
A Software Component Model with Spatial and

Temporal Compositions for Grid Infrastructures⋆

Hinde Lilia Bouziane, Christian Pérez, and Thierry Priol

INRIA/IRISA

Campus de Beaulieu — F-35042 Rennes Cedex — France

{Hinde.Bouziane,Christian.Perez,Thierry.Priol}@inria.fr

Abstract. Grids are very complex and volatile infrastructures that exhibit par-

allel and distributed characteristics. To harness their complexity as well as the

increasing intricacy of scientific applications, modern software engineering prac-

tices are needed. As of today, two major programming models dominate: software

component models that are mainly based on a spatial composition and service

oriented models, with their associated workflow languages, promoting a tempo-

ral composition. This paper aims at unifying these two forms of composition into

a coherent spatio-temporal software component model while keeping their ben-

efits. To attest the validity of the proposed approach, we describe how the Grid

Component model, as defined by the CoreGRID Network of Excellence, and the

Askalon-AGWL workflow language have been adapted.

1 Introduction

Grid infrastructures are undoubtedly the most complex computing infrastructures ever

built incorporating both parallel and distributed aspects in their implementations. Al-

though they can provide an unprecedented level of performance, designing and imple-

menting scientific applications for Grids represent challenging tasks for programmers.

But this is not only due to the intricacy of the infrastructures. Indeed, numerical simu-

lation applications are also becoming more complex involving the coupling of several

numerical simulation codes to better simulate physical systems that require a multi-

disciplinary approach. To cope with the infrastructure and application complexity, it

becomes necessary to design scientific applications with modern software engineering

practices. Component-based programming or service-oriented programming are good

candidates to design these applications using a modular approach. With a component-

based approach, an application can be represented as an assembly of software com-

ponents connected by a set of ports and described using an Architecture Description

Language (ADL) while a service-oriented approach represents an application as an or-

chestration of several services/tasks using a workflow language. In some sense, compo-

nent programming appears as a spatial composition describing the connection between

components while service programming promotes a temporal composition expressing

the scheduling and the flow of control between services.

⋆ This work was supported by the CoreGRID European Network of Excellence and by the

French National Agency for Research project LEGO (ANR-05-CIGC-11).

In the context of Grids, both approaches have been used but in a separate way. In this

paper, we show that both spatial and temporal compositions are required in the same

programming model. Spatial composition is required to express some specific commu-

nication patterns that can be found in multi-physics scientific applications such as in

coupled simulations where several simulation codes have to be run simultaneously and

have to exchange data at each time step. Component models do not capture when a given

component will communicate with another component it is connected to; consequently

all application components have to be deployed in advance on resources and kept until

the end of the application. While it is the look-for behavior for strong coupled applica-

tions, it leads to an inefficient use of resources for loose coupled application, especially

in resource sharing environments such as Grids. Temporal composition, with respect

to resource sharing, is more suitable since the control flow is explicit. It can be used

to deploy services only when they are needed allowing thus a better utilization of Grid

resources. A programming model, allowing the design of applications using a modu-

lar approach, must thus combine spatial and temporal composition to let programmer

use the most suitable abstractions while enabling an efficient use of resources. This pa-

per studies how to combine these two composition schemes together. Then, it presents

STCM, a spatio-component model, based on the Grid Component Model (GCM) [1] and

the ASKALON workflow system [2].

The remainder of this paper is organized as follows. Section 2 introduces and dis-

cusses properties of spatial and temporal composition models as well as some related

works. Section 3 analyzes some possible designs that combine both compositions into

a unique model. In Section 4, we describe STCM, a spatio-temporal component model

and an example of application is given in Section 5. Section 6 concludes the paper.

2 Composition in Space and Time: Properties and Discussion

This paper focuses on composition as a mean to describe applications’ structure. In

general, such a structure reflects a reasoning dimension of the programmer. Our interest

is focused on two major but orthogonal dimensions: space and time. Reasoning about

space or time appears today as a factor separating two programming model trends for

building scientific applications: software component and workflow models. This section

presents their respective properties and previous works attempting to combine them.

2.1 Composition in Space

Let us define a spatial composition as a relationship between components if and only if

components being involved in the relationship are concurrently active during the time

this relationship is valid. In general, components interact through adequate and com-

patible ports often according to a provides-uses paradigm. In most spatial composition

models, the direction of the interaction is oriented: it is a user that invokes an opera-

tion on a provider. However, the interaction frequency is not specified: it is not known

whether the user will actually invoke an operation nor the number of invocations. Thus,

components are concurrently active during the time the relation is valid, i.e. the compo-

nents are connected. Therefore, a spatial composition enables to express the architecture

of an application, typically captured by UML component diagrams [3]. The spatial

composition principle is followed by most existing component models like CCA [4],

CCM [5], FRACTAL [6], SCA [7] and GCM [1], which we briefly present hereafter.

The Grid Component Model or

GCM [1] is a component model being

specified within the European Core-

GRID Network of Excellence. It is

based on FRACTAL [6], a hierarchical

component model, and extends this lat-

ter in order to target Grid applications.

GCM defines primitive and composite

components. Composite components

may contain several (sub-)components
Fig. 1: Example of a GCM component.

that form its content as illustrated in Figure 1. GCM defines also controllers to separate

non-functional concerns from the computation ones. In particular, controllers are used

to manage sub-components. GCM supports several kinds of ports such as RMI or data

streaming. GCM provides also an Architecture Description Language (ADL) which

allows the specification of both components and their composition in a same phase.

2.2 Composition in Time

A temporal composition can be defined as a relationship between tasks if and only if

it expresses an execution order of the tasks. There are two classical formalisms for

describing such a relationship: data flows and control flows. Data flows focus on the

dependencies coming from data availability: the outputs of some tasks ti are inputs of

a task T . The execution of T depends on that of all ti. In control flows, the execution

order is given by some control constructs such as sequences, branches or loops. Tempo-

ral compositions enable expression of the sequence of actions which typically may be

captured by UML activity diagrams [3]. There exist many environments [8] that deal

with temporal compositions such as workflow systems like ASKALON [2], TRIANA [9],

KEPLER [10], BPEL4WS [11], etc. For this paper, let us focus on ASKALON-AGWL.

ASKALON [12] is a Grid environment dedicated to the development and execution

of scientific applications, being developed at the University of Innsbruck, Austria. It

proposes the Abstract Grid Workflow Language (AGWL) [2]. This language is viewed

by the designer under an UML activity diagram formalism. It offers a hierarchical model

made of atomic and composite activities (sub-workflows). A composition is done with

respect to both data flow and control flow compositions, as illustrated in Figure 2. A

data flow is specified by simply connecting input data port to output data port of depen-

dent activities, while the control flow describes the execution order of activities. AGWL

supports several control structures like sequences, branches (if and switch), loops (for

and while) and parallel structures (parallelFor and parallelForEach), etc.

2.3 Discussion

Spatial composition is well suited to describe components that must co-exist simulta-

neously and may communicate. It is the case for strong code coupling simulations such

<agwl-workflow>

<importATD url=".../activTypes.atd" name="Appl"/>

...

<activity name="A" type="Appl:typeA">

<dataIn name="dinA" source="dinApplExample"/>

<dataOut name="resA" />

</activity>

<while name="loop">

<dataIn name="dinL" loopSource="loopOut"/>

<value>true</value>

<condition>loopOut=’true’</condition>

<loopBody> <!-- some activities -->

<dataOut name="loopOut" />

</loopBody>

</while>

<activity name="B" type="Appl:typeB">

<dataIn name="dinB" source="resA"/> ...

</activity> ...

</agwl-workflow>

Fig. 2. A composition example in ASKALON-AGWL.

as meteorological simulations. The main limitation of spatial compositions is they do

not explicitly capture the temporal dimension. That may lead to an underutilization of

the resources because of an overestimation of needed ones. It is possible to embed an

orchestration into a component driver. However, any modification on the application

structure requires to modify the code. Lazy component instantiation also does not fully

solve the problem as it is not known when a component can be safely destroyed.

Temporal composition is able to capture the temporal dimension and hence it en-

ables efficient resource management. Nevertheless, its main limitation is the lack of

support to express that two running tasks must communicate, as for example strong

code coupling simulations. The solution of externalizing the loop of a code limits the

coupling to coarse grained codes with respect to the overhead of launching a task.

Attempts to Merge Spatial and Temporal Compositions To capture the good prop-

erties of the two models, some solutions have been proposed. ICENI [13] describes the

internal behavior of a component with a workflow formalism. That helps to compute an

optimized spatial deployment plan. However, it does not capture temporal relationship

between components. Workflow models like in TRIANA or ASKALON enable spatial

compositions. However, they are often hidden in tasks’ implementation. As far as we

know, workflow engines are not aware of underlying spatial compositions. Thus, models

like in [14] propose specialized tasks dedicated to communications between communi-

cating processes. However, that requires to modify codes to extract communications.

To summarize, the limitations seem to mainly come from the fact that the spatial and

temporal dimensions are handled at distinct levels of the application structure. Hence,

this paper focuses on a model where the two dimensions can co-exist at a same level.

3 Toward a Spatio-Temporal Composition Model

3.1 Targeted Properties

Our goal is to define a model that enables the concurrent use of both spatial and tem-

poral composition paradigms at any level of an application structure. First, the model

should provide a quite high level of abstraction. In particular, it should abstract the re-

source infrastructures so that the Grid remains invisible from the programmer point of

view. Second, the composition model should be rich enough to support a wide range of

composition paradigms like control flow constructs (sequence, conditions, loops, etc.),

method invocation, message passing, etc. Third, supporting many kinds of composition

paradigms may lead to a complex life-cycle management. Hence, the model should of-

fer a simple life-cycle model for combined spatial and temporal compositions so that the

behavior of a whole application is quite easy to determine. Fourth, the model should be

hierarchical and should provide all composition paradigms at any level of a hierarchy.

Hierarchy appears as an important property to structure applications and to improve re-

usability. Fifth, as we aim at leveraging existing works, it should be possible to specify

the model as an extension of some existing ones.

3.2 Analysis of Design Models for a Spatio-Temporal Composition Model

Defining a spatio-temporal composition model requires to instantiate the concepts en-

countered in Section 2 in a coherent model. This section analyzes some design ap-

proaches keeping in mind the properties presented in Section 3.1.

There are two kinds of entities that may be embedded into a code: components and

tasks. From an architectural point of view, they are very similar: they are black boxes

with some communication ports. The main difference is on their life-cycle: a task is

implicitly instantiated only at the time of its execution. Hence, we fuse them into the

term task-component, which we define as a component supporting the concept of task.

Hence, a mechanism is needed to define input and output ports and to bind tasks to

components. The term task-component is used to distinguish between components sup-

porting tasks and classical ones. It is just a notation as task-components are components.

As we start from a component model, the concept of ports keeps its usual definition.

Spatial composition is thus directly inherited. However, the concept of port has to be ex-

tended with input/output ports for temporal compositions. As it consists in associating

a piece of data to a port, the basic mechanism looks very similar to event ports.

A third issue is to define the rules governing task-component life-cycle. Such rules

should state when a component can and/or must be created/destroyed. For example, the

life-cycle of a task-component with only input and output ports can be controlled by

its temporal relationship: it can be instantiated when its inputs are ready and destroyed

when outputs have been retrieved. However, rules become more complex when a task-

component has temporal and spatial ports.

Basing a spatio-temporal composition model on a data flow model is quite straight-

forward. The composition of input and output ports following the same philosophy as

spatial ports, i.e. connections of compatible ports, it seems possible to slightly extend

Table 1. GCM and AGWL concepts reused for defining a spatio-temporal model.

Required concept Provided concepts Selected strategy

Task-Component provided, used operations and tasks extend GCM with task concept

Ports spatial: GCM ports extend GCM with

temporal: input and output data temporal ports

Composition spatial: GCM bindings extend AGWL with GCM

temporal: data and control flow: AGWL components and spatial bindings

Component life-cycle states and transitions inferred from composition

assembly languages of component models – like GCM ADL – to take them into account

into an assembly with data flow compositions representing temporal compositions.

It seems also possible to integrate a control flow model. Control flow models are

based on “programmable” constructions while component assemblies are based on

description languages. Hence, an issue is to deal with the instructions of such a pro-

grammable language. There are two classical approaches. The first approach embeds

every element of the language into a component, like in TRIANA, which provides a

model that is easily extensible by adding new components. However, as components

embed the control flow, it turns out that the control flow of the application is not visible:

it may restrict optimizations like advance reservation of resources unless using behav-

ioral component models. The second approach distinguishes language instructions from

user components, like in many workflow languages. It limits language extensions but it

enables runtime optimizations as the language is known.

4 STCM: A Spatio-Temporal Model Based on GCM and AGWL

This section presents STCM, a spatio-temporal model based on both GCM and AGWL

as well as the objectives presented in Section 3. In particular, the proposal is based on

choosing, reusing and potentially merging or extending the specification of components,

ports, tasks and the composition model offered by GCM and/or AGWL. Our choices are

essentially motivated by keeping the advantages of each model. Table 1 sums up our

strategy to reuse GCM and AGWL principal concepts in order to define a spatio-temporal

model. The remainder of this section reviews these points in more depth.

4.1 Extending GCM Components with Tasks and Temporal Ports

The type of a component being defined by its ports, a new family of ports is required to

define a task-component. Let us call them input and output ports. In contrast to classical

client/server ports, that provide a method call semantic, input/output ports are attached

to a data type. Hence, STCM provides typed input and output ports. They are provided

through an extension of the GCM TypeFactory interface dedicated to create types. A

createFcTemporalType operation creates the definition of an input (isInput = true) or

output (isInput = false) port named name and for which the type is determined by a data

type argument. As temporal ports are distinguished from classical ones, a component

type declaration is also extended to include this new kind of ports.

The next step is to support a task within a task-component. A task can be viewed as

a particular operation to be implemented by a user. The definition of such an operation

depends on several assumptions. For example, multi-task components required to define

a triplet (task, inputs, outputs) for each task, while it may be implicit for single task-

component. Because of lack of space, the support of only one task per component is

presented here. A task-component is a component which implements a TaskController

interface which contains only a void task() operation which is called when the task

needs to be executed. Input data are retrieved through input ports (through getter-like

operations) and output data are set through output ports (through setter-like operations).

4.2 Life Cycle Management of Task-Components

Fig. 3: State diagram.

Figure 3 presents a proposed state machine

diagram with respect to the life-cycle of task-

components. Compared to a classical task, where

its activation corresponds to its execution, the

active state of a task-component may be longer

than the task running duration. The duration of the

active state depends mainly on both the temporal

composition and the requirement of the presence of

provided functionality by a component. Hence, a

component can be active without any running task

like a standard component.

4.3 A Composition Language Based on a Modified AGWL

The STCM composition model is inspired from the AGWL language. The objective is

to preserve its algorithmic composition logic but based on a task-component assembly

view. Hence, the approach is essentially based on the replacement of the activity con-

cept by a task-component one. Figure 4 presents the main elements of the grammar of

the STCM language. Component definition looks like in GCM ADL but with the sup-

port of temporal ports as well as the possibility to connect them when being defined.

Moreover, the language has dedicated instructions (setPort and unsetPort) to

connect/disconnect ports.

As in AGWL, control flow composition is expressed as the content of composites.

Then, it is straightforward to adapt all AGWL control flow constructions. Such instruc-

tions can be seen as pre-defined components with a known internal behavior. In STCM

ADL, a component instance can be defined in the declaration part of a composite as-

sembly or a control flow instruction. It results in distinct behaviors: the former aligns

the instance creation and destruction with the composite ones, while the latter enables

a dynamic creation and destruction.

The semantics of such a language has yet to be defined as for example with respect

to when a component instance can be safely destroyed. We are working on the definition

of a semantics able to reflect as much as possible a behavior based on a simple priority

system: if a spatial connection is specified within a control structure body then the

temporal dimension is prevailing, otherwise the spatial dimension is to be considered

first.

component ::= <component name=string (extends=string)?>

port* content? membrane?

</component>

port ::= clientport | serverport | inport | outport | attribute

clientport ::= <clientPort name=string type=string (set=string)?/>

serverport ::= <serverPort name=string type=string/>

inport ::= <dataIn name=string type=string (set=string)?/>

outport ::= <dataOut name=string type=string/>

attribute ::= <attribute name=string type=string (set=string)?/>

membrane ::= <controllerDesc desc=string/>

content ::= primitive | composite

primitive ::= <impl type=string signature=string/>

composite ::= <body> stcmassembly </body>

stcmassembly ::= declaration? instruction?

declaration ::= <declare> component* instance* configport* </declare>

instance ::= <instance name=string componentRef=string>

content? membrane?

</instance>

configport ::= clientserver | inout

clientserver ::= <setPort client=string server=string/>

| <unsetPort client=string (server=string)?/>

inout ::= <setPort in=string out=string/>

| <unsetPort in=string (out=string)?/>

instruction ::= instance | executetask | configport | seq | if | switch | while

| for | forEach | dag | parallel | parallelFor | parallelForEach

executetask ::= <exectask nameInstance=string/>

seq ::= <sequence name=string>port* declaration instruction+</sequence>

if ::= <if name=string> port* declaration condition then else? </if>

condition ::= <condition> expr </condition>

then ::= <then> stcmassembly </then>

else ::= <else> stcmassembly </else>

parallel ::= <parallel name=string> port* declaration section+ </parallel>

section ::= <section> stcmassembly </section>

switch ::= <switch name=string> port* declaration case+ default? </switch>

case ::= <case condition=string (break=boolean)?> stcmassembly </case>

default ::= <default> stcmassembly </default>

boolean ::= true | false

// Same principle for while, for, forEach, dag, parallelFor and parallelForEach.

// expr represents a logical expression as in AGWL, with the same restrictions.

Fig. 4. Overview of the STCM grammar. Keywords are in bold, while strings are in italic.

4.4 Proof-of-Concept Implementation

In order to test the feasibility of the model, we have implemented a proof-of-concept

interpreter of the STCM language based on the ANTLR language tool. The interpreter

parses the language and generates calls to a GCM extended API so as to manage compo-

nents, like component creation/destruction, port connection, as well as task invocation.

It does not yet support all control flow instructions. A full implementation of the model

requires to define a semantic and to implement/adapt a workflow engine.

1 <component name ="exApp">

2 <dataIn name="vectIn" type="Vect"/>

3 <body><component name="Init">

4 <dataIn name="ii1" ... set="vectIn"/>

5 <dataOut name="io1" ... />

6 <dataOut name="io2" type="double" />

7 </component>

8 <component name="A">

9 <dataIn name="inA" ... set="init.io1"/>

10 <clientPort name="pA" ... set="B.pB"/>

11 </component>

12 <component name="B">

13 // in: double inB, out: double outB

14 <serverPort name="pB" type="GetRes"/>

15 </component>

16 <sequence name="seq1">

17 <instance name="init" compRef="Init"

// lines 18-37 are on the right

38 </sequence></body>

39 </assembly>

18 <parallel name="ParallelCtrl">

19 <instance name="a" compRef="A"/>

20 <instance name="b" compRef="B"/>

21 <section>

22 <exectask nameInstance="a"/>

23 </section>

24 <section>

25 <while name="LoopCtrl">

26 <dataIn name="c" type="double"

27 set="init.io2"

28 loopSet="B.outB"/>

29 <condition> c<0.1 </condition>

30 <loopBody>

31 <exectask nameInstance="b">

32 <dataIn name="inB" set="c"/>

33 </component>

34 </loopBody>

35 </while>

36 </section>

37 </parallel>

Fig. 6. Main elements of an application description in STCM.

5 Example of an Application Description

Fig. 5: Application example.

Figure 5 illustrates a simplified STCM application

coming from the French ANR LEGO project. This ap-

plication contains two coupled codes represented by the

spatially connected components a and b. Component a

operates on a matrix, initialized according to some ini-

tial conditions defined by Component init. The result

computed by Component a depends on data provided by

Component b, data which depend on the iterative conver-

gence computation which Component b is involved in. It

is expected that Component b has a persistent active state for continuous a request-

ing. Therefore, the integration of b in the loop has to preserve the first created instance

during all iterations. For simplicity, the detailed structure of GCM components (mem-

branes, contents, implementations) are not represented in this section.

Figure 6 shows how this application can be expressed with the STCM language. The ex-

pressed execution ordering matched perfectly with the specified requirements. In par-

ticular, Instance b of Component B is declared in the header of the parallel section.

Hence, it is not destroyed at each iteration of the while loop.

While STCM offers means to explicitly express the specified behavior by the assem-

bly, it is not the case when using separately GCM or AGWL. With STCM, it is usual to

hide the temporal logic in a driver component. Depending on the programmer exper-

tise, this component can manage the life-cycle of init, a and b. This management is

required to avoid overconsumption of resources, in particular if components are com-

posite/parallel. However, that may be complex to be done by the user. With AGWL,

there is no mean to express the spatial dependence between a and b, which is usually

hidden in tasks’ code. That may limit reusability. In addition, the stateless property of

tasks implies the b’s state to be saved/reloaded for each iteration. That may lead to in-

efficient execution. On the contrary, STCM offers a more powerful assembly model in

term of behavior expressiveness. This is relevant to ease programing, improve reusabil-

ity, enable automatic management of an assembly and optimize resources usage.

6 Conclusion and Future Works

In order to harness the programmability of Grids, two major approaches are used to

develop applications: software component models mainly used by strongly coupled ap-

plications and workflow models mainly used by loosely coupled applications. As both

models have benefits and drawbacks with respect to some algorithmic patterns, this pa-

per explores the possibility of designing a model that support both composition models.

The paper has analyzed some designs for combining both of them. As a result, the paper

describes STCM, a spatio-temporal component model based on two existing models –

GCM and ASKALON. Some benefits has been shown through an example.

Future works consist in defining a semantic for the STCM language as well as having

a full implementation, either based on a new workflow engine, on the adaptation of an

existing one, or on the compilation of STCM to plain AGWL. Though the latter should

not lead to the best implementation, it may be enough to validate STCM.

References

1. Institute, P.M.: Basic features of the grid component model. CoreGRID Delivrable D.PM.04,

CoreGRID (march 2007)

2. Fahringer, T., Qin, J., Hainzer, S.: Specification of Grid Workflow Applications with AGWL:

An Abstract Grid Workflow Language. In: Proceedings of the Fifth IEEE International

Symposium on Cluster Computing and Grid 2005 (CCGrid 2005). Volume 2., Cardiff, UK

(May 2005) 676–685

3. OMG: Unified modeling language. Document formal/2007-02-05 (February 2007)

4. Bernholdt, D.E., Allan, B.A., Armstrong, R., Bertrand, F., Chiu, K., Dahlgren, T.L.,

Damevski, K., Elwasif, W.R., Epperly, T.G.W., Govindaraju, M., Katz, D.S., Kohl, J.A.,

Krishnan, M., Kumfert, G., Larson, J.W., Lefantzi, S., Lewis, M.J., Malony, A.D., McInnes,

L.C., Nieplocha, J., Norris, B., Parker, S.G., Ray, J., Shende, S., Windus, T.L., Zhou, S.: A

component architecture for high-performance scientific computing. International Journal of

High Performance Computing Applications 20(2) (2006) 163–202

5. OMG: CORBA component model, v4.0. Document formal/2006-04-01 (April 2006)

6. Bruneton, E., Coupaye, T., Stefani, J.: The Fractal Component Model, version 2.0-3. Tech-

nical report, ObjectWeb consortium, (February 2004)

7. Beisiegel, M., Blohm, H., Booz, D., Edwards, M., Hurley, O., Ielceanu, S., Miller, A., Kar-

markar, A., Malhotra, A., Marino, J., Nally, M., Newcomer, E., Patil, S., Pavlik, G., Raepple,

M., Rowley, M., Tam, K., Vorthmann, S., Walker, P., Waterman, L.: SCA Service Component

Architecture - Assembly Model Specification, version 1.0. Technical report, Open Service

Oriented Architecture collaboration (OSOA) (March 2007)

8. Yu, J., Buyya, R.: A taxonomy of workflow management systems for grid computing. Journal

of Grid Computing 3(3-4) (september 2005) 171–200

9. Taylor, I., Shields, M., Wang, I., Harrison, A.: Visual Grid Workflow in Triana. Journal of

Grid Computing 3(3-4) (September 2005) 153–169

10. Altintas, I., Birnbaum, A., Baldridge, K.K., Sudholt, W., Miller, M., Amoreira, C., Yohann: A

framework for the design and reuse of grid workflows. In: First Intl. Workshop on Scientific

Applications of Grid Computing (SAG’04)), Berlin/Heidelberg, Springer (2005) 120–133

11. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,

Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language

for web services version 1.1. Technical report (May 2003)

12. Thomas, F., Radu, P., Rubing, D., Francesco, N., Stefan, P., Jun, Q., Mumtaz, S., Hong-Linh,

T., Alex, V., Marek, W.: ASKALON: A Grid Application Development and Computing

Environment. In: Proceedings of the 6th International Workshop on Grid Computing, Seattle,

USA (November 2005) 122–131

13. Furmento, N., Mayer, A., McGough, S., Newhouse, S., Field, T., Darlington, J.: ICENI: Op-

timisation of component applications within a grid environment. Journal of Parallel Com-

puting 28(12) (2002) 1753–1772

14. Pllana, S., Fahringer, T.: Uml based modeling of performance oriented parallel and dis-

tributed applications. In Yucesan, E., Chen, C.H., Snowdon, J., Charnes, J., eds.: Proc. of the

2002 Winter Simulation Conference, San Diego, California, USA, IEEE (December 2002)

