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Abstract Software component technologies are being ac-
cepted as an adequate solution for handling the complex-
ity of applications. However, existing software component
models tend to be specialized to some types of resource ar-
chitectures (e.g. in-process, distributed environments, etc.)
and/or do not provide a very high level of abstraction. This
paper focuses on handling data sharing on operation invo-
cations between components as a solution allowing applica-
tions to be efficiently executed on all kinds of resources. In
particular, the data sharing pattern appears in master–worker
applications, when workers need to access only a part of a
large piece of data, either in read or write mode. This ap-
proach is applied to the Common Component Architecture
model. Its benefits are discussed using an image rendering
application.

Keywords Software components · Data sharing ·
Master–worker paradigm · Grid computing · Common
component architecture

1 Introduction

e-Science application programmers are facing a serious
challenge for the following years, due to both the intricacy
of these applications and the increasing variety of computing
resources. For instance, resources may be multicore multi-
thread multiprocessors, clusters, or grid computers. To cope
with these two concerns, it is necessary to provide program-
ming models able to make the programming of these ap-
plications simple, independent of the target computing in-
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frastructures, while preserving high-performance. Software
component models aim to handle the increasing complexity
of today’s applications [26]. However, component models
need to be adapted for addressing high performance inde-
pendently of the resource infrastructure. In previous work,
we have addressed several shortcomings of these models:
encapsulation of a parallel code into a component [25], sup-
port for the master–worker programming paradigm [11], and
support for data sharing among components [7].

Communication between components is to a large extent
based on the exchange of messages, which may be associ-
ated with control transfers (RPC or RMI) or with data trans-
fers (events, streams, etc.). For many applications, especially
e-Science ones, this communication model is not satisfac-
tory because it requires to explicitly compute which pieces
of data need to be exchanged. When data structures are com-
plex and sparse in memory, or when data access patterns are
irregular, this communication model is not suitable nor effi-
cient: a shared memory communication model seems more
appropriate. The challenge is thus to support this communi-
cation model while keeping the good properties of software
components, that is to say: the composition, the port-based
communications, the deployment unit, etc.

This paper aims at showing how an existing component
model, the Common Component Architecture (CCA) [10],
can be extended to support shared data in general, and fo-
cuses more particularly on the master–worker paradigm. To
this end, it fills the gap between data sharing and operation
invocations. The proposed approach is illustrated with an
image rendering application that has been chosen as it re-
quires to share data and exhibits a master–worker pattern.

Section 2 describes the state-of-the art with software
component models in general, and briefly summarizes our
previous works on the use of the transparent data access
paradigm and on the master–worker paradigm within com-
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ponent models. Section 3 presents CCA and proposes exten-
sions to the CCA model, in order to support the two con-
cepts, data sharing and master–worker paradigm. Section 4
describes how data sharing can be enabled on operation in-
vocation, first independently of any component model, then
in the CCA model. Its benefits with respect to an image ren-
dering application are discussed in Sect. 5. Section 6 con-
cludes the paper and outlines some future works.

2 Software component models

Even though software component technology is not a re-
cent idea [23], it has been emerging for not more than few
years [9]. The re-emergence of this technology appears as a
response to the failure of used programming models to deal
with the continuous growth in complexity of applications.
For instance, the object-oriented approach has failed to han-
dle very complex and large applications, mainly because de-
pendency between objects are hidden in the code.

Recently, several component models have been proposed
like the OMG CORBA Component Model [24] (CCM),
the Common Component Architecture [10] (CCA), the Ob-
jectWeb FRACTAL component model [12], GRID.IT [1],
DARWIN [20]), etc. Their aim is to facilitate the design
of applications and reduce the complexity of their building
process. Even though these component models offer differ-
ent properties, they have all a unified definition of a software
component, which is based on the Szyperski [26] definition.
According to Szyperski, a component is a unit of composi-
tion with contractually specified interfaces and explicit con-
text dependencies only. A software component can be de-
ployed independently and is subject to composition by third
parties. This definition considers a component as a black
box for which the following concepts are attached:

Composition. A component is able to be composed with
other components by a third party. This composition is pos-
sible thanks to well-defined interfaces that allow compo-
nents to interact. Some contracts are attached to these in-
terfaces and must be accepted. They allow specifications of
constraints related to interaction, such as security.

Ports. To be able to interact with other components, a com-
ponent defines external interfaces named ports. A port is a
programming artifact to which an interface can be attached.
It can be categorized in two types: a client or server port.
The interaction between two components is then performed
by connecting a client port of a first component to a server
port of a second component with compatible type. In exist-
ing component models the interaction mode through ports
can be method invocations or message passing (events or
streams).

Assembly. The assembly phase is the process of building
an application. In particular, an assembly generates a spec-
ification of component instances and their interconnections.
Component assemblies can be described using an Architec-
ture Description Language (ADL), like for example in CCM

or in FRACTAL. Another approach consists in using run-time
composition, like for example in CCA, CCM or in FRACTAL.

Deployment. A component is a binary unit of deployment.
It should reference an implementation (binary code) and
the constraints associated to it, like the operating systems,
processors and amount of memory requirements. It may also
contain several implementations and so, alternative require-
ments. These properties help a deployment tool to decide on
which resource in a Grid or other distributed environment,
an instance of the component may be installed.

Despite the fact that component models offer facilities
to program complex applications, they do not support all
distributed application paradigms in an easy way. The re-
mainder of this section recalls previous work about the
enhancement of component models with the support of
two paradigms: (1) the data sharing paradigm and (2) the
master–worker paradigm.

2.1 Transparent data access model and component models

2.1.1 Enabling transparent access to data

An attractive programming paradigm allowing data to be
shared by multiple concurrent entities is the shared memory
paradigm. Its advantage relies on the ease of programming:
multiple entities can read/write data in a global space with-
out any need to explicitly handle data location. This concept
has been successfully applied in several contexts: (1) multi-
threading within the same process, (2) data segment shar-
ing among multiple processes running on the same host,
or (3) global data sharing across a cluster of workstations
through Distributed Shared Memory (DSM) systems. This
concept has not really been exploited in grid environments.
Currently, the most widely-used approach to manage data
on distributed environments is based on a set of data cata-
logs, such as Giggle [16] or LDR [28] for instance. The goal
of theses data catalogs is to return locations of a given data
based on one or several of its attributes. Therefore, an ex-
plicit data access model is used, where clients have to move
data to computing servers. In this context, grid-enabled file
transfer tools have been proposed, such as GridFTP [2], RFT
(Reliable File Transfer, an OGSA service for asynchronous
data transfers), or DiskRouter [19].

Let us recall that one of the major goals of the grid con-
cept is to provide an easy access to the underlying resources,
in a transparent way. The user should not need to be aware
of the localization of the resources allocated to applications.
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When applied to the management of the data used and pro-
duced by applications, this principle means that the grid in-
frastructure should automatically handle data storage and
data transfer among clients, computing servers and storage
servers as needed. It should also handle fault tolerance and
data consistency guarantees in such dynamic, large-scale,
distributed environments and again, in a transparent way.

In order to achieve a real virtualization of the manage-
ment of large-scale distributed data, a step forward has been
made by enabling a transparent data access model through
the concept of grid data-sharing service [5]. In this trans-
parent data access approach, the user accesses data via
global identifiers, which allow to do argument passing by
reference for shared data. The service which implements
this model handles data localization and transfer without any
help from the programmer. The data sharing service concept
is based on a hybrid approach inspired by DSM systems (for
transparent access to data and consistency management) and
peer-to-peer (P2P) systems (for their scalability and volatil-
ity tolerance). The service specification includes three main
properties.

Persistence. The data sharing service provides persistent
data storage and allow the applications to reuse previously
produced data, by avoiding repeated data transfers between
clients and servers.

Data consistency. Data can be read, but also updated by the
different codes. When data is replicated on multiple sites,
the service has to ensure the consistency of the different
replicas, thanks to consistency models and protocols.

Fault tolerance. The service has to keep data available de-
spite disconnections and failures, e.g. through replication
techniques and failure detection mechanisms.

The concept of data-sharing service is illustrated by the
JUXMEM software experimental platform, described in de-
tail in [6]. Its implementation relies on the JXTA [27]
generic P2P framework. The JUXMEM API provides to
users classical functions to allocate and map/unmap mem-
ory blocks in a globally shared space: juxmem_malloc,
etc. The memory allocation operation returns a global data
ID. This ID can be used by other nodes in order to ac-
cess existing data through the use of the juxmem_mmap
function. To obtain read and/or write access on a data, a
process that uses JUXMEM should acquire the lock asso-
ciated to the data through either juxmem_acquire or
juxmem_acquire_read. This allows the implementa-
tion to apply consistency guarantees according to the con-
sistency protocol specified by the user at allocation time.
The choice of a C-style malloc interface for the API of
JUXMEM is motivated by the targeted e-Science applica-
tions of JUXMEM: they mainly share arrays of data.

2.1.2 Data sharing and component models

In current component models, ports are defined based on
the assumption of an explicit communication operation be-
tween two components. As such, components are only able
to deal with data as a part of a message actually exchanged
between two components. As explained earlier, sharing data
among multiple components may be more appropriate for
some applications where data structures are more complex
and access patterns are more irregular. Implementing such
a functionality using “classical” ports inside a component-
based application is possible. For instance, the shared data
can be physically located into a component and accessed
by other components through provided ports. However, with
such a centralized approach, the component storing the data
can easily produce a bottleneck as the number of concur-
rent accesses increases. Another possibility is to have a copy
of the shared data on each component that uses it. In such
a case, the functional code of a component would have to
maintain a consistent state of all copies, each time the data is
updated. For example, this can be achieved through the use
of a consensus algorithm. Consequently, the management of
synchronizations and concurrent accesses to data would be
handled within the functional code of components, leading
to an unnecessary increase in the complexity of applications.

To summarize, existing software component models do
not efficiently support a transparent data access model. We
claim that this is a limitation for current component models
as data persistence, consistency and fault-tolerance are not
handled.

2.1.3 Data port model

In a previous work [7], we proposed an approach to allow
transparent data sharing in component models. The idea is
to logically attach the shared data to a component. The main
role of this component is to provide a global reference of the
data to share it by several components. The localization of
the data and the management of concurrent accesses to this
data rely on the transparent data access model described in
Sect. 2.1.1.

More concretely, the proposed approach is based on an
additional family of ports named data ports. Two kinds of
data ports were defined: a shares port to give an access to a
shared data and an accesses port to enable a component to
access a data exported through a shares port. In a transparent
way for the programmer, such ports may delegate the data to
be managed to a data sharing service.

In order to access a data, an interface named AccessPort
is implicitly associated to a data port. The API of this inter-
face is shown in Fig. 1. This interface is available through
accesses ports as well as through shares ports. Indeed,
a component that shares some data may also need to ac-
cess the data. The interface provides get_pointer/get_
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Fig. 1 An interface offered to the programmer by data ports. The
shared data is an array of float

size primitives to respectively retrieve a pointer to the
shared data and its size. This interface is currently enough
for scientific codes, mainly written in FORTRAN, that typ-
ically handle arrays. It also provides synchronization primi-
tives, like acquire and release. The acquire_read
primitive sets a lock in read-only mode so that multiple read-
ers can simultaneously access a given data, whereas ac-
quire sets a lock in exclusive mode.

A component which aims to access a data through an ac-
cesses port should have this port connected to a shares one.
Connecting the two ports implies passing the reference of
the shared data from the shares component to the accesses
component. The shared data was previously allocated and
associated to the shares port by an appropriate interface pro-
vided only on the shares port side.

Let us stress that a data port allows a data to be shared be-
tween components without worrying the user with the mech-
anism used to share the data. Such a mechanism is expected
to be the memory between components collocated within the
same process, a shared memory segment for components in
two different processes but on the same host, a DSM for
cluster and a grid data-sharing service like JUXMEM for
grids. It is the responsibility of the component model frame-
work not of the component implementation.

We projected this model on the CORBA Component
Model and we realized a prototype implementation as a
proof of the concept and of the facilities offered to the pro-
grammer. JUXMEM was in particular used to share data be-
tween components located on distinct clusters. An applica-
tion example using data ports can be found in [7].

2.2 Master–worker paradigm and component models

2.2.1 The importance of the master–worker paradigm

The master–worker programming paradigm is widely used
in distributed applications. For instance, parametric ap-
plications are based on such a paradigm: several work-
ers simultaneously execute a same code but with differ-
ent parameter values. Numerous research activities are
dealing with the design of master–worker software grid-
enabled environments such as for global computing sys-
tems (SETI@Home [3], XtremWeb [18], BOINC [4], etc.)

or for network-enabled server environments (DIET [14],
NetSolve [15], Nimrod/G [13]).

Such grid-enabled environments relieve the programmer
of dealing with non functional tasks: collecting workers
through a large network to participate in a computation,
managing requests transfer and scheduling from a master
to its workers and dealing with fault tolerance on volatile
resource infrastructures. However, these environments only
focus on supporting the master–worker paradigm. There-
fore, such environments seem not to be convenient to sup-
port an application partially based on the master–worker
paradigm. However, if such an environment is not used,
a programmer has the burden of managing workers. Con-
sequently, the code complexity is increased by the previ-
ously cited non functional concerns. Moreover, it is fur-
ther increased since implementing request transport policies
from masters to workers may be very complex as they may
depend on the underlying execution environments. These
drawbacks remain valid for component-based applications
as explained hereafter.

2.2.2 Master–worker paradigm and component models

Current component models do not offer efficient mecha-
nisms to provide a suitable level of abstraction for develop-
ing master–worker applications. More explicitly, a compo-
nent based master–worker application is mainly composed
of an instance of a master component and several instances
of a worker component. To assemble the master with the
workers with existing component models, the programmer
should consider the management of the workers.

The workers management may be introduced inside the
implementation of the components or may be considered
when the application is assembled. In the last case, the pro-
grammer may introduce components between the master
and the workers. These additional components have the re-
sponsibility to manage requests transport. The programmer
should also select both the number of workers to be defined
in the assembly and an adequate requests transport policy.
However, this choice depends on the resource infrastruc-
ture on which the application will be deployed. As a con-
sequence, component models fail in providing the indepen-
dence of the application development from the used resource
infrastructures. Moreover, the transparency of workers man-
agement which can be offered by existing master–worker
environments is missing.

2.2.3 A model for the master–worker paradigm

In a previous work [11], we aimed at extending software
component models to increase the abstraction level for
master–worker applications. The proposal only requires a
designer to specify a set of worker instances to which a
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Fig. 2 An overview of a
master–worker application
model

master component is connected. Request transport concerns
are handled separately while advanced transport policies are
possible. Existing master–worker environments may be uti-
lized. Last, the number of workers is handled as a nonfunc-
tional property and thus may be delegated to an adaptivity
service.

Figure 2 presents an overview of the different elements of
the proposal. The application designer specifies a collection
of worker components. A collection is a set of exposed ports,
bound to some internal component ports. It is described with
an abstract architecture description. Independently, request
transport patterns are defined by some experts. They rep-
resent request delivery policies that may be used between
master and worker components. They should be based on
software components, even though existing master–worker
environments, such as the hierarchical Network Enabled
Server DIET [14], may be used.

Once the deployment environment is known, an initial
number of worker components and a suitable requests trans-
port policy can be decided. From these choices, the abstract
architecture description is converted into a concrete ADL de-
scription during a transformation process. In the example of
Fig. 2, the selected pattern is a hierarchical random schedul-
ing policy implemented by a tree. The concrete ADL is a
standard ADL, typically the ADL of the component model.

This generic model was projected to two specific compo-
nent models, CCM and FRACTAL [11].

3 Extending CCA

This section applies the generic models of both data shar-
ing and master–worker paradigms to CCA. The projection
is based on an extension of the CCA specifications (ver-
sion 0.7.8). Data ports, collections and request delivery pol-
icy patterns are introduced by adding new operations in

the framework service APIs. Before exposing these exten-
sions, let us first provide an overview of the CCA component
model and specifications.

3.1 Overview of CCA

The Common Component Architecture [10] is a set of stan-
dards defined by a group of researchers from US national
laboratories and academic institutions. The goal of the group
is to develop a common architecture for building large scale
scientific applications based on well tested software compo-
nents.

A CCA component can define uses or provides ports. The
specification of such ports is done by using the Scientific
IDL. Unlike many component models, the assembly model
of CCA is only dynamic. This means that there is not any
Architecture Description Language (ADL) to describe com-
ponents or component compositions. CCA relies on run-time
calls, as ports are dynamically added or removed to compo-
nents.

The specifications of CCA define standard SIDL inter-
faces that should be provided by any CCA compliant frame-
work implementation. Three of them are of particular in-
terests for this paper. First, the Port interface is an empty
interface which all ports must derive from. Second, the
BuilderService interface deals with component cre-
ation as well as composition. For example, a user can cre-
ate a component instance thanks to the createInstance
operation and connect two ports via the connect opera-
tion. It may also obtain the list of ports available for a given
component through introspection mechanisms available in
this BuilderSevice interface. Third, the Services in-
terface deals with port management with respect to a com-
ponent implementation. A unique instance of this interface
is given to each component instance. Through this inter-
face, a component can declare provides ports (respectively
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uses port) by respectively calling the addProvidesPort
operation (resp. the registerUsesPort operation). The
component can subsequently obtain a reference to a declared
port as a result of a getPort invocation.

3.2 Transparent data access model in CCA

Section 2.1 has described a generic proposal about transpar-
ent data sharing between components based on data ports.
This section presents how data ports can be specified and
implemented in CCA. It is first described from a user point
of view and then from a framework implementer point of
view.

3.2.1 User view

Data ports are distinct from provides and uses ports. Hence,
as shown in Fig. 3, two new operations need to be added
to the Services interface to handle them: the create-
SharesPort and the createAccessPort operations.
They respectively creates a shares data port and accesses
data port for a given data type.

These ports behaves differently from classical provides/
uses ports: data ports come with their own pre-defined in-
terfaces. For an accesses port (resp. a shares port), a pro-
grammer has access to the AccessPort interface (resp.
a SharesPort interface). As shown in Fig. 3, the API of
the AccessPort contains operations to acquire a pointer
to data, to read/write them and to handle their consistency.
The SharesPort interface contains the same operations
as the AccessPort interface, since it inherits Access-
Port. A programmer may indeed access a data it shares.
However, it also offers two operations to deal with the as-
sociation of a piece of data with the port. The associate
operation provides the ability for a memory area to be at-
tached to a data port, whereas disassociate is the oppo-
site operation. A component implementer is still responsible

Fig. 3 SIDL specifications for the CCA projection of data ports

for allocating/freeing the memory. Note that the actual mem-
ory area attached to a shares port may dynamically change.1

However, it is transparent for all accesses port connected to
it. Similarly, it is possible to allow a user to specify the ad-
dress to which an accesses port maps the data. This can be
done by extending the AccessPort interface as well as
the properties of the createAccessPort.

A component implementation obtains a reference to an
object providing an AccessPort or SharesPort inter-
face through the getPort operation of the Services in-
terface. The connection process is also unchanged from the
programmer point of view: a connection between a shares
and an accesses ports is done with the connect operation.
If the data type of both data ports are not compatible, an
exception is raised. Moreover, programmers do not have to
worry about the underlying mechanism used to share data
between components: it is the responsibility of the frame-
work. Finally, a complete specification will require to in-
troduce relevant introspection operations in the Builder-
Service interface. Such operations may for instance allow
the programmer to obtain the full list of shares ports of a
given component.

3.2.2 Framework implementer view

To provide the previously described view to programmers,
the framework should internally be able to distinguish be-
tween classical and data ports. This distinction enables the
framework to perform appropriate actions. For instance, the
framework has to create and attach an instance of Ac-
cessPort or SharesPort when a data port is created.
Also, when connecting data ports the data type needs to be
checked in order to ensure the compatibility of ports. An-
other modification to the framework is required for the con-
figuration process of the AccessPort object. A reference
of the data exported by the SharesPort needs to be given
to the AccessPort. As the interface has to be indepen-
dent of any data types, we propose to use the opaque SIDL

type that represents a pointer to the local memory. Depend-
ing on the localization of the components, several technolo-
gies may be used to actually implement the data sharing. If
the data is located in the same process, there is nothing to
do. For components located into distinct processes but on
the same node, shared memory segment provided by most
operating systems can be used. On a cluster, a distributed
shared memory system may be used. Finally, on grid envi-
ronments a grid data-sharing service, such as JUXMEM, can
be used. Advanced framework may dynamically decide of
the data sharing mechanism to be used depending on their
availability and the localization of components. In [7], we

1SuspendPort/ResumePort operations need to be added to the
Services interface to do it atomically.
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show that the interface with respect to the framework may
be generic and contains operations like data allocation and
freeing, reading, writing and synchronization.

To summarize, the proposed extension of the CCA spec-
ifications to support data ports implies the extension of
the Services interface and the re-implementation of the
BuilderService interface in the framework. Operations
like connect, getPort and operations related to intro-
spection interests are also concerned by these changes. With
the experience gained with the implementation of data ports
performed in CCM [7], theses modifications seem to be lim-
ited and mostly straightforward to implement.

3.3 Master–worker paradigm in CCA

Our proposal for handling the master–worker paradigm, pre-
sented in Sect. 2.2, was applied to component models that
provide an ADL language. However, the aim of this model
is to be generic and therefore being possibly used in any
component models offering a similar level of abstraction.
This section presents a projection of this model on CCA,
a component model without an ADL language. The user
view is first described, followed by the framework imple-
menter view. As for data ports, this projection is also per-
formed by extending the CCA specifications.

3.3.1 User view

The master–worker paradigm is seen as the particular case
of the connection of a component (the master) that uses a
port provided by a collection of components (the workers).
Hence, three sets of interfaces are of interests for the user.
The first set deals with the collection creation and port bind-
ings. The second set, which is optional, is about the handling
of request transport policy patterns. The third one, which is
also optional, is related to the management of the dynamic
variation in the number of elements inside a collection.

As CCA does not provide any ADL language, a collec-
tion needs to be a concrete entity for the programmer. Our
proposal consists in the encapsulation of a collection de-
scription in a distinct component. As illustrated in Fig. 4,
we extend the BuilderService with operations related
to collection creation and port bindings. For the sake of
simplicity, we decide to provide an operation very similar
to the createInstance operation. The only difference
is that the created component receives a reference of type
CollServices instead of Services. Then, the com-
ponent may create as many ports and (logically internal)
components as it wants. Internal collection component ports
need to be connected to the collection port. However, this
connection is done via the bind operation instead of the
classical connect operation as these ports are of same
kind. For example, for a collection of workers, both the col-
lection and the workers have declared a provides port. Last,

Fig. 4 Collection and binding related specifications for CCA

Fig. 5 Pattern related specifications for CCA

only ports of type provides, uses or accesses can be bound.
It appears meaningless for shares ports.

The next step, which is optional, is to associate a pat-
tern with a provides port of a collection thanks to the
setPatternPort operation described in Fig. 5. This
step is optional as the framework should provide a de-
fault pattern as explained in the framework implementer
view. We choose to represent a pattern by an interface
(PatternInstanciation). The instantiatePat-
tern operation of this interface is called whenever a uses
port is connected to a provides port of a collection. The im-
plementation of such an operation has to actually connect
the external uses port to some internal provides port. It may
insert components to achieve more or less sophisticated re-
quest transport policies like round-robin policies or hierar-
chical policies.

The pattern is only applied on provides ports because it is
meaningless for uses ports. When connecting a component
with a provides port to a uses port of a collection, uses ports
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Fig. 6 Dynamic collection management related specifications for
CCA

are directly connected to the provides port of the component.
Note that it is possible to connect a provides port of a collec-
tion to a uses port of another collections. In this case, it is the
responsibility of the pattern of the provides port to correctly
connect all uses ports of the other collection. It is worth to
note that pattern interfaces are expected to be implemented
by scheduling experts, not by the end user.

The third step, which is also optional, is dedicated to
the dynamic management of a collection. For instance, the
number of elements of a collection may be adapted accord-
ing to its load. This adaptation may be done by the collec-
tion itself or by an external component. Hence, the Dyn-
CollBuilderService interface, shown in Fig. 6, pro-
vides operations to add or remove components to/from a
collection. The role of this interface is to notify the collec-
tion of such events. Hence, a collection willing to receive
such events has to register a port implementing the Col-
lectionManagement interface. The registration is done
thanks to the setCollManagementPort operation of
the DynCollServices: on its creation, a collection in
fact receives a reference to a DynCollServices. Addi-
tion or removal operations return a boolean to indicate either
the success or the failure of the request (no more resources,
components in use, etc.).

3.3.2 Framework implementer view

Interfaces presented in the previous section have a limited
impact on the framework, except for the connect oper-
ation. The framework needs to identify if a provides port
belongs to a collection. It is our main motivation for the in-
troduction of the createCollectionInstance oper-
ation in the CollBuilderService interface. It is also
possible to define an operation to turn an existing component
into a collection. Such operation can be useful to delegate
the management of a set of components to the framework
only once that become necessary during the execution. For
simplicity reasons in the presentation of the proposed model,
this operation is not presented.

Whenever the connect operation has identified that a
provides port belongs to a collection, it invokes its asso-
ciated instantiatePattern operation. Note that the
framework should behave correctly even if no pattern is
associated to a provides port of a collection. Hence, a de-
fault pattern should be implemented by the framework. It
may be up to the framework to decide what is the default
pattern: connection of the first/random element of the col-
lection, round-robin or introduction of a proxy component
which implements a random policy for scheduling requests
to the components inside the collection, etc. Such a proxy
involves the connection of multiple ports to a same type of
port. Some techniques, like multi-port [22] may ease this
operation.

If the port of the collection is of type uses (resp. ac-
cesses), the connect operation has to connect all uses
(resp. accesses) ports to the external provides (resp. shares)
port.

The dynamic collection management has a very low im-
pact on the framework. The related interfaces only enable a
delegation pattern.

4 Enabling data sharing on operation invocation

The previous section has dealt with the issues of sharing
a data between components and of supporting the master–
worker paradigm in CCA. This section is about the issue of
passing a shared data as a parameter of an operation invo-
cation. This scenario was not previously handled and typ-
ically appears when a master–worker paradigm would like
to have a shared data as a parameter of an operation. This
section first presents a general model and then instantiates
it as an extension of the CCA model. In the remainder of
the section, we consider the example based on two compo-
nents: a Client connected to a Server which provides
an compute interface. The Client component invokes
the inverse operation that produces a new matrix.

4.1 Illustration of the generic model

Let us start with component models that provide an IDL lan-
guage such as CCA SIDL or OMG IDL. In order to share a
parameter while invoking an operation, a notation needs to
be introduced in the IDL language. This new notation should
express that a parameter is passed by reference instead of
value. For this purpose, the ampersand character (&) appears
to be an obvious choice as it already fulfills this meaning
in the C++ language. The modification of IDL languages is
thus immediate and could be done with this conventional
reference notation. Figure 7 shows a simple example.

Component models enforce that all incoming and outgo-
ing communications go through some well defined ports.
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Fig. 7 Pseudo-IDL for the inverse operation

Fig. 8 Steps for invoking inverse operation from the component
Client using shared data as parameters

Therefore, the introduced notation needs to be translated
into some ports. The idea is to straightforwardly map such
shared parameters to the data ports introduced in Sect. 2.1:
for an operation invocation, a each parameter passed by ref-
erence has to be associated to a data port. Note that there
may be a difference in the implementation of the caller and
the callee of the operation. On the caller side, data ports
need to be explicitly created by the developer of the com-
ponent to make the data available to callees, in particular to
support multiple simultaneous invocations on possibly dis-
tinct shared data. On the callee side, data ports can be au-
tomatically generated by an IDL-based compiler if the com-
piler already generates skeleton code for handling incoming
calls. If the component model does not provide any IDL lan-
guage, operation prototypes are those defined hereinbefore:
they contain data port parameters.

Let us now illustrate the use of this model through the
previously introduced example. Figure 7 shows the oper-
ation prototype while Fig. 8 shows how the component
Client invokes the operation inverse. First, a data port
has to be created for each shared parameter. For the in para-
meter, a shares data port of type matrix is created and
then associated to the data. This permits to make the data
available from outside the component. For the out parame-
ter, an accesses data port needs to be created so as to receive
the reference of the remote shared data returned by the in-
verse operation.

The code of the callee is shown on Fig. 9. The in pa-
rameter of the inverse operation has been converted to
an accesses port: the implementation of the operation will
access an already created data. For the out parameter, the
produced result needs to be associated to the shares data
port. It also mainly applies for inout parameters.

Let us stress that the data reference extension is differ-
ent from parameter modes. Classically, e.g. in CCA SIDL or
OMG IDL, parameter modes determine the owner of data.
For an in mode, the callee can not reallocate the data while
it is possible for inout mode. For out mode, the callee

Fig. 9 Implementation of the inverse operation on the Server
component with shared data as parameters

is responsible to allocate the data. Our reference notation
specifies that the data is shared. Hence, it is orthogonal with
parameter modes. For in modes, the semantic is the fol-
lowing: the caller provides an access to an already created
data. Therefore, the callee can access the data in read and
write mode but without the right to reallocate it. For the
out mode, the caller receives a reference to a shared data
allocated by the callee. However, for the inout mode, the
callee may reallocate the input data. More precisely, as the
data is being shared, and thus possibly accessed by several
components, it is not possible to simply deallocate an in-
out parameter of an operation. Instead, the data reference
must first be dissociated from the shares data port, then an-
other data reference can be associated to the port.

4.2 Applying the generic model to CCA

To enable data sharing on operation invocations in CCA, the
projection is based on the proposed extension presented in
Sect. 3.2. As the used annotations for data port interfaces
are similar to those used in the generic model, the projection
is straightforward. With respect to the user view, the only
changes are in the SIDL language, whose is enriched with
the ampersand character, and in the mapping of SIDL oper-
ation with shared parameters as explained in Sect. 4.1. With
respect to the implementer view, the CCA specifications are
those introduced in Sect. 3.2. No specialization is needed.
However, SIDL compilers like Babel [17] need to be mod-
ified to behave accordingly. All the work to manage shared
data on operation invocation, like port creation and connec-
tion, is mainly done in stubs and skeletons of provides and
uses ports.

5 Data sharing with a component-based ray-tracer

5.1 A ray tracing application

To illustrate the concept of data ports, we selected a paral-
lel rendering algorithm based on ray-tracing. This algorithm
follows a master–worker paradigm to distribute the compu-
tation of pixels among a set of machines and requires to
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share both the geometrical database and the frame-buffer.
The ray tracing algorithm is used in computer graphics to
render high quality images. It is based on simple optical laws
which take effects such as shading, reflection and refraction
into account. It acts as a light probe, following light rays in
the reverse direction. The basic operation consists in tracing
a ray from an origin point towards a direction in order to
evaluate a light contribution. Computing realistic images re-
quires the evaluation of several millions light contributions
to a scene described by millions of objects. Tracing a ray re-
quires to go through an Object Acceleration Data Structure
(OADS) to discover whether a ray intersects an object (such
as a polygon) without testing all objects of the 3D model.
Parallelization of the ray-tracing [8] is very simple if the 3D
model and the OADS is replicated or shared. For a complex
3D model with several millions of objects, sharing is more
suitable than replication.

5.2 Component model

We split a ray-tracing algorithm into several components. Its
architecture is shown in Fig. 10 while the main interfaces are
shown in Fig. 11. The OADS Builder component creates the
OADS from the 3D model of the scene to be rendered. Its
OADSconfig port enables to retrieve references to them.
The master component sends rays to Ray-Tracer compo-
nents through the render operation. The 3D model, the
OADS and the frame-buffer are passed as shared parame-
ters of the render operation. Ray-Tracer components read
the OADS while they write in the frame-buffer. Therefore,
several Ray-Tracer components can concurrently update the
frame-buffer by storing pixel values. The master component

Fig. 10 A parallel component-based ray-tracer using data ports

Fig. 11 Pseudo SIDL interface examples related to ports of the
ray-tracer

manages a set of frame-buffers for 3D animation that are
accessed by a specific component (Mpeg) that produces an
encoded video from these frame-buffers.

5.3 Discussion

Being able to actually share data like the 3D model and
the OADS brings several advantages. First, the sequential
code can be directly reused even though components are
instantiated into distinct processes or machines. Second, it
avoids to compute data distributions for the 3D model and
OADS. Third, it transparently supports very large 3D mod-
els and OADS. The pressure is on the data sharing middle-
ware, not on the components. Fourth, a modification to the
3D model, typically for animation purposes, is automatically
propagated as the data sharing middleware implements the
consistency model.

The ability to have shared parameters enables the decou-
pling of rendering operations from configuration operations:
a worker component does not need to be explicitly con-
nected to a 3D model and to OADS data. The accesses port
creation and connection are automatically done on the op-
eration invocation. Hence, it is very easy for a master com-
ponent to simultaneously launch the computation of several
frame-buffers depending or not on the same 3D model. The
rendering workers act more like a service: any component
having an image to render may use it.

The collection concept enables to have a master–worker
relationship between only some components of the applica-
tion. The handling of the collection size depending on the
number of requests may be handled outside the master com-
ponent. It was not represented here.

6 Conclusion

Software components is a very promising technology to
build complex applications. However, current component
models do not support data sharing between components
and poorly support the master–worker paradigm. Both are
important: data sharing is useful for applications dealing
with complex and large pieces of data, as it eases a lot their
management; the master–worker paradigm is very common.
This paper presented two contributions. First, it applies our
generic models of data sharing and master–worker for com-
ponent models to CCA. Second, it presents a generic model
allowing shared data to be used as parameters of operation
invocations. Such a model is mapped to CCA and its benefits
are illustrated with a ray tracing algorithm.

Future work is three-fold. First, we are implementing
such an application to actually evaluate its performance.
Second, we are investigating the impact of modifying a CCA

framework implementation, in particular MOCCA [21], to
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support the proposed master–worker model. And third, we
are investigating the impact of such a programming model
on the deployment process. Being able to describe an appli-
cation independently of the resources puts the burden on the
resource selection algorithm. It has to take into account both
data sharing and master–worker relationships between com-
ponents when selecting resources to execute the application.
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