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Abstract

The fast growth of high bandwidth wide area networks has allowed the building of computational grids,

which are constituted of PC clusters and/or parallel machines. Computational grids enable the design of

new numerical simulation applications. For example, it is now feasible to couple several scientific codes to

obtain a multi-physic application. In order to handle the complexity of such applications, software com-

ponent technology appears very appealing. However, most current software component models do not

provide any support to transparently and efficiently embed parallel codes into components. This paper

describes a first study of GridCCM, an extension to the CORBA Component Model to support parallel

components. The feasibility of the model is evaluated thanks to its implementation on top of two CCM pro-

totypes. Preliminary performance results are very good: there is no noticeable overhead and the bandwidth

is efficiently aggregated.



1 Introduction

The fast growth of high bandwidth wide area networks (WAN) allows to build computing infrastructures,

known as computational grids [13]. Such infrastructures allow the interconnection of PC clusters and/or

parallel machines with high bandwidth WAN. For example, the bandwidth of the French VTHD WAN [4]

is 2.5 Gb/s and the US TeraGrid project [3] targets 40 Gb/s bandwidth.

Thanks to the performance of grid infrastructure, new kinds of applications are enabled in the scientific

numerical simulation field. In particular, it is now feasible to couple scientific codes, each code simulating

a particular aspect of a physical phenomenon. Hence, it is possible to perform more realistic simulations

of the behavior of a satellite by incorporating all aspects of a simulation: dynamic, thermal, optic and

structural mechanic. Each of these aspects is simulated by a dedicated code, which is usually a parallel

code, and is executed on a set of nodes of a grid. Because of the complexity of the phenomena, these codes

are developed by independent specialist teams. So, one may expect to have to couple codes written in

different languages (C, C++, FORTRAN, etc.) and depending on different communication paradigms (MPI,

PVM, etc).

The evolution of scientific computing requires a programming model, including technologies, coming

from both parallel and distributed computing. Parallelism is needed to efficiently exploit PC clusters or

parallel machines. Distributed computing technologies are needed to control the execution and to handle

communications between codes running in grids, that is to say a in distributed and heterogeneous environ-

ment.

The complexity of targeted applications is very high with respect to design issue but also with respect

to deployment issue. So, it appears that it is required to consider adequate programming models. Soft-

ware component [29] appears as a very appealing solution: a code coupling application can be seen as an

assembly of components; each component embeds a simulation code. However, most software component

models such as Enterprise JAVA Bean [21], COM+ [26], Web Services [8] or CORBA Component Model [23]

only support sequential components. With these models, a component is associated to a unique address
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space: the address space of the process where the component is created. Communication between (not

collocated) components consists in transferring data from one address space to another one using some

communication mechanisms such as ports.

Embedding parallel codes in sequential components raises some problems. Usually, parallel codes are

executed by processes. Each process owns its private address space and uses a message passing paradigm

like MPI to exchange data with other processes (SPAS model). A first solution consists in allowing only

one process to handle the component ports to talk with other components. This solution leads first to a

bottleneck in the communications between two parallel components and second it leads to a modification

of the parallel code to introduce this master/slave pattern: the node handling the port is a kind of master,

the other nodes are the slaves. A second solution would be to require that all communications have to be

done through the software component model. This does not seem to be a good solution: first, modifying

existing codes is a huge work. Second, parallel oriented communication paradigms like MPI are much more

tailored to parallelism while the component communication paradigm is more oriented toward distributed

computing.

A better solution would be to let parallel components choose their internal communication paradigm

and to allow all processes belonging to a parallel component to participate to inter-parallel component

communications. Hence, a data transfer from the address spaces of the source parallel component to the

address spaces of the destination component can generate several communication flows. It should support

data redistribution as the source and destination data distributions may be different.

The only specification that we are aware of with respect to high-performance components is the work

done by the Common Component Architecture Forum [6] (CCA). The CCA Forum objectives are “to define

a minimal set of standard interfaces that a high-performance component framework has to provide to components, and

can expect from them, in order to allow disparate components to be composed together to build a running application”.

The model, currently being developed, does not intentionally contain an accurate definition of a CCA com-

ponent. It only defines a set of APIs. It is a low level specification: only point-to-point communications

are defined. There is also a notion of collective ports, that allow a component to broadcast data to all the

components connected to this port. While the CCA’s goal is to define a model which specifically targets
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high performance computing, we aim to adapt an existing standard to high performance computing.

There are several works about parallel objects like PARDIS [18] or PaCO [27]. The OMG has started a

normalization procedure to add data parallel features to CORBA. The current specification [22] requires

modifications to the ORB (the CORBA core). Another work, PaCO++ [10], is an evolution of PaCO that

targets efficient and portable parallel CORBA objects.

The contribution of this paper is to study the feasibility of defining and implementing parallel com-

ponents within the CORBA Component Model (CCM). We choose to work with CCM because it inherently

supports the heterogeneity of processors, operating systems and languages; it is an open standard and there

are several implementations being developed with an Open Source license. Moreover, the model provides

a deployment model. CORBA seems to have some limitations but it appears possible to overcome most of

them. For example, we have shown that high performance CORBA communication can be achieved [9]. The

type issues related to the IDL can be solved by defining and using domain specific types or value-types to

handle complex numbers or graph types.

Our objective is to obtain both parallelism transparency and high performance. Transparency is re-

quired because a parallel component needs to look like a standard component at the assembly phase and

at the deployment phase. The effective communications between parallel components need to be hidden

to the application designer. To obtain high performance, we propose to apply a technique that allows all

processes of a parallel component to be involved in inter-component communications. Thus, inter-parallel

component communications remain efficient when increasing the number of nodes of a parallel component.

The remaining of this paper is divided as follows. Section 2 presents a brief discussion about objects and

components. The CORBA component model is presented in Section 3. GridCCM, our parallel extension

to the CORBA component model, is introduced in Section 4. Some preliminary experimental results are

reported in Section 5. Section 6 concludes the paper.
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2 Software component programming model

One major issue when writing an application is the selection of an adequate programming model. Several

programming models have emerged; each of them increasing the level of abstraction. The object oriented

programming model is currently the most successful.

Software component is expected to bring an improvement to software technology similar to the sub-

stantial advantages object-oriented programming has provided over structured programming. However,

while object-oriented programming targets application design, component software technology empha-

sizes component composition and deployment. Before introducing the software component technology,

the object-oriented programming model is briefly reviewed.

2.1 Object-oriented programming

Object is a powerful abstraction mechanism. It has demonstrated its benefits, in particular in application

design, in a very large number of applications.

Most recent programming languages such as C++, JAVA, Python or Caml are object-oriented. The next

version of FORTRAN, i.e. FORTRAN 2000, has clearly adopted an object oriented approach.

However, objects have failed some of their objectives. Code reuse and maintenance are not satisfactory

mainly because object dependencies are not very explicit. For example, it is very difficult to find object

dependencies in a large application involving hundreds of objects using inheritance and delegation. Expe-

rience has shown that it is better to use an approach only based on delegation [15] that allows objects to be

"composed".

For distributed applications, objects do not intrinsically provide any support for deployment. For ex-

ample, neither JAVA RMI [16] nor CORBA 2, two distributed object-oriented environments, provide a way

to remotely install, create or update objects.

The situation is even worse for distributed applications with many distributed objects to be deployed on

several machines. The application needs to explicitly interconnect the objects. A change in the application

architecture requires modifications of the code.
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Despite its benefits, object oriented programming lacks some important features for distributed appli-

cations. Software components aim at providing them.

2.2 Software component

Software component technology [29] has been emerging for some years [7] even though its underlying

intuition is not very recent [20]. Among all the definitions of software components, here is Szyperski’s

definition [29]: A software component is a unit of composition with contractually specified interfaces and explicit

context dependencies only. A software component can be deployed independently and is subject to composition by

third parties.

First, the main component operation is the composition with other components. This composition is

done through well-defined interfaces: components need to agree on the contract related to their connected

interfaces. This agreement brings a lot of advantages: the abstraction of the service is made explicit. In

particular, interfaces are strongly typed so that checks such as type conformance can be performed at con-

nection time.

Second, a component inherently embeds deployment capabilities. All the information like the binary

code (i.e. the code of the component), the dependencies in terms of processors, operating systems and li-

braries are embedded into the component. A component may also embed binary codes for different proces-

sors or operating systems. The adequate version of the binary is automatically selected by the deployment

tool. So, deployment in a heterogeneous environment is made easier.

Building an application based on components emphasizes programming by assembly, i.e. manufactur-

ing, rather than by development. The goals are to focus expertise on domain fields, to improve software

quality and to decrease the time to market thanks to reuse of existing codes.

Components exhibit advantages over objects. Applications are naturally more modular as each com-

ponent represents a functionality. Code reuse and code maintainability are eased as component are well-

defined and independent. Last, components provide mechanisms to be deployed and to be connected in a

distributed infrastructure. Thus, they appear very well suited for grid computing.
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3 CORBA Component Model

This section begins with an overview of the CORBA architecture. Then, the CORBA component model (CCM)

is presented. It ends with a discussion on the relationship between CCM and grid environments.

3.1 CORBA overview

CORBA [24] (Common Object Request Broker Architecture) is a technical standard which describes a frame-

work to create distributed client-server applications. CORBA is based on an Object Request Broker (ORB)

which transports communications between clients and servers. Communications are based on the method

invocation paradigm like JAVA RMI. CORBA manages the heterogeneity of the languages, computers and

networks. For interoperability purposes, the CORBA model defines a protocol for inter-ORB communica-

tions. The servers interfaces are defined with a neutral language named IDL (Interface Definition Language).

To make an application, the designer has to describe the server’s interface in IDL. The compilation of

this description generates stubs (client side) and skeletons (server side). The stub’s role is to intercept client

invocation and to transmit it to the server through the ORB. The skeleton’s role is to receive the client’s

invocations and to push them to the service implementation. Stubs and skeletons may be generated in

different languages. For example, a stub can be in JAVA whereas a corresponding skeleton is in C++. The

IDL language mapping is defined for many languages like C, C++, JAVA, Ada, Python but not for FORTRAN

though it is feasible as shown within the European Esprit PACHA project.

Client invocations are received at the server side by an adapter (the Portable Object Adapter) that delivers

requests to the adequate object implementation. Figure 1 presents an overview of the CORBA’s architecture.

Stubs and skeletons are not required by CORBA. Dynamic invocations are possible on the client side

(Dynamic Invocation Interface or DII) or on the server side (Dynamic Skeleton Interface or DSI). Hence, it

is possible to dynamically create, discover or use interfaces.
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3.2 CORBA Component Model

The CORBA Component Model [23] (CCM) is part of the lastest CORBA [24] specifications (version 3). The

CCM specifications allow the deployment of components into a distributed environment, that is to say that

an application can deploy interconnected components on different heterogeneous servers in one operation.

CCM abstract model

A CORBA component is represented by a set of ports described in the CORBA 3 version of the OMG Interface

Definition Language (IDL), which extends the OMG IDL of the version 2 of CORBA. There are five kinds of

ports as shown in Figure 2.

Facets are named connection points that provide services available as interfaces.

Receptacles are named connection points to be connected to a facet. They describe the component’s ability

to use a reference supplied by some external agent.

Event sources are named connection points that emit typed events to one or more interested event cus-

tomers, or to an event channel.

Event sinks are named connection points into which events of a specified type may be pushed.

Attributes are named values exposed through accessor (read) and mutator (write) operations. Attributes

are primarily intended to be used for component configuration, although they may be used in a vari-

ety of other ways.

Facets and receptacles allow a synchronous communication model based on the remote method invo-

cation paradigm to be expressed. An asynchronous communication model based on the transfer on some

data is implemented by the event sources and sinks.

A component is managed by an entity named home. A home provides factory and finder operations to

create and/or to find a component instance. For example, a home exposes a create operation that locally

creates a component instance.
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CCM execution model

CCM uses a container based programming model. Containers provide the run-time execution environ-

ment for CORBA components. A container is a framework for integrating transactions, security, events, and

persistence into a component’s behavior at runtime. Containers provide a standard set of services to a com-

ponent, enabling the same component to be hosted by different container implementations. All component

instances are created and managed at runtime by its container.

CCM deployment model

The deployment model of CCM is fully dynamic: a component can be dynamically connected to and dis-

connected from another component. For example, Figure 3 describes how a component ServerComp can

be connected to a component ClientComp through the facet FacetExample: a reference is obtained from

the facet and then it is given to a receptacle. Moreover, the model supports the deployment of a static ap-

plication. In this case, the assembly phase has produced a description of the initial state of the application.

Thus, a deployment tool can deploy the components of the application according to the description. It

is worthwhile to remark that it is just the initial state of the application: the application can change it by

modifying its connections and/or by adding/removing components.

The deployment model relies on the functionality of some fabrics to create component servers which

are hosting environments of component instances. The issues of determining the machines where to create

the component servers and actually how to create them are out of the scope of the CCM specifications.

3.3 CORBA Component Model and grid environments

This section aims at clarifying the relationships between CCM and a grid environment. The subject is large

enough to deserve a dedicated paper. We restrict ourselves to sketch some general relationships.

The key point is that CCM and a grid environment such as OGSA do not have the same objectives.

CCM is a programming model that describes how to program an application and more precisely its life

cycle. A grid environment deals with resource management. The current understanding of grids [14, 17]

assumes that a grid environment has in particular to provide some mechanisms to discover, schedule and
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allocate resources within a security framework. These aspects are related to resource management not to

the definition of an application programming model. Also, it seems to us that an application should not

be restricted to run only in a grid environment. For example, it should be possible to execute it within a

parallel machine without having to deal with grid environment issues.

As briefly described in Section 3.2, the specifications of CCM rely on some external mechanisms to

discover computing resources, and to create processes (the component servers). Thus, the objectives of

CCM and the goals of a grid environment are clearly complementary. CCM is a programming model which

allows the user to write his application a priori without involving resource management issues. These issues

should be taken into account by an integration of the deployment model of CCM and of a grid environment.

A grid-aware CCM deployment tool appears to be a natural client for a grid environment in at least two

steps. The first step is the discovery of resources that satisfy the requirements of the components. The

second step is the actual creation of the component servers into the allocated machines.

Last, grid environments need to define their own communication models to achieve interoperability. For

example, the OGSA platform is built on top of Grid Services and its associated communication protocol.

However, there is a priori no relationship between them and the communications utilized by the application

such as CORBA or MPI. So, all communications models should cohabit.

4 A Parallel CORBA Component Model: GridCCM

The CORBA component model is an interesting component model mainly because its heterogeneity sup-

port, its container model and its deployment model. However, it does not provide an efficient support to

embed parallel codes into components. This section presents GridCCM, a parallel extension to the CORBA

Component Model. The GridCCM’s goal is to study the concept of parallel components.

4.1 Definition of parallel components

Our objective is to efficiently encapsulate parallel codes into CORBA components with as few modifications

to parallel codes as possible. Similarly, we target to extend CCM but not to modify the model. The choice
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stems from several considerations. First, we aim at defining a portable extension to CCM so that it can be

added to any implementation of CCM. Second, the parallelism of a component appears to be an implemen-

tation issue of the component. So, we do not need to modify the OMG Interface Definition Language which

is independent from implementation issues.

We currently restrict ourselves to only supporting the Single Component Multiple Data (SCMD) execution

model. SCMD defines an execution model for parallel components similar to the Single Program Multiple

Data execution model for parallel programs. This choice stems mainly from the consideration that most

parallel codes we target are actually SPMD.

In an SPMD code, each process executes the same program but on different data. Each process ex-

changes data with other via a communication library like MPI [28] (Message Passing Interface). Figure 4

shows the GridCCM vision of a parallel component in the CORBA framework. The SPMD code continues

to be able to use MPI for its intra-component inter-process communications, but it uses CORBA to com-

municate with other components. In order to avoid bottlenecks, all processes of a parallel component can

participate to inter-component communications. This scheme has been successfully demonstrated with par-

allel CORBA object [10]: an aggregated bandwidth of 103 MB/s (820 Mb/s) has been obtained on VTHD [4],

a French high-bandwidth WAN, between two 11-node CORBA parallel objects. An aggregated bandwidth

of 1.5 GB/s has been obtained on a Myrinet 2000 network between two 8-node CORBA parallel objects.

GridCCM’s objective is to extend CCM to allow an efficient encapsulation of SPMD codes. For exam-

ple, GridCCM has to be able to aggregate bandwidth when two parallel components exchange data. As

data may need to be redistributed during communications, the GridCCM model has to support it as trans-

parently as possible. The client should only have to describe how its data are locally distributed and the

data should be automatically redistributed accordingly to the server’s preferences. A GridCCM component

should appear as close as possible to a standard component. For example, a standard component should be

able to connect itself to a parallel component without noticing the latter is a parallel component.

To achieve these objectives, GridCCM defines the notion of parallel components.

Definition: a parallel component is a collection of identical sequential components. It executes in parallel all or some

parts of its services.
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The designer of a parallel component needs to describe the parallelism of the component in an auxil-

iary XML file. This file contains a description of the parallel operations of the component, the distributed

arguments of these operations and the expected distribution of the arguments. An example is given in

Section 4.4.

4.2 Parallelism support in GridCCM

As previously presented, GridCCM adds new functionalities in order to handle parallel components to

CCM. But, it does not require to modify the CCM specifications. The parallelism is supported thanks to the

addition of a software layer, hereafter called the GridCCM layer, between the client’s code and the stub’s

code as illustrated in Figure 5. This scheme has been successfully used with PaCO++ [10] for a similar

problem: the management of parallel CORBA objects.

The role of the GridCCM layer is to allow a transparent management of the parallelism. An invocation to

a parallel operation of a parallel component is intercepted by the GridCCM layer at the client side. The layer

sends the distributed data from the client nodes to the server nodes. The corresponding GridCCM layer

at the server-side waits to receive all the data before invoking the user’s code implementing the CORBA

operation. The argument data redistribution is actually performed either on the client side, or on the server

side, or during the communication between the client and the server. The decision depends on several con-

straints like feasibility (mainly memory requirements) and efficiency (client network performance versus

server network performance).

The parallel management layer is generated by a compiler specific to GridCCM, as illustrated in Fig-

ure 6. This compiler uses two files: the IDL description of the component and the XML description of the

component’s parallelism. In order to have a transparent layer, an IDL description is generated during the

generation of the component from the user’s IDL. The GridCCM layer internally uses the operations de-

fined in this IDL description to actually invoke an operation on the server. The original IDL interface is used

between the user code and the GridCCM layer on the client and server sides.

In the new IDL interface, the user arguments declared as distributed have been replaced by their equiv-

alent distributed data types. Because of this transformation, some constraints may exist about the types
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that can be distributed. The current implementation requires the user type to be an IDL sequence type,

that is to say a variable-length 1D array. So, one dimension distribution can automatically be applied. This

scheme can easily be extended for multidimensional arrays: a 2D array can be mapped to a sequence of se-

quences, etc. It is worthwhile to note that the IDL types do not allow a direct mapping of “scientific” types

like multidimensional arrays or complex numbers. However, CORBA is just a communication technology.

Higher level environments, like code coupling environments such as HLA [5] or MpCCI [2], should define

these “scientific” types. As the expressiveness of the CORBA type system is roughly identical to this of the

C language, it should not be an issue.

In order to have a complete parallelism support, GridCCM has to support parallel exceptions [19]. This

task is also devoted to the GridCCM layer though it is still under investigation.

4.3 Home and Component proxies

A GridCCM objective is to allow a parallel component to be seen as a standard component. As a parallel

component is a collection of sequential components, every node involved in the execution of a parallel

component holds an instance of a sequential component and its corresponding home. These components

and homes are not directly exposed to other components. GridCCM introduces two internal entities, named

the HomeManager and the ComponentManager, that are proxies respectively for the homes of the component

instance’ and for the component instances themselves.

An application that needs to create a parallel component interacts according to the CCM standard with

the HomeManager. The HomeManager is configured during the parallel component deployment phase. The

references to the homes are collected via a specific interface to the HomeManager.

Similarly, when a client gets a reference to a parallel component, it actually receives a reference to the

ComponentManager. When two parallel components are connected, the ComponentManagers of both parallel

components transparently exchange information so as to configure the GridCCM’s layers.

Figure 7 shows an example of connection between the parallel components A and B. First, the deploy-

ment tool connects A with B using the standard CCM protocol (see Figure 3). Second, A’s ComponentManager

retrieves information from B’s ComponentManager. For example, component B returns the references of all
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B’s nodes to component A. Third, A’s ComponentManager configures the layers of all A’s nodes. Fourth,

when component A invokes a parallel operation of B, all A’s nodes may participate to the communication

with B’s nodes.

4.4 Example

This section illustrates the definition and the use of a parallel component through an example.

A component, named A, provides a port of name myPort which contains an operation that computes the

average of a vector. Figure 8 shows the IDL description of the component and the IDL description of the

Average interface. The facet and the interface are described without any OMG IDL modification. The facet of

type Average is declared with the keyword provides. It has one operation compute which takes a vector and

returns a value.

The component implementer needs to write an XML file that describes the parallelism of component A.

This file, shown in figure 9, is not presented in XML for the sake of clarity. An important remark is that

this file is not seen by the client. In this example, the operation compute is declared parallel and its first

argument is block distributed.

Standard clients normally use the myPort facet. However, a parallel client has to specify how the data

to be sent are locally distributed thanks to a client-side API. Figure 10 shows an example of this API whose

specification is not yet stable mainly because we are still working to allow a redistribution library [1] to be

plugged into the GridCCM model. In the example of Figure 10, the parallel client gets a reference of the

facet myPort. Then, it configures its local GridCCM layer with the method init_compute before invoking the

compute operation.

It is worthwhile to note that a GridCCM component offers two different views as depicted in Figure 11.

Externally, a parallel component looks like a standard CCM component but it also offers an extended inter-

face to GridCCM-aware components. Internally, it exhibits a parallel oriented interface that is designed to

be used by the parallel component implementer.
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5 Preliminary experiments

This section presents some preliminary experiments that evaluate the feasibility and the scalability of

GridCCM. These experiments also show that the model is generic with respect to two different CCM imple-

mentations. Before presenting the experimental protocol and reporting some performance measurements,

we need to introduce PadicoTM.

5.1 PadicoTM

GridCCM requires several middleware systems at the same time, typically CORBA and MPI. They should

be able to efficiently share the resources (network, processor, etc.) without conflicts and without competing

with each other. These issues becomes very important if both middleware systems want to use the same

network interface, like Myrinet or TCP/IP. A priori, nothing guarantees that a CORBA implementation can

coexist with a MPI implementation. There are several cases that lead to an application crash as explained

in [11].

In order to be sure to have a correct and efficient cohabitation of several middleware systems, we have

designed PadicoTM [11]. PadicoTM is an open integration framework for communication middleware and

runtimes. It allows several middleware systems, such as CORBA, MPI, or SOAP, to be used at the same time.

It provides an efficient and transparent access to all available networks with the appropriate method.

PadicoTM enables us to simultaneously utilize CORBA and MPI and to associate both the CORBA and

the MPI communications to the network that we chose. All experiments involving code not written in JAVA

have been done using PadicoTM.

5.2 Experimental protocol

The experimental setup, shown in Figure 12, contains two parallel components (Customer and Server), a

GridCCM-aware sequential component and a standard sequential CORBA client. First, the standard CORBA

client creates a vector and sends it to the sequential component. Second, the vector is sent to Customer with

a transparent distribution in Customer’s nodes using a bloc distribution. Third, Customer invokes a Server’s
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service which takes the distributed vector as an in-out argument. The Server method implementation con-

tains only an MPI barrier. Then, the vector is sent back to Customer. In this example, the two parallel compo-

nents use MPI but they are running in distinct MPI environments (i.e. two different MPI_COMM_WORLD).

Customer uses MPI for barriers and reductions. Server only uses MPI for barriers.

There is no modification in the sequential component code to call a Customer’s parallel service. The

parallel service is transparent for the sequential code. With regard to the connection, the deployment ap-

plication complies with the CCM specifications. The ComponentManagers perform their role correctly: the

parallel component nodes are transparently connected according to the CCM specifications.

5.3 Performance measurements

We have implemented a preliminary prototype of GridCCM on top of two OpenSource CCM implementa-

tions. The first prototype is derived from OpenCCM [30]. OpenCCM is made by the research laboratory

LIFL (Laboratoire d’Infomatique Fondamentale de Lille). It is written in JAVA. The second prototype has been

derived from MicoCCM [25]. MicoCCM is an implementation based on the Mico ORB. It is written in C++.

The test platform is a Linux cluster of 16 dual-pentium III, 1 Ghz with 512 MB of memory interconnected

with both a Myrinet-2000 network and a switched Fast Ethernet network. For OpenCCM, the JAVA Runtime

Environment is the SUN JDK 1.3 and ORBacus 4.0.5 is the ORB we used.

The measurements have been made in the first parallel component (Customer). After an MPI barrier to

synchronize all Customer’s nodes, the start time is measured. Customer performs 1000 calls to Server. Then,

the end time is taken. The MPI communications always use the Myrinet network.

Figure 13 reports the latency for the MicoCCM/Myrinet configuration and the aggregated bandwidth

between the two parallel components for several configurations. First, the measured latency is the sum of

the plain MICO CORBA invocation and of the MPI barrier. The variation in the latency reflects the variation

of the time taken by the MPI barrier operation in function of the number of nodes. Thus, the GridCCM

layer, without data redistribution, does not add a significant overhead.

Both C++ and JAVA implementations of GridCCM efficiently aggregate the bandwidth. As expected,

the C++ implementation is more efficient than the JAVA implementation and the C++ version’s bandwidths
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are higher for the Myrinet network than for the Ethernet network. In all case, the aggregated bandwidth is

linear with the number of nodes: GridCCM offers a scalable mechanism to aggregate bandwidth.

In the Myrinet-2000 experiments, an aggregated bandwidth of 280 MB/s is reached between two 8-

node parallel components. This number is less than the 1.5 GB/s aggregated bandwidth that we achieved

between two 8-node parallel CORBA objects on the same hardware configuration [12]. As explained in [9],

the MICO implementation always performs a data copy during a CORBA communication while omniORB,

another CORBA Open Source implementation, achieves a zero copy communication when the source and

destination node have the same memory data representation (endian-ness, word length).

The same behavior is observed for the latency: while MICO on top of Myrinet has a latency of 62 ��� ,

omniORB achieves 20 ��� . High performance for CORBA communications on top of a high performance

network such as Myrinet requires an efficient CORBA implementation such as omniORB. If it is available

for CORBA objects, it is not yet available for CORBA components.

6 Conclusion

Computational grids allow new kinds of applications to be developed. For example, code coupling appli-

cations can benefit a lot from grids because grids provide very huge computing, networking and storage

resources. The distributed and heterogeneous nature of grids raises many problems to application designer.

Software component technology appears to be a very promising technology to handle such problems. How-

ever, software component models do not offer a transparent and efficient support to embed parallel codes

into components.

This paper studies an extension of the CORBA Component Model in order to introduce the concept of

parallel components. This study is mainly focused on the CCM abstract model and on the execution model.

The proposed parallel CCM model, called GridCCM, has been successfully added on top of two existing

CCM implementations. With both prototypes, the performance results have shown that the model is able

to aggregate bandwidth without introducing any noticeable overhead.

The next step of our work is to finalize the GridCCM model, in particular with respect to data redis-
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tribution and to parallel component exceptions. The GridCCM model does not aim at defining any data

distributed type. However, it should be able to handle them thanks to some data redistribution libraries.

Another important ongoing work is the integration of grid environments within the CCM deployment

model. Hence, to deploy an application into a grid, the CCM deployment model has to interact with grid

environments. With respect to security issues, a parallel component should behave as a standard CORBA

component. Then, the issue will be the handling of the interactions between the CORBA security infras-

tructure and a grid environment security infrastructure. Supporting system services like persistence or

transaction is another issue that needs to be further investigated. Moreover, the prototype needs to be fi-

nalized. In particular, the current GridCCM layer is mainly hand-written. A dedicated compiler will soon

be operational. Last, we plan to test the model with real applications. One of them will be an EADS code

coupling application which involves five MPI codes.
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Figure 1: CORBA architecture.
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Figure 2: A CCM component.
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foo ref = ServerComp->provide_FacetExample();
ClientComp->connect_FacetExample(ref);

Figure 3: Example of code to connect two components.

MPI communication layer

Parallel Component

CORBA communication layer : ORB

CORBA Component
SPMD Code

CORBA Component
SPMD Code

CORBA Component
SPMD Code

Figure 4: Parallel component concept.

CORBA client component

GridCCM layer

o->m(matrix n);

CORBA stub

o1->m(MatrixDis n1);
o2->m(MatrixDis n2);
o3->m(MatrixDis n3);

Figure 5: The user invokes a method on a remote component. The GridCCM layer actually uses an internal
version of this method on the different instances of the parallel component.
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Figure 6: The different compilation phases to generate a parallel component.
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Figure 7: An example of connection and communications between two parallel components.

// Interface Average definition
typedef sequence<long> Vector;
interface Average {

long compute(in Vector v);
};
// Component A definition
component A {

provides Average myPort;
};

Figure 8: A component IDL definition.

// Parallelism definition
Component: A
Port : myPort
Port Type: Average
Operation: compute
Argument1: bloc
Result : noReduction

Figure 9: Parallelism description of a facet.
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// Get a reference to the facet myPort
Average avg = aComponent.get_connection_myPort();
// Configure it with a GridCCM API

avg.init_compute(’bloc’,0); // 1st arg is bloc distributed
// "Standard" CCM call

avg.compute(MyMatrixPart);

Figure 10: A client initializing and using a parallel operation.
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    provides _gccm_Average avgPort;
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Code
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}
component _gccm_A {

}

    long compute(in DVector v);

// Specific GridCCM viewinterface Average {

}
component A {
    provides Average avgPort;
}

    long compute(in DistVector v);

interface Average {
    long compute(in Vector v);
}
component A {
    provides Average avgPort;
}

// Standard CCM view

External view

interface _gccm_Average {

// GridCCM view

Figure 11: The two kinds of views of a GridCCM component.
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Figure 12: Experimental protocol.
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Parallel component Latency in ��� Aggregated bandwidth in MB/s
node number C++/Myrinet C++/Myrinet C++/Eth JAVA/Eth

1 to 1 62 43 9.8 8.3
2 to 2 93 76 19.6 16.6
4 to 4 123 144 39.2 33.2
8 to 8 148 280 78.4 66.4

Figure 13: Latency and bandwidth between the parallel component Customer and the parallel component
Server. The two parallel components are deployed over the same number of nodes.
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