy heuristic: sort processors
by non-decreasing failure probability and assign next processor
to team with highest failure probability

Time complexity: O(p? log p)
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Practical Heuristics A* Evaluation

MULTIINTERVAL

@ Step 1: create min(n, p) intervals (one stage per processor, or
balance computational load across intervals)
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Practical Heuristics A* Evaluation

MULTIINTERVAL

@ Step 1: create min(n, p) intervals (one stage per processor, or
balance computational load across intervals)

@ Step 2: greedily add processors to stages, to minimize maximum
ratio of interval computation load to accumulated processor speed
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Practical Heuristics A* Evaluation

MULTIINTERVAL

@ Step 1: create min(n, p) intervals (one stage per processor, or
balance computational load across intervals)

@ Step 2: greedily add processors to stages, to minimize maximum
ratio of interval computation load to accumulated processor speed

@ Step 3: for each interval, use ONEINTERVAL to form teams; use
previously unallocated processors (too slow for period); increase
bound on period for the interval until valid allocation returned
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Practical Heuristics A

MULTIINTERVAL

@ Step 1: create min(n, p) intervals (one stage per processor, or
balance computational load across intervals)

@ Step 2: greedily add processors to stages, to minimize maximum
ratio of interval computation load to accumulated processor speed

@ Step 3: for each interval, use ONEINTERVAL to form teams; use
previously unallocated processors (too slow for period); increase
bound on period for the interval until valid allocation returned

@ Step 4: if period bound not achieved for at least one interval, merge
interval with largest period with previous or next interval, until
bound is achieved
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Practical

MULTIINTERVAL

@ Step 1: create min(n, p) intervals (one stage per processor, or
balance computational load across intervals)

@ Step 2: greedily add processors to stages, to minimize maximum
ratio of interval computation load to accumulated processor speed

@ Step 3: for each interval, use ONEINTERVAL to form teams; use
previously unallocated processors (too slow for period); increase
bound on period for the interval until valid allocation returned

@ Step 4: if period bound not achieved for at least one interval, merge
interval with largest period with previous or next interval, until
bound is achieved

@ Step 5: merge intervals with highest failure probability as long as it
is beneficial
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Practical

MULTIINTERVAL

@ Step 1: create min(n, p) intervals (one stage per processor, or
balance computational load across intervals)

@ Step 2: greedily add processors to stages, to minimize maximum
ratio of interval computation load to accumulated processor speed

@ Step 3: for each interval, use ONEINTERVAL to form teams; use
previously unallocated processors (too slow for period); increase
bound on period for the interval until valid allocation returned

@ Step 4: if period bound not achieved for at least one interval, merge
interval with largest period with previous or next interval, until
bound is achieved

@ Step 5: merge intervals with highest failure probability as long as it

is beneficial

@ Note that ONEINTERVAL is called each time we tentatively merge
two intervals (steps 4 and 5)
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Practical

MULTIINTERVAL

@ Step 1: create min(n, p) intervals (one stage per processor, or
balance computational load across intervals)

@ Step 2: greedily add processors to stages, to minimize maximum
ratio of interval computation load to accumulated processor speed

@ Step 3: for each interval, use ONEINTERVAL to form teams; use
previously unallocated processors (too slow for period); increase
bound on period for the interval until valid allocation returned

@ Step 4: if period bound not achieved for at least one interval, merge
interval with largest period with previous or next interval, until
bound is achieved

@ Step 5: merge intervals with highest failure probability as long as it
is beneficial

@ Note that ONEINTERVAL is called each time we tentatively merge
two intervals (steps 4 and 5)

@ Time complexity: O(p® log p)
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Practical Heuristics A* Evaluation

A* algorithm

@ A* best-first state space search algorithm
for small problem instances
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Practical Heuristics A* Evaluation

A* algorithm

@ A* best-first state space search algorithm
for small problem instances

@ Non-linearity of failure probability:
rules out the use of integer linear programming
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Practical Heuristics A* Evaluation

A* algorithm

@ A* best-first state space search algorithm
for small problem instances

@ Non-linearity of failure probability:
rules out the use of integer linear programming

@ Search space: state s is a partial solution (i.e., partial
mapping), with underestimated cost value c¢(s)
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Practical Heuristics A* Evaluation

A* algorithm

@ A* best-first state space search algorithm
for small problem instances

@ Non-linearity of failure probability:
rules out the use of integer linear programming

@ Search space: state s is a partial solution (i.e., partial
mapping), with underestimated cost value c¢(s)

@ Expansion of a partial solution with lowest c(s) value,
with a stage or a processor
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Practical Heuristics A* Evaluation

A* algorithm

@ A* best-first state space search algorithm
for small problem instances

@ Non-linearity of failure probability:
rules out the use of integer linear programming

@ Search space: state s is a partial solution (i.e., partial
mapping), with underestimated cost value c¢(s)

@ Expansion of a partial solution with lowest c(s) value,
with a stage or a processor

@ Complete mapping obtained: optimal solution
(best-first strategy)
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Practical Heuristics A* Evaluation

State tree for two stages on two processors

[S1]  [S)]
(P) (P

: : (51,5 (s s
oo (P) (P)
H : [Si1] Pr - [Si] [S]
' (P2) ' (P) (P)
' '
1
H [S1] [ (51,52 ] [ S [8)] }_._ _[ [SN% ]
Legend (P) (P1) (P1) (P,
S Sp]  : one interval H S,
Pi, PZ : first team for this interval :' [ Pl] i
P3,P;) : second team for this interval ' (P)
PsPs ¢ processors not selected :
for the last interval )
—- cXpansion with a new stage : 5.5 W
= = = 4 : expansion with a new processdr N ([Ph P2]) '# ﬂ
1 1, P2
>< : invalid state [ [‘21] A‘
1
D : goal state ngg [51,’1’52]
{7

Anne.Benoit@ens-lyon.fr October 28, 2010 Mapping pipelined applications with replication 22/ 28



Practical

Underestimate cost functions

o Failure probability F

e Partial mapping: adding team increases failure probability

e Underestimate: add remaining processors to existing teams

o NP-hard problem: consider amount of reliability available and
distribute it to the existing teams to balance their reliability
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Practical

Underestimate cost functions

o Failure probability F

e Partial mapping: adding team increases failure probability

e Underestimate: add remaining processors to existing teams

o NP-hard problem: consider amount of reliability available and
distribute it to the existing teams to balance their reliability

@ Period P

o Need to check that partial solution does not exceed the bound:
can be computed exactly

e Second underestimate: optimal period achieved by remaining
processors on remaining stages

o NP-hard problem: consider perfect load balance: P < %
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Practical

Heuristics vs A*

Heuristics A* Evaluation

@ Randomly generated workload scenarios

@ Both heuristics close to optimal solution

@ ONEINTERVAL is better than MULTIINTERVAL in a few cases

@ A* much slower, but main limitation is memory

-o- A*
0.9 4 -0 ONEINTERVAL
== MULTIINTERVAL

0.8 4
0.7 4
0.6 4
0.5 o
0.4

Failure probability

03 4
0.2 4
014

-~ A*
35 -0~ ONEINTERVAL
== MULTIINTERVAL

Running time (seconds)

2 3 4 5 6 7 8 9
Period bound
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Practical Heuristics A* Evaluation

Performance of heuristics

@ Distribution of ratio between failure probability obtained by a
heuristic (ONEINTERVAL in red, MULTIINTERVAL in blue) and
optimal failure probability (A*) (optimal: ratio 1)

@ On average, heuristics 20% above optimal
@ Ratio 10: cases in which heuristics find no solution (=~ 10%)
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Practical Heurist \*  Evaluation

Larger scenarios

@ ONEINTERVAL better in 61% of the cases
o MULTIINTERVAL better in 20% of the cases
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Larger scenarios
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@ On average, failure probability of ONEINTERVAL 2% above
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Practical Heuristics A* Evaluation

scenarios

@ ONEINTERVAL better in 61% of the cases
o MULTIINTERVAL better in 20% of the cases

@ On average, failure probability of ONEINTERVAL 2% above
MULTIINTERVAL

@ Comparison of ONEINTERVAL with optimal single-interval
solution (easy to compute with A*): in average, 0.05% above
optimal, and 5% in the worst case
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Outline of the talk

@ Conclusion
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Conclusion
Conclusion and future work

@ Exhaustive complexity study
e polynomial time algorithm for SpeedHom-FailureHom
platforms
o NP-completeness with one level of heterogeneity
e approximation results to compare single interval solution with
any other solution
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Conclusion
Conclusion and future work

@ Exhaustive complexity study
e polynomial time algorithm for SpeedHom-FailureHom
platforms
o NP-completeness with one level of heterogeneity
e approximation results to compare single interval solution with
any other solution

@ Practical solution to the problem
o efficient heuristics (inspired by theoretical study) for
SpeedHet-FailureHet platforms
o A* algorithm with non-trivial underestimate functions
e experimental results: very good behaviour of heuristics

@ Future work
e further approximation results
e enhanced multiple interval heuristics
e improved A* techniques
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