
1

Advanced
Component Models

Christian Perez

LIP/INRIA

2010-2011

Content
� Algorithmic skeletons

� Master-worker

� MapReduce

� STKM

� Generic Components

� “Classical” Parallelism
� Data sharing composition

� NxM Components

� Collective communications

� Connectors
� “Classical” connector

� “Open” connections

� Conclusion

2

Algorithmic
Skeletons

floatint

int

Algorithmic skeletons
sequential

int a float b

pipe p

int floatfloat

p1 p2 p3

pipe pp
farm f

pp1 pp3
w

w

emitter collector

float int
int int

compute in (int a) out (float b)
$ sequential code $

end

pipe p in (int a) out (float b)
p1 in (a) out (float b1)
p2 in (b1) out (int b2)
p3 in (b2) out (b)

end pipe

farm f in (int af) out(int bf)
w in (af) out(bf)

end farm
pipe pp in (float a) out(float b)

pp1 in (b) out (int b1)
f in (b1) out (b2)
pp3 in (b2) out (b)

end pipe

3

Algorithmic skeletons [M. Cole ‘89]

� Predefined patterns for parallel programming
� Stream parallel

� Pipeline, farm, if, while, etc

� Data parallel
� Fork, divide-and-conquere, Map (independent forAll), reduce, …

� Structured programming
� Simplicity

� Correctness of programs

� Hide the complexity of parallelism management
� Creation of processes, data distribution, ..

� Behavioral skeletons add advanced management for
adaptation

Algorithmic
Skeletons

Master-Worker
Relationships

4

Master-worker paradigm

� Multiple independent computations (boucle ~ForAll)

� Dedicated environments/API
� GridRPC : DIET, NetSolve, Ninf-G, …

� Desktop Grid : BOINC, XtremWEB, …

work.

work.

work.

Master
work.

workers collection
Requests transport

Scheduling
Fault tolerance

Characteristics of master-worker
environments

� Advanced request transfer policies

� Transparent management of non-functional concerns

� Dedicated APIs

� Limited programming paradigms

Mechanics

Thermal

Optics

Dynamics

M-W

5

Assembling a master-worker application
in classical component models

WWwi
m

…

m

WWwi

WWwj

m WWwi

(A)

(B) (C)

� Non-functional concerns

� Resources dependencies

Abstract assembly

Composition of components
with collections

≈

Composition of components

m

type1 type3
type2

X

6

Collection of components

Collection at execution

Server exposed port

worker

W1 Wn

W2 Wi

Instantiation

type1 type3
type2 Type1T1x Type2T2yT2y

Type3Type3T3z

Instantiation

Definition of a collection

Request transfer patterns

w
w

w

M

Round-Robin / Random

LA

LALA

M

w w w

MA

MAMA

Simple Component
base pattern

Hierarchical Component
based pattern

DIET pattern

M

Random

w w

Round-Robin Round-Robin

w w

7

Overview of the proposal

Designer view

Collection
Abstract

assembly

master

worker

System/platform view

execution
resources

workers
+

pattern selection

list of request
transfer patterns

1. Random

2. Round-Robin

3. NetSolve
4. Diet

Round-Robin

w1 wi

w3
w5w2

w4

m

Algorithmic
Skeletons

MapReduce

8

Motivation: Large Scale Data
Processing

� Want to process lots of data (> 1 TB)

� Want to parallelize across hundreds/thousands
of CPUs

� … Want to make this easy

MapReduce

� Automatic parallelization & distribution

� Fault-tolerant

� Provides status and monitoring tools

� Clean abstraction for programmers

9

Programming Model

� Borrows from functional programming

� Users implement interface of two
functions:

� map (in_key, in_value) ->

(out_key, intermediate_value) list

� reduce (out_key, intermediate_value list) ->

out_value list

Distributed Grep

Very
big

data

Split data

Split data

Split data

Split data

grep

grep

grep

grep

matches

matches

matches

matches

cat
All

matches

10

Distributed Word Count

Very
big

data

Split data

Split data

Split data

Split data

count

count

count

count

count

count

count

count

merge
merged

count

Map Reduce

� Map:
� Accepts input

key/value pair

� Emits intermediate
key/value pair

� Reduce :
� Accepts intermediate

key/value* pair

� Emits output key/value
pair

Very
big

data

Result
M
A
P

R
E
D
U
C
E

Partitioning
Function

11

Partitioning Function (1/2)

Partitioning Function (2/2)

� Default : hash(key) mod R

� Guarantee:
� Relatively well-balanced partitions

� Ordering guarantee within partition

� Distributed Sort
� Map:

emit(key,value)

� Reduce (with R=1):
emit(key,value)

12

MapReduce

� Distributed Grep

� Map:
if match(value,pattern) emit(value,1)

� Reduce:
emit(key,sum(value*))

� Distributed Word Count

� Map:
for all w in value do emit(w,1)

� Reduce:
emit(key,sum(value*))

Spatio-Temporal
Skeleton Component
Models

13

Limitations of existing component
models

� Assembly models close to the computing resources
� Behavior hidden in the assembly

- “Over-consumption” of resources

� Simple spatial relations

- Resource dependencies

- Complex design
- Parallel paradigms (e.g. master-worker)

A B C

network network

step1 step2 step3

A B C

t

A
B

C

A
B

C
active

running
Workflow models

Algorithmic skeleton models

Objectives

� Simplifying programming parallel parts of an
application

� Offering a similar level of abstraction as in
skeleton models

� Portability on different execution resources

� Code reuse

� Efficiency

14

Overview of STKM

� Assembly model

� STCM assembly + skeleton
constructs

� An STKM skeleton is a
composite with a predefined
behavior

� Parameterization

� Wrapping components

� Usage in spatial and temporal
dimension

� Port cardinality principle
(temporal dimension)

step3

step1

pipe

bp1 p2 p3a

Parallel step2

Component wrapping
and port cardinality principle

� A skeleton element is
a wrapped component

inSkel outSkel

longfloat float long

stream ports

op (in float, out long)

inSkel

outSkel long

float

float

long

� Port cardinality

p1

p2

p3

pipe

A

B

1

n

1

n

forAll …
setOut...

wait n data
before

task execution

15

STKM: Assembly model

ww

farm step2

step1

step3

component Example {
… Step1 and Step3 components…

farm Step2 {
inputSkel double inS2;
outputSkel string outS2;

worker sequential w {
inputSkel double inW;
outputSkel string outW;
component Worker { streamIn double inW;

streamOut string outW;
}
connect outW to Worker.outW;
connect Worker.inW to inW;

}

instances: Step1 step1; Step2 step2; Step3 step3;
… Connexions step1 <=> step2 <=> step3 …
sequence ApplMain {

exec step1; exec step2; exec step3;
} }

Check

STKM usage and benefits

Split

FingerPrintMatcher
(Functional replication skeleton)

GateAdmin

MGR

Gate

Gate

Gate

w

w

SplitMGR

CE

w

w

16

Generic Component
Models

32

Motivating example: Overview

� Goal: Generating Mandelbrot
set pictures

� Embarrassingly parallel

� Parallel hardware resources:

� Ex: Quad-core computer

� Programming pattern: Task-
farm skeleton

� 1 data stream

� n parallel workers

C=(x,y)

Zn+1 = Zn
2 + C

�Bounded → black

�Unbounded → blue

17

33

Motivating Example:
A component based implementation

Coord Pixel

Coord

Disp

Coord

Disp
Pix

Coll

Pix

Coll

Mandel

Worker

Mandel

Worker

Mandel

Worker

Mandel

Worker

Mandel

Worker

Mandel

Worker

Mandel

Worker

Mandel

Worker

MandelbrotFarm

34

Coord Pixel

Coord

Disp

Coord

Disp
Pix

Coll

Pix

Coll

Mandel
Mandel

Mandel
Mandel

Mandel
Mandel

Mandel
Mandel

MandelbrotFarm

Motivating example: Limitations to reuse

� Hard-coded in the composite

� Transformation algorithm

� Manipulated data-types

� Number of workers

18

35

Motivating Example: A generic farm

Coord Pixel

Coord

Disp

Coord

Disp
Pix

Coll

Pix

Coll

Mandel

Worker

Mandel

Worker

Mandel

Worker

Mandel

Worker

Mandel

Worker

Mandel

Worker

Mandel

Worker

Mandel

Worker

MandelbrotFarm

36

Coord Pixel

Coord

Disp

Coord

Disp
Pix

Coll

Pix

Coll

WW

WW

WW

WW

MandelbrotFarm<W>

Motivating Example: A generic farm

19

37

I O

Disp<I>Disp<I> Coll<O>Coll<O>

WW

WW

WW

WW

MandelbrotFarm<W, I, O>

Motivating Example: A generic farm

38

I O

Disp<I>Disp<I> Coll<O>Coll<O>

WW

MandelbrotFarm<W, I, O, N>

.

.

.
N

Times

WW

Ge
ne
ric
ity

Motivating Example: A generic farm

20

39

Genericity study: Concepts definitions (1)

CC

GenCmp<C>public class GenClass<T>
{

T member;

…

}

template<typename T>
T genFunc () {

T locvar;

…

Return locvar;

}

Generic artifacts:
�Accept 2nd order parameters

�Use the parameters in their

implementation / body

Java

C++

40

GenCmp<A>GenCmp<A>

GenClass<String> l = new GenClass<String>();

int i = genfunc<int>();

Specializations:
�Use of generic artifacts

�Arguments bind parameters to a

value

AA

Java

C++

Genericity study: Concepts definitions (2)

21

41

Template<>

void* genFunc<void*>() {

…

}

Explicit Specializations:
�Distinct implementation for a

range of specializations

�When some constraints on the

parameters are fulfilled

CC

GenCmp<C>

When C.p instanceof G

AA

CC

GenCmp<C>

C++

Genericity study: Concepts definitions (3)

42

� Instantiation of
parameter types

� Meta-programming
� Ex: N times replication

� Reuse existing
component models
� Extension of existing

models

Toward a generic component model

� Generic concepts

� Component types

� Port types

� Concepts as
parameters

� Component types

� Port interfaces

� Data types

� Data values

22

43

Genericity study:
Type erasure vs. Specialized compilation

� Type erasure : (ex. Java)

� Type parameters used for checking

� Only one code compiled, manipulates Object ptrs

- No dynamic instantiation of specializations

+ Explicit specializations & template metaprogramming

+ Compiled code is smaller

- Limited use of parameter types (no instantiation, limited access to

methods, …)

� Specialized compilation (ex. C++)

� Type parameters replaced in the code

� One code compiled / specialization

44

GenericSCA: Introduced features

� Concepts made generic :

� Composite component implementations

� Java component implementations

� Java port interfaces

� Concepts that can be parameters

� Component implementations

� Port interfaces

� Data-types

� (Data-values) : properties are already part of SCA

23

45

Task Farm in GenericSCA:
Modeling the Farm

dispatcher

Gen

Farm<I,O,D,W,C,N>

D

workers collectorin in out in out in out out

SCA GenReplication C

I=I, O=O,

R=N, C=W

T=I T=O

� Six parameters:
� I, O: type of input & output data

� D,W,C: Dispatcher, Worker & Collector implementations

� N: number of Workers

� Default values for D & C

� Flow simulated by a DataPush<T> interface
� Single method: void push(T data);

46

Task Farm in GenericSCA:
The Replication Component
� Recursive implementation

� When R = 1
� 1 C instance only

� When R > 1
� 1 C instance
� 1 Replication instance with R decreased by 1

head

Gen

When (R==1)

C

id = 0

head

Gen

Replication<I,O,C,R>

C

in in

in in out out

out

tail

SCA Replication

R = R-1

outin

id = R-1

out

24

47

Task Farm in GenericSCA:
Transformation Example

dispatcher

Java

Farm<I=PictRect,O=ComputedPictRect,W=Mandel,N=3>

RRDisp

workers collectorin in out in out in out out

SCA JavaReplication RRColl

I=PictRect,

O=ComputedPictRect,

R=3, C=Mandel

T=PictRect T=ComputedPictRect

48

Task Farm in GenericSCA:
Transformation Example

workersin out

SCA Replication

I=PictRect,

O=ComputedPictRect,

R=3, C=Mandel

25

49

Task Farm in GenericSCA:
Transformation Example

head

Gen

Replication<I=PictRect,O=ComputedPictRect,C=Mandel,R=3>

C

in in
out

tail

SCA Replication

I=I, O=O,

C=C, R=R-1

outin

id=R-1

out

50

head

Java

Replication<I=PictRect,O=ComputedPictRect,C=Mandel,R=3>

Mande

l
in in out

tail

SCA Replication

I=PictRect,

O=ComputedPictRect,

C=Mandel,

R=2

outin

id=2

out

Task Farm in GenericSCA:
Transformation Example

26

51

head

Java

Replication<I=PictRect,O=ComputedPictRect,C=Mandel,R=3>

Mande

lin in out out

head

Java

Replication<I=PictRect,O=ComputedPictRect,C=Mandel,R=2>

Mande

lin in out

tail

SCA Replication

outin

id=1

out

I=PictRect,

O=ComputedPictRect,

C=Mandel,

R=1

id=2

Task Farm in GenericSCA:
Transformation Example

52

head

Java

Replication<I=PictRect,O=ComputedPictRect,C=Mandel,R=3>

Mande

l
in in

out out

head

Gen

Replication<I=PictRect,O=ComputedPictRect,C=Mandel,R=2>

C

in in out

id=1

out

head

Gen

Replication<I=...,O=...,C=...,R=1>

C

in in out

id=0

out

id=2

Task Farm in GenericSCA:
Transformation Example

27

“Classical” Parallelism
in Component Models

Data sharing

NxM

Collective Communications

“Classical” Parallelism
in Component Models

Data-sharing Composition

28

Data sharing

� Multiple concurrent accesses to a data

� Localization and concurrent accesses management
� Intra-machine: OS

� Intra-cluster: Distributed shared memory (DSM)

� Intra-grid: sharing data service (JuxMem/PARIS)

data

B

CA

D

read

write

read/write

read/write

� Ports: active communication operation
� Data must be part of a message

� Centralized approach
� Bottleneck for the performance

� Single point of failure

� Distributed approach
� Explicit management of data

replication/migration by components

� Functional code mixed with
data management code

Data

Data

Data

Data

Limits with data sharing in
component models

29

Overview of the Model

� Selected depending on resources and comp. placement

� OS, DSM, JuxMem

data

data sharing management system

B

C

A

data_ref

accesses float port shares float port

� Principle : transparent access to a shared data

interface SharesPort {

float* allocate_space(in ling size);
void free_space();
float* get_pointer();
long get_size ();
void acquire();
void release ();
void acquire_release();

};

Example of data sharing ports
interface ExtendedServices : Services {

interface AccessPort : Port {

opaque get_pointer();

long get_size();

void acquire();

void acquireR();

void release();

}

interface SharesPort : AccessPort {

void associate (in opaque ptr, in long

size);

void disassociate();

}

class CompImpl {

Services srv;

AccessPort myPort;

…

void computeSum(){

myPort = srv.getPort(“myPort");

myPort.acquireR();

ptr = myPort.getPointer();

size = myPort.get_size();

for (i = 0; i < size; i++)

sum += ptr[i];

myPort.release ();

}

}

30

“Classical” Parallelism
in Component Models

MxN Communications

Application in hydrogeology:
Saltwater intrusion
� Coupled physical

models
� One model = one

software
� Saltwater intrusion

� Flow / transport

� Reactive transport
� Transport / chemistry

� Hydrogrid project,
supported by the
French ACI-GRID flow : velocity and pressure function of the density

Density function of salt concentration

Salt transport : by convection (velocity) and diffusion

31

Numerical coupling in saltwater
intrusion

Flow Transport

time

t = 0

t = ∆t

control

iterative scheme at each timestep

Components and communications
of PCSI

Flow
component

Transport
component

Controller
component

scalarsscalars

velocity

concentration

Log
component

ve
lo
ci
ty concent

32

Components and interfaces of
PCSI

Limits to MxN code
communications

process
process

process
process

process

process

process

process

process

process

process
process

Flat programming model

(à la MPI)

SPMD

Proc.

SPMD

Proc.

SPMD

Proc.
SPMD

Proc.

SPMD

Proc.

MPI communication layer

MPI Slave

processes

MPI Master

&

Bridge component

SPMD

Proc.

SPMD

Proc.

SPMD

Proc.

SPMD

Proc.

SPMD

Proc.

MPI communication layer

MPI Master

&

Bridge

component

MPI Slave

processes

Bridge based solution

33

SPMD Components

HPC

Component

A

HPC

Component

B

What the application designer should see…

… and how it must be implemented !

Component A Component B

Caller Receiver

// Emitter Code
o.factorize(m);

Distributed component (a process)

// Receiver Code
void serv::factorize(const Matrix mat)
{ ... ;}

Distributed Component Model

34

Data
Redistribution

Caller Parallel Receiver

Distributed component (a process)

// SPMD Receiver code
void factorize(const DMatrix mat)
{ MPI_Bcast(...) ... ;}

Parallel Distributed Component

// Emitter Code
o.factorize(m);

SPMD Parallel Component
Model (1)

Data
Redistribution

Parallel Caller Receiver

// Receiver Code
void factoriser(const Matrice mat) { ... ;}

Distributed component (a process) Parallel Distributed Component

// SPMD Emitter Code
o->factorize(m);

SPMD Parallel Component
Model (2)

35

Parallel ReceiverParallel Caller

// SPMD Emitter Code
o->factorize(m);

// SPMD Receiver Code SPMD
void factorizer(const Matrix mat)
{ MPI_Bcast(...) ... ;}

Data
Redistribution

Distributed component (a process) Parallel Distributed Component

SPMD Parallel Component
Model (3)

GridCCM Component

component CoPa
{

provides IExample to_client;
uses Itfaces2 to_server;

};

interface IExample
}

void factorise(in Matrix mat);
};

Component: CoPa
Port: to_client
Name: IExample.factorise
Type: Parallel
Argument1: Basic_BC[*, bloc]
ReturnArgument: noReduction

XML

Non functional property of
a component implementation

Comp. A-0

SPMD

Proc.

Comp. A-4

Comp. A-0

SPMD

Proc.

Comp. A-3

Comp. A-0

SPMD

Proc.

Comp. A-2
Comp. A-0

SPMD

Proc.

Comp. A-1

Comp. A-0

SPMD

Proc.

Comp. A-0
to_client to_server

IDL3

IDL2

36

Components for code coupling:
SPMD paradigm in GridCCM

� SPMD component
� Parallelism is a non-functional

property of a component
� It is an implementation issue

� Collection of sequential components
� SPMD execution model

� Support of distributed arguments
� API for data redistribution

� API for communication scheduling
w.r.t. network properties

� Support of parallel exceptions

0

50

100

150

200

250

300

1->1 2->2 4->4 8->8

Component configuration

A
g
g
re
g
at
e
d
 B
an
d
w
id
th
 i
n
M
B

0

20

40

60

80

100

120

140

160

La
te
nc
y
in
 m
ic
ro
se
co
nd
e

Java/Eth

C++/Eth

C++/Myri

C++/Myri

Object Request Broker

CORBA stub/skeleton

Communicatio
n

Library (MPI)

Application

Application view management
- Data distribution description

Communication management
- Comm. Matrix computation
- Comm. Matrix scheduling
- Communication execution

Redistribution
Library 1

Communication
Library

GridCCM runtime

Scheduling
Library

0

20

40

60

80

100

120

6 7 8 9 10 11 12 13 14 15 16

Number of processors per parallel component

Without scheduling

With scheduling

Aggregated Bandwidth (MB/s)

Component A Component B

“Classical” Parallelism
in Component Models

Parallelism in Common
Component Architecture

37

CCA Supports Parallelism by
“Staying Out of the Way” of it

�Single component multiple data
(SCMD) model is component
analog of widely used SPMD
model

P0 P1 P2 P3

Components: Blue, Green, Red

Framework: Gray

•Different components in same
process “talk to each” other via
ports and the framework

•Same component in different
processes talk to each other
through their favorite
communications layer (i.e.
MPI, PVM, GA)

• Each process loaded with the
same set of components wired
the same way

Any parallel programming
environments that can be mixed
outside of CCA can be mixed inside

� Simulation composed of multiple SCMD sub-tasks

� Usage Scenarios:
� Model coupling (e.g. Atmosphere/Ocean)
� General multi-physics applications
� Software licensing issues

� i.e. limited number of instances

� Approaches
� Run single parallel framework

� Driver component that partitions processes and builds rest of
application as appropriate (through BuilderService)

� Run multiple parallel frameworks
� Link through specialized communications components
� Link as components (through AbstractFramework service)

“Multiple-Component Multiple-
Data” Applications in CCA

OceanAtmosphere Land

Driver

Coupler

Processors

38

Components only on
process group B

Group B

MCMD Within A Single
Framework

Components on all
processes

Application driver & MCMD
support component

P0 P1 P2 P3

Framework

Components only on
process group A

Group A

“Classical” Parallelism
in Component Models

Collective Communications

39

Parallelism in component models

� Using message passing
libraries (ex. MPI) inside
components

� Using parallel ports (NxM)
between components

� No collective communications
at higher level

� Two communication models
to handle

P1

P2

Pn

P3

M

P

I

P1

Pm

M
P
I

.

.

.

.

.

.

Optics

Structural
Mechanics

Collective communications

� Most effective algorithm
depend on the
resources

� On hierarchic resources

� hierarchic algorithms

p0 p2 p3

p4 p5 p6 p7

p1

1
2
3
4

3
4

2

4

1

3
2

4

1
2

3
4

1

3

1
2
1

2
3

4
3

4

1
2 2

1

4
3

Scatter

Copy

Allgather

Cluster 1

Cluster 2

Broadcast

Allgather

WAN

M. Matsuda, T. Kudoh, Y. Kodama,

R. Takano et Y. Ishikawa.

Efficient MPI collective operations

for clusters in long-and-fast networks.

in Cluster2006. IEEE, 2006

40

Goals : Overview

� Collective communications
between components

� Efficient

� Transparent

� Fits in component
model

Collective
communications

C
o
lle

c
tiv

e
c
o
m

m
u
n
ic

a
tio

n
s

C
o
lle

c
tiv

e
c
o
m

m
u
n
ic

a
tio

n
s

User

Code

User

Code

User

Code

User

Code

User

Code

User

Code

User

Code

User

Code

Goals: From the user point of view

� Collective communications
are a service

� Provided by a
component

� Communications groups are
a way to connect component
instances

� Described in the
assembly

CollComm

Provider

CollComm

Provider

g1

g2

interface CollComm

{

void barrier ();

void broadcast (

inout data buffer,

in id root);

/* ... */

};

interface CollComm

{

void barrier ();

void broadcast (

inout data buffer,

in id root);

/* ... */

};

CollComm

Provider

CollComm

Provider

1

2

3

4

A

B

41

Goals: From the developer point of view

� Efficiency

�Decentralized
implementation

CollComm

Provider

CollComm

Provider
User

Code

User

Code
Pn

CollComm

Provider

CollComm

Provider
User

Code

User

Code
P2

CollComm

Provider

CollComm

Provider
User

Code

User

Code
P1

.

.

.

Goals : From the developer point of view

� Efficiency

�Decentralized
implementation

� Communications
between processes

�Alltoall connection

CollComm

Provider

CollComm

Provider
User

Code

User

Code

alltoall

Pn

CollComm

Provider

CollComm

Provider
User

Code

User

Code
P2

CollComm

Provider

CollComm

Provider
User

Code

User

Code
P1

.

.

.

42

Goals: From the developer point of view

� Efficiency

� Decentralized
implementation

� Communications
between processes

� Alltoall connection

� Hierarchical resources
& algorithm

� Hierarchical assembly
CollComm

Provider

CollComm

Provider
User

Code

User

Code

alltoall

Pn

CollComm

Provider

CollComm

Provider
User

Code

User

Code
P2

CollComm

Provider

CollComm

Provider
User

Code

User

Code
P1

.

.

.

Copy

Matsuda

Broadcast algorithm

C1

Allgather

Scatter

C2

Allgather

G

Goals: Need for an automatic
transformation

CollComm

Algos

CollComm

Algos
User

Code

User

Code
Pn

CollComm

Algos

CollComm

Algos
User

Code

User

Code
P2

CollComm

Algos

CollComm

Algos
User

Code

User

Code
P1

User

Code

User

Code

User

Code

User

Code

User

Code

User

Code

CollComm

Provider

CollComm

Provider

.

.

.

43

Collective
Communications

A component model with
replicating component

Generic model: Assumptions

� A component model with

� Components with multiple implementations

� Primitive & composite component

� Replicating component

� An ADL to describe the assembly

� A resource model

� An algorithm to expand the assembly

44

Generic model: Replicating component
& Resource model

Comp
Comp

1 / process

Replication levelalltoall connection

Replicate

Port mappings

Comp

Component server

Process level group

Cluster level group

Grid level group
An algorithm to expand the assembly

Collective
Communications

Usage example

45

P1 P2 P3 P4

Usage example: hierarchic broadcast

UserUser UserUser UserUser UserUser

Broadcast

Provider

Broadcast

Provider

C1 C2

P1 P2 P3 P4

UserUser UserUser UserUser UserUser

Broadcast

Provider

Broadcast

Provider

C1 C2

MatsudaC

Replicate

MatsudaC

Replicate

1 / cluster

BroadcastProvider

Usage example: hierarchic broadcast

46

P1 P2 P3 P4

UserUser UserUser UserUser UserUserC1 C2

MatsudaC

Replicate

MatsudaC

Replicate
MatsudaC

Replicate

MatsudaC

Replicate

Usage example: hierarchic broadcast

P1 P2 P3 P4

UserUser UserUser UserUser UserUserC1 C2

MatsudaC

Replicate

MatsudaC

Replicate
MatsudaC

Replicate

MatsudaC

Replicate

Matsuda

Broadcast

Matsuda

Broadcast

MatsudaCReplicate

Scatter

Provider

Scatter

Provider
Allgather

Provider

Allgather

Provider

Usage example: hierarchic broadcast

47

P1 P2 P3 P4

UserUser UserUser UserUser UserUserC1 C2

Scatter

Provider

Scatter

Provider
Allgather

Provider

Allgather

Provider

Matsuda

Broadcast

Matsuda

Broadcast

Scatter

Provider

Scatter

Provider
Allgather

Provider

Allgather

Provider

Matsuda

Broadcast

Matsuda

Broadcast

Usage example: hierarchic broadcast

P1 P2 P3 P4

UserUser UserUser UserUser UserUserC1 C2

Scatter

Provider

Scatter

Provider
Allgather

Provider

Allgather

Provider

Matsuda

Broadcast

Matsuda

Broadcast

Scatter

Provider

Scatter

Provider
Allgather

Provider

Allgather

Provider

Matsuda

Broadcast

Matsuda

Broadcast

Matsuda

Replicate

Matsuda

Replicate

1 / process

Matsuda

Broadcast

Usage example: hierarchic broadcast

48

P1 P2 P3 P4

UserUser UserUser UserUser UserUserC1 C2

Scatter

Provider

Scatter

Provider
Allgather

Provider

Allgather

Provider

Matsuda

Replicate

Matsuda

Replicate
Matsuda

Replicate

Matsuda

Replicate

Scatter

Provider

Scatter

Provider
Allgather

Provider

Allgather

Provider

Matsuda

Replicate

Matsuda

Replicate
Matsuda

Replicate

Matsuda

Replicate

Usage example: hierarchic broadcast

P1 P2 P3
UserUser UserUser

C1 C2
Scatter

Replicate

Scatter

Replicate

Allgather

Replicate

Allgather

Replicate

Matsuda

Replicate

Matsuda

Replicate
Matsuda

Replicate

Matsuda

Replicate

Scatter

Replicate

Scatter

Replicate

Allgather

Replicate

Allgather

Replicate

UserUser UserUser

Scatter

Replicate

Scatter

Replicate

Allgather

Replicate

Allgather

Replicate

Matsuda

Replicate

Matsuda

Replicate
Matsuda

Replicate

Matsuda

Replicate

Scatter

Replicate

Scatter

Replicate

Allgather

Replicate

Allgather

Replicate

P4

Usage example: hierarchic broadcast

49

Preliminary experiments :
The underlying resources
� Software

� Projection on CCM

� Homemade CCM -> CORBA compiler

� OmniORB 4.1

� Handmade ADL transformation

� Comparison with GridMPI

� Hardware

� Grid5000, French experimental platform

� 2 clusters: Rennes & Sophia Antipolis

� Latences:

� Inside cluster: 50µs

� Between clusters: 10ms

� Bandwith:

� Node network card: 1Gb/s

� Backbone: 10Gb/s

Broadcast duration on

2 clusters of 8 nodes

0

50

100

150

200

250

512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

size of data (bytes)

ti
m
e
 o
f
b
ro
a
d
c
a
s
t
(m
s
)

CCM implementation

GridMPI

Preliminary experiments:
Performances & analysis

CCM does synchronous calls

GridMPI is asynchronous

CCM implementation uses

Matsuda algorithm

GridMPI does not

50

Connector-based
Composition

Notion of connector

� Introduced in ADL
� Architecture Description Language

� First class entities
� List of named roles, with or without cardinality constraints

� Roles are fulfilled by components’ ports

� Instantiated by connection

� Implemented by generator

� Example
� Connector mpi<role participant>

� Connector UP<role user
role provider>

� Connector consensus<…>

ConnectorComponent Component

rolesroles

portsports

51

High Level
Component Model

Hierarchy, Genericity,
Template Meta-Programming &
Connectors

High Level Component Model
� Major concepts

� Hierarchical model
� Generic model

� Support meta-programming (template à la C++)

� Connector based
� Primitive and composite

� Currently static

� HLCMi: an implementation of HLCM
� Model-transformation based
� Already implemented connectors

� Use/Provide, Shared Data, Collective Communications,
“MxN” RMI, Irregular Mesh

ConnectorComponent Component

rolesroles

portsports

52

Connectors

� Without connectors

� Direct connection between ports

� Limitation to 1-1 connection

� With connectors

� Connectors reify connections

� A name

� A set of roles

� Any number of roles

� Can be 1st class entities

� Implemented by the user

Connector

Component Component

Component Component

rolesroles

portsports

Connector implementations
� Intrinsically generic

� Types of roles fulfillment � parameters for the implementation

� 1 connector � multiple implementations
� For distinct placement on hardware resources

� Two possible kinds
� Primitive connectors

� Directly supported by the model

� Composite connectors
� An assembly

Logged Use / Provide Logger<UT>U/P U/P

user
interface = UT

provider
interface = PT

When PT subtype of UT and
user.host = provider.host

53

Example of More Complex Interactions
as Connectors

� Shared data between components

� One single role

� Multiple fulfillments

� Parallel method calls

� Provides the redistribution

� An example

� 2x2 Matrix multiplication

� 2 roles for users (top/bottom)

� 2 roles for providers (right/left)

Notion of Open Connections

� Components expose “open
connections”

� Some roles fulfilled

� Some roles left “open”

� Interactions are defined by
“merging” connections
� Union of the role fulfillments

� A single logical connection

Fulfilled role

Role left “open”

����

merge

Results in

54

Expressing Parallel Matrix
Multiplication with HLCM

merge expose
A �

merge
B

reuse

A2

A1 B1

B2

Results in What implementation to
use for this connection?

Connection Implementation:
a Planning Choice

Multiple hosts
distribution

Single host
distribution

55

HLCM/CCM/MxN vs PaCO++

Conclusion

� From « simple » to « complex » composition
operators

� Need of models with open composition support
� Component, connector, hierarchy, genericity, etc.

� Need of models/algorithms to derive actual
implementation from an abstract declaration

� Need of models/algorithms to support dynamicity
� Adaptability : reaction to environment modifications

� « workflow » : reaction to programmed modifications

