
1

SOA, Services,

Workflows &

Components

Christian Perez

LIP/INRIA

2010-2011

Content

� SOA

� Web Services

� Dataflow/Workflow

�BEPL

� Services & Software Components

�SCA

�STCM

2

SOA

Service Orientated

Architecture

SOA – Service Orientated

Architecture

� “This term is increasingly used to refer to

an architectural style of building reliable

distributed systems that deliver

functionality as services, with the

additional emphasis on loose coupling

between interacting services.”

OGSA Glossary

3

Publish, Find and Bind Triangle

Characteristics of SOA –

WS-Architecture

� Logical view: The service is an abstracted, logical view
of actual programs, databases, business processes, etc.,
defined in terms of what it does, typically carrying out a
business-level operation.

� Message orientation: The service is formally defined in
terms of the messages exchanged between provider and
requester agents, and not the properties of the agents
themselves.

� Description orientation: A service is described by
machine-processable meta data.

4

Characteristics of SOA –

WS-Architecture

� Granularity: Services tend to use a small number of
operations with relatively large and complex messages.

� Network orientation: Services tend to be orientated
toward use over a network.

� Platform neutral: Messages are sent in a platform-
neutral, standardized format delivered through the
interfaces, XML is the most obvious format that meets
this constraint.

SOA References

� WSG – Web Service Grids,
http://www.nesc.ac.uk/technical_papers/UKeS-2004-
05.pdf

� W3C WSA – Web Service Architecture,
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

� OGSA Glossary -
https://forge.gridforum.org/projects/ogsa-wg

� For discussions on SOA see:
� http://savas.parastatidis.name/

� http://jim.webber.name/

� WS-GAF mailing list

5

Services

Why Web Services

� Execute everywhere

�Multi-platform

�Multi-languages

� From everywhere

� Through everything

� In particular, through firewalls

� Can be based on HTTP

6

What is needed?

� To execute on a platform

�Description language
� Interfaces

� Data types

�Mappings to/from programming languages

� To execute remotely

�A service of naming or discovery

�A communication protocol

Web Services: Elements

� XML

� eXtended Markup Language

� WSDL

�Web Services Description Language

� SOAP

� Simple Object Acess Protocol

� UDDI

� Universal Description, Discovery and Integration

7

Web Services: Architecture

WSDL (Web Services

Description Language)

Library

� Java - SOAP for

Apache

� Java - GLUE

� Perl - SOAP::Lite

� C/C++ - gSOAP

� Python - ZSI

� Microsoft SOAP (part

of .NET)

XML Document to

SOAP

Specifications

Generates
HTTP

XML Document to

SOAP

Specifications with

Response

Executes Request

 and Generates

HTTP

Client

Server

UDDI (Universal Description,

Discovery and Integration)
Finds

Ca
lls

Responds

WSDL

� Specifications (09/2000)
� Ariba, IBM, Microsoft

� TR W3C v1.1 (25/03/2001)

� Goals
� WSDL is an XML format for describing network services as a set
of endpoints operating on messages containing either document-
oriented or procedure-oriented information.

� XML grammar (XML schema)
� Modular (import of other documents WSDL and XSD)

� Non targeting human beings
� There are generator of WSDL from programming languages

8

Elements of a WSDL definition

<types>

� Embeds the type definition using a type system (such as XSD).

<message>

� Describes the names and the types of the set of fields to transmit
� Parameters of an invocation, answer, ...

<porttype>

� Describes a set of operations. Each operation has zero or one message
as input, zero or several message(s) as outputs, or faults

<binding>

� Specifies a link between a <porttype> and a concrete protocol
(SOAP1.1, HTTP1.1, MIME, &). A <porttype> can have several
bindings!

<port>

� Specifies an endpoint as the combination of a <binding> and a network
address.

<service>

� A collection of endpoints.

An example of WSDL
<?xml version="1.0"?>

<wsdl:definitions name="EndorsementSearch"
targetNamespace="http://namespaces.snowboard-info.com"
xmlns:es="http://www.snowboard-info.com/EndorsementSearch.wsdl"
xmlns:esxsd="http://schemas.snowboard-info.com/EndorsementSearch.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:types>
<xsd:schema targetNamespace="http://namespaces.snowboard-info.com"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<xsd:element name="GetEndorsingBoarder">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="manufacturer" type="string"/>

<xsd:element name="model" type="string"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="GetEndorsingBoarderResponse">
...
</xsd:schema>

</wsdl:types>

<wsdl:message name="GetEndorsingBoarderRequest">
<wsdl:part name="body" element="esxsd:GetEndorsingBoarder"/>

</wsdl:message>

<wsdl:message name="GetEndorsingBoarderResponse">
<wsdl:part name="body" element="esxsd:GetEndorsingBoarderResponse"/>

</wsdl:message>

<wsdl:portType name="GetEndorsingBoarderPortType">

<wsdl:operation name="GetEndorsingBoarder">
<wsdl:input message="es:GetEndorsingBoarderRequest"/>
<wsdl:output message="es:GetEndorsingBoarderResponse"/>
<wsdl:fault message="es:GetEndorsingBoarderFault"/>

</wsdl:operation>
</wsdl:portType>

...

</wsdl:definitions>

C
en
su
re
d

9

SOAP

[Simple Object Access Protocol]

� Provides
� RPC

� User Defined Data Types

� Localization (English, Chinese, etc.)

� Uses widely adopts standards
� HTTP

� XML

� Multi-platform (contrary to DCOM)

� Multi-language (contrary to Java RMI)

� Independent of the protocol (~contrary to CORBA)

SOAP

10

SOAP

UDDI: Registry of Web Services

� Specification (09/2000)
� Ariba, IBM, Microsoft +260 other companies

� OASIS standard (04/2003)

� Goals
� Worldwide registry of companies/services.

� Several indexed entries: name, company ID, description of
product, of services, remotely accessible software services
(endpoints)

� Indexation of proprietary catalogues
(ebXML, RosettaNet, Ariba, Commerce One, etc.)

� XML grammar (schema XML)
� Submission/Request based on SOAP et WSDL

11

UDDI: What’s inside?

UDDI: Information Organization

12

UDDI: White/Yellow/Green Pages
� White Pages

� Business Name

� Text Description (list of multi-language text strings)

� Contact info
� names, phone numbers, fax numbers, web sites...

� Known Identifiers of a business

� Yellow Pages
� Business categories

� 3 standard taxonomies in V1
� Industry: NAICS (Industry codes - US Govt.)

� Product/Services: UN/SPSC (ECMA)

� Location: Geographical taxonomy

� Green Pages
� Set of information that describes how to do e-commerce with them

� Nested model
� Business processes

� Service descriptions

� Binding information

� Programming/platform/implementation agnostic

� Services can also be categorized

UDDI

13

Bibliography

� Web Services
� Distributed Applications with XML-RPC, SOAP, UDDI
& WSDL, Ethan Cerami, February 2002 O’Reilly

� WSDL
�W3C specification

� http://www.w3.org/TR/wsdl

� UDDI
� http://www.uddi.org

� Java and SOAP, Robert Englander, May 2002
O’Reilly

Workflows

14

Service Composition

� Composite Service

� a service implemented by combining other web

services

� Service composition

� the process of developing a composite web service

� Composition as a way to master complexity

Orchestration models

� Goals
� Specifying the order of service invocations
depending on conditions

� Need for abstraction models and languages
� (UML) activity diagrams

� statecharts

� petri-nets

� pi-calculus

� activity hierarchies

� rule-based orchestration approaches

� gamma-calculus (aka chemical programming)

� etc.

15

Service Selection

� During execution, a composition engine has to target
messages to specific services, which are defined in
the composition schema (typically in the form of a
port type)

� The question is how to select and bind the services:

� Static binding

� Dynamic binding by reference

� Dynamic binding by lookup

� Dynamic operation selection

Dependencies between

Coordination and Composition

� Composition protocols
� Private documents that define the internal implementation of a
Web service.

� Coordination protocols
� Public documents focusing on external interactions of a Web
service.

16

� Bibliography
� http://http://http://http://www.gridworkflow.org/snips/griwww.gridworkflow.org/snips/griwww.gridworkflow.org/snips/griwww.gridworkflow.org/snips/gri

dworkflowdworkflowdworkflowdworkflow////

� Askalon-AGWL (Abstract Grid Wrokflow
Language) - Innsbruck, Austria

� Triana - Cardiff, UK

� GriCoL (Grid Concurrent Language) - HLRS
Stuttgart, Germany

� Kepler - SEEK, SDM, GEON, …

� Generic models
� Task

� Ports
� Input/output data

� Assembly
� Control/data flows

if

t2 t3

t5

t4

t1

yes no

Data flow

Control flow

tâche

inputs

outputs

Workflow based models

BPEL

17

BPEL for Web Services

Combining Atomic Web Services into a Composite Web Service

BPEL is a second generation

language, building on prior work by

Microsoft, IBM.

Standardisation now managed by

Oasis.

BPEL: Construct Overview

� Business logic

� <sequence/>

� <flow/>

� <link/>

� <switch/>

� <throw/>

� <scope/>

� <while/>

� <pick/>

� <copy/>

� <assign/>

� Process declaration

<process>

<partners/>

<receive/>

<invoke/>

<reply/>

</process>

18

Loan Processing Orchestration

SCA

19

Service Component Architecture

� A vendor-, technology-, language-neutral model

for the creation of business systems using SOA

by the composition and deployment of new and

existing service components

Business Drivers

� Flexible businesses require flexible IT

�Globalization demands greater flexibility

�Global supply chain integration

�Business processes
� Daily changes vs. yearly changes

�Growth through flexibility is at the top of the
CEO agenda

�Reusable assets can cut costs by up to 20%

�Crucial for flexibility and becoming
an On Demand Business

20

What we have today

� Complexity

� Rigid, brittle architectures

� Inability to evolve

What we want to get to

� Well-defined interfaces with business-level
semantics

� Standardized communication protocols

� Flexible recombination of services to enhance
software flexibility

Service-Oriented Architecture is one of the key
technologies to enable flexibility and reduce

complexity

21

Service-oriented Architecture

� SOA derives its technical strategy and vision
from the basic concept of a service:

� “A service is an abstraction that encapsulates a
software function.”

� “Developers build services, use services and develop
solutions that aggregate services.”

� “Composition of services into integrated solutions is a
key activity”

SOA Core Elements

� Service Assembly

� Technology- and language- independent

representation of the composition of services into

business solutions

� Service Component

� Technology- and language-independent

representation of a service which can be composed

with other services

22

SCA: Simplified Programming Model for SOA

� What is SCA:
� Model for assembly of service components into business solutions

� Component programming model for implementation of services:
� Business services implemented in any of a variety of technologies

� e.g. EJBs, Java POJOs, BPEL process, COBOL, C++, PHP …

� Key Benefits of SCA:
� Loose Coupling: Components integrate with other components without
needing to know how other components are implemented

� Loose coupling - KEY requirement for SOA

� Flexibility: Components can easily be replaced by other components
� Flexibility - KEY requirement for SOA

� Services can be easily invoked either synchronously or asynchronously

� Composition of solutions: clearly described
� Composition of services - KEY requirement for SOA

� Productivity: Easier to integrate components to form composite
application

� SCA simplifies development experience for all developers,
integrators and application deployers

SCA: What is it NOT

� Does not model individual workflows
� Use BPEL or other workflow languages

� Is not Web services
� SCA can use / may use Web services, but can also build
solutions with no Web services content

� Is not tied to a specific runtime environment
� Distributed, heterogeneous, large, small

� Does not force use of specific programming languages
and technologies
� Sims to encompass many languages, technologies

23

Warehouse

Service

WarehouseComposite

Warehouse

Broker

Component

Warehouse

Component

EventLog

Component

Order

Processing

Service

OrderProcessing

Component

EventLog

Reference

External

Warehouse

Reference

Payments

Component

Payment

Service

AccountsComposite
External

Banking

Reference

Accounts

Ledger

Component

Example SCA assembly

Assembly Model Concepts

� Component

� Implementation

� Composite

� Service

� Reference

� Wire

� ComponentType

� ConstrainingType

� Domain

� Contribution

24

Composite A

Component

A

Component

B

Wire WireWire

Reference

Property
setting

Properties

Service:
- Java Interface
- WSDL PortType

Binding
- Web Service
- SCA
- JCA
- JMS
…

SCA Composite Component

Binding
- Web Service
- SCA
- JCA
- JMS
…

Reference:
- Java Interface
- WSDL PortType

Service

bigbank.accountcomposite

AccountService
Component

Service

Reference
StockQuote
Service

AccountData
Service
Component

bigbank.accountcomposite

AccountService
Component

Service
AccountService

Reference
StockQuote
Service

AccountData
Service
Component

Example

25

SCA Interaction Model

� Synchronous & asynchronous service
relationships

� Conversational services

�Stateful service interactions

� Asynchronous support

� “Non-blocking” invocation

�Asynchronous client to synchronous service

�Callbacks

Policies Framework and

Infrastructure Capabilities

� Infrastructure has many configurable capabilities
� Security: Authentication and Authorization

� Security: Privacy, Encryption, Non-Repudiation

� Transactions, reliable messaging, etc.

� Complex sets of configurations across multiple domains of
concern

� SCA abstracts out complexity with a declarative model
� No implementation code impact

� Simplify usage via declarative policy intents

� Simple to apply, modify

� Complex details held in PolicySets

26

Java Common Annotations

� Java Annotations for generating corresponding componentType

� Common across all Java-related specifications

� Implementation annotations
� @Service

� @Reference

� @Property

� @Scope @Init @Destroy @EagerInit

� @ConversationID @ConversationAttributes

� @ComponentName

� @Constructor

� Interface annotations
� @AllowsPassByReference

� @Callback

� @Remotable

� @Conversational

� @Oneway

Java Annotation Example
package services.account;

...

@Service(AccoutService.class)

public class AccountServiceImpl implements AccountService {

@Property

private String currency = "USD";

@Reference

private AccountDataService accountDataService;

@Reference

private StockQuoteService stockQuoteService;

...

public AccountReport getAccountReport(String customerID){

...

}

...

}

27

Java Common APIs

� Common across all Java-related
specifications

� APIs for:

�Component context

�Request context

�Callable reference

�Service reference

�Conversation

�Exceptions

BPEL Component Implementation
� SCA and BPEL are complementary

� BPEL provides business orchestration view of the component

� SCA provides a compositional view of interconnection among
service components

� Supports WS-BPEL 1.1 and 2.0

� Requires WSDL interfaces

� SCA service = partnerLink with a single role belonging to
the BPEL process

� SCA reference = partnerLink with a single role belonging to
a partner

� When partnerLink defines two role, directionality defines
whether it is a service or a reference

� SCA extensions
� Attribute “sca:property” on a variable declaration defines a property

� Element “sca:multiReference” on a variable declaration defines a
multivalued reference

28

STCM

Spatio-Temporal

Component Model

Workflow models vs. Component

models

-

+

Resources

usage

+

-

Code

coupling

simplicityassembly

++Component

models

++Workflow

models

29

Limitation of existing approaches

� Software component models
� Adding meta-data about component’s behavior (exp: ICENI)

� Objective: compute an optimal placement of components

� Require code knowledge

� Complicate application design

� Workflow models
� Encapsulate spatial composition within tasks implementations

� Objective: offer a level of composition for coupled codes

� Limits the hierarchy to two levels

� Limits re-usability

� Limitations because of
� Spatial and temporal compositions are not at the same level

Principle of STCM

� Combination of component and

workflow models

� Spatial and temporal dimensions at

the same level of assemblies

� Component-task

� Input and output ports (temporal)

� Spatial ports

� Task

� Assembly model

� Adaptation of a workflow language
end

start

CB

A

30

Temporal ports & task

void setIn_inA(...) { d_inA = ..}

void task() {

d_outA = pUses.mult (d_inA, 50);

}

double getOut_outA() { return d_outA;}

…

…input double inA

output double outA

pUse

double mult (..);

Life cycle

� States of a component instance at execution

created

inactive

active

running

non existent

removed

31

Temporal ADL: Primitive

Component à la Fractal
<component name="name" (extends="parentType")?>

<clientPort name="…" type="itfName" (set="…")? />*

<serverPort name="…" type="itfName" (set="…")? />*

<attribute name="name" type="attributeType"/>*

<dataIn name="…" type="dataType" (set="…")? />*

<dataOut name="…" type="dataType" (set="…")? />*

<impl type="exe|dll|.." signature="sign" />

<controllerDesc desc="desc"/>?

</component>

Temporal ADL of Composite based on

AGWL (1/2)
<component name="name" (extends="parentType")?>

<dataIn name="…" type="dataType" (set="…")? />*

<dataOut name="…" type="dataType" (set="…")? />*

<body>

component*

<instance name="i1" compRef="C1" />

<instance name="i2" compRef="C2" />

<setPort client="i2.p2" server="i1.p1" />

<setPort in="i2.d2" out="i1.d1" />

instruction?

</body>

<controllerDesc desc="desc"/>?

</component>

32

Temporal ADL of Composite based on

AGWL (2/2)

<sequence name="name">

<dataIn name="name" type="..."
(set=..)?/>*

<dataOut name="name" type="..."/>*

<clientPort name="name" type="...“
(set=..)?/>*

<serverPort name="name“
type="..."/>*

<!-- other spatial ports -->

<instruction1>

...

<instructionN>

</sequence>

<if name="name">

<!-- like in sequence-->

<condition>

boolean expression

</condition>

<then>

<instruction1>

</then>

<else>

<instruction2>

</else>

</if>

Sequence Condition

Example
<component name ="example">

...

<parallel name="ParallelCtrl">

<section>

<component name="B">

<dataIn name="inB" ... set="init.out1"/>

<serverPort name="pB" type=“Foo"/>

</component>

</section>

<section>

<component name="A">

<dataIn name="inA" ... set="init.out2"/>

<clientPort name="pA" type=“Foo" set="B.pB"/>

</component>

</section>

</parallel>

...

</component>
Time

A
B

C

33

Summary

� Combination of component and workflow models

� Component-task

� Temporal ports

� Assembly model “à la workflow”

� STCM

� Extension of GCM (CoreGrid)

� Temporal ports and task

� Adaptation of AGWL (Abstract Grid Workflow Language)

� Component and spatial composition

