Efficiency of Tree-structured Peer-to-peer Service Discovery Systems

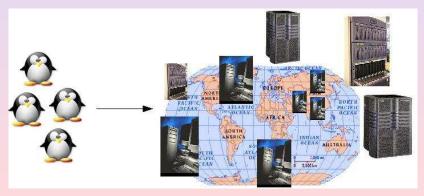
Cédric Tedeschi, Eddy Caron, Frédéric Desprez

University of Lyon, France LIP laboratory. UMR CNRS-ENS Lyon-UCB Lyon-INRIA 5668

Hot-P2P, April 18, 2008

Initial context

- Service discovery in grid computing
 - Service (binary file, library) installed on servers
 - Servers declare their services, client discovers them
 - Need for maintaining this information



Initial context

- Service discovery in grid computing
 - Service (binary file, library) installed on servers
 - Servers declare their services, client discovers them
 - Need for maintaining this information
- Target platforms
 - large scale
 - no central infrastructure
 - dynamic joins and leaves of nodes
- P2P systems
 - Purely decentralized algorithms
 - Scalable algorithms to retrieve objects
 - Fault-tolerance

Trie-based overlays

A promising way to store and retrieve services

- Advantages
 - Efficient range queries
 - Automatic completion of partial strings
 - Easy extension to multi-attribute queries
- Existing approaches
 - Skip Graphs (Aspnes and Shah 2003)
 - P-Grid (Datta, Hauswirth, John, Schmidt, Aberer 2003)
 - PHT (Ramabhadran, Ratnasamy, Hellerstein, Shenker 2004)
 - DLPT (Caron, Desprez, Tedeschi 2005)
 - Nodewiz (Basu, Banerjee, Sharma, Lee 2005)

Trie-based overlays

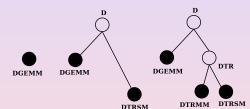
A promising way to store and retrieve services

- Advantages
 - Efficient range queries
 - Automatic completion of partial strings
 - Easy extension to multi-attribute queries
- Existing approaches
 - Skip Graphs (Aspnes and Shah 2003)
 - P-Grid (Datta, Hauswirth, John, Schmidt, Aberer 2003)
 - PHT (Ramabhadran, Ratnasamy, Hellerstein, Shenker 2004)
 - DLPT (Caron, Desprez, Tedeschi 2005)
 - Nodewiz (Basu, Banerjee, Sharma, Lee 2005)

DLPT: A trie-based indexing system

Logical structure

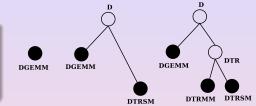
- Greatest Common Prefix Tree
- Dynamically constructed
- Bounded degree and height



DLPT: A trie-based indexing system

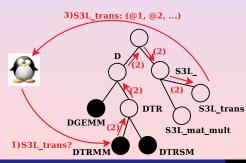
Logical structure

- Greatest Common Prefix Tree
- Dynamically constructed
- Bounded degree and height



Lookup

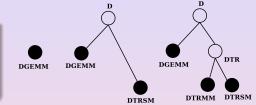
- Exact match
- Autocompetion
- Range queries



DLPT: A trie-based indexing system

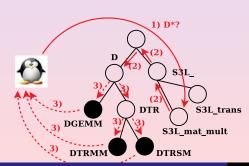
Logical structure

- Greatest Common Prefix Tree
- Dynamically constructed
- Bounded degree and height



Lookup

- Exact match
- Autocompetion
- Range queries



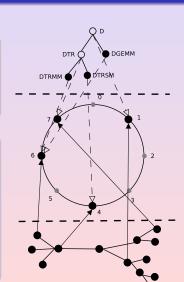
DLPT: Mapping of the system onto the network

Principles

- An underlying DHT
- Each physical node (*Peer*) runs one or more logical process

Drawbacks

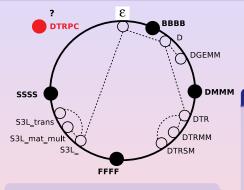
- Need for a DHT
 - Important global cost
 - Randomly achieved
- Load unbalance
 - Depth of nodes in the tree
 - Heterogeneous popularity of services, hot spots



Objectives

- Avoid the need for a DHT to reduce the cost
- Inject some load balancing

Build a ring over the physical network



- Build a Chord-like ring over peers to distribute the tree nodes
- Use the tree links to maintain the physical network
- Complexity: Trie complexities + 2

Peer insertion algorithm

- Joining peer P contacts a random tree node
- Route the request to the tree node N s.t. ID_N has the highest id lower than ID_P.
- The succeqssor of P is either P_N or $succ(P_N)$

Load balancing heuristics - related work

- Karger and Ruhl, 2001
 - · periodic random item balancing
 - homogeneity of peer capacities
- Godfrey et al., 2003
 - periodic item redistribution
 - semi-centralized
- Ledlie and Seltzer, 2005
 - Based on the k-choices principle
 - heterogeneity of peer capacities and data popularity
 - chooses the best location for a joining peer among k

- At time unit τ
- Two adjacent peers S and P with capacity C_S and C_P
- ν_S^{τ} and ν_P^{τ} the sets of nodes currently managed by S and P.
- $L_S^{\tau} = \sum_{n \in \nu_S^{\tau}} I_n$
- $L_P^{\tau} = \sum_{n \in \nu_P^{\tau}} I_n$
- $\bullet \ T_{S,P}^{\tau} = min(L_S^{\tau}, C_S) + min(L_P^{\tau}, C_P)$
- We want to maximize the throughput of time unit $\tau+1$ based on knowledge of time unit τ
- Find $\nu_{\rm S}^{\tau+1}$ and $\nu_{\rm P}^{\tau+1}$ that maximizes $T_{\rm SP}^{\tau+1}$

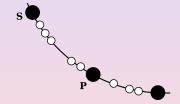
- At time unit τ
- Two adjacent peers S and P with capacity C_S and C_P
- ν_S^{τ} and ν_P^{τ} the sets of nodes currently managed by S and P.
- $L_S^{\tau} = \sum_{n \in \nu_S^{\tau}} I_n$
- $L_P^{\tau} = \sum_{n \in \nu_P^{\tau}} I_n$
- $\bullet \ \ T_{S,P}^{\tau} = min(L_S^{\tau}, C_S) + min(L_P^{\tau}, C_P)$
- We want to maximize the throughput of time unit $\tau+1$ based on knowledge of time unit τ
- ullet Find $u_S^{ au+1}$ and $u_P^{ au+1}$ that maximizes $T_{S,P}^{ au+1}$

- At time unit τ
- Two adjacent peers S and P with capacity C_S and C_P
- ν_S^{τ} and ν_P^{τ} the sets of nodes currently managed by S and P.
- $L_S^{\tau} = \sum_{n \in \nu_S^{\tau}} I_n$
- $L_P^{\tau} = \sum_{n \in \nu_P^{\tau}} I_n$
- $\bullet \ \ T_{\mathcal{S},P}^{\tau} = min(L_{\mathcal{S}}^{\tau}, C_{\mathcal{S}}) + min(L_{P}^{\tau}, C_{P})$
- We want to maximize the throughput of time unit $\tau+1$ based on knowledge of time unit τ
- Find $\nu_S^{\tau+1}$ and $\nu_P^{\tau+1}$ that maximizes $T_{S,P}^{\tau+1}$.

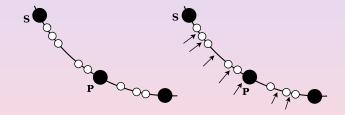
- At time unit τ
- Two adjacent peers S and P with capacity C_S and C_P
- ν_S^{τ} and ν_P^{τ} the sets of nodes currently managed by S and P.
- $L_S^{\tau} = \sum_{n \in \nu_S^{\tau}} I_n$
- $L_P^{\tau} = \sum_{n \in \nu_P^{\tau}} I_n$
- $\bullet \ \ T_{\mathcal{S},P}^{\tau} = \mathit{min}(L_{\mathcal{S}}^{\tau}, C_{\mathcal{S}}) + \mathit{min}(L_{P}^{\tau}, C_{P})$
- We want to maximize the throughput of time unit $\tau+1$ based on knowledge of time unit τ
- Find $\nu_S^{\tau+1}$ and $\nu_P^{\tau+1}$ that maximizes $T_{S,P}^{\tau+1}$.

- At time unit τ
- Two adjacent peers S and P with capacity C_S and C_P
- ν_S^{τ} and ν_P^{τ} the sets of nodes currently managed by S and P.
- $L_S^{\tau} = \sum_{n \in \nu_S^{\tau}} I_n$
- $L_P^{\tau} = \sum_{n \in \nu_P^{\tau}} I_n$
- $\bullet \ \ T_{\mathcal{S},P}^{\tau} = min(L_{\mathcal{S}}^{\tau}, C_{\mathcal{S}}) + min(L_{\mathcal{P}}^{\tau}, C_{\mathcal{P}})$
- We want to maximize the throughput of time unit $\tau+1$ based on knowledge of time unit τ
- Find $\nu_S^{\tau+1}$ and $\nu_P^{\tau+1}$ that maximizes $T_{S.P}^{\tau+1}$.

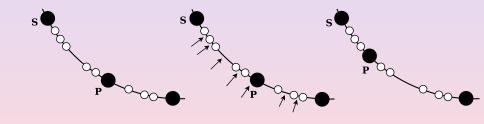
A novel heuristic : *Max Local Throughput* Algorithm

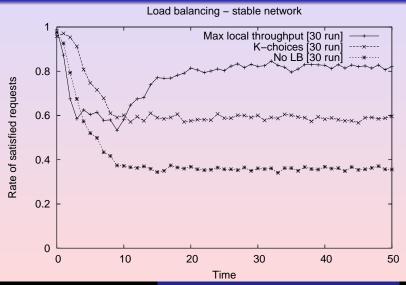


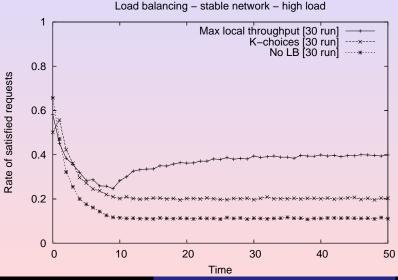
A novel heuristic : *Max Local Throughput* Algorithm

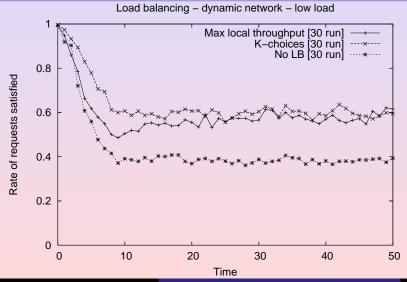


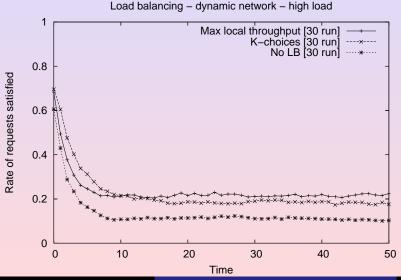
A novel heuristic : *Max Local Throughput* Algorithm



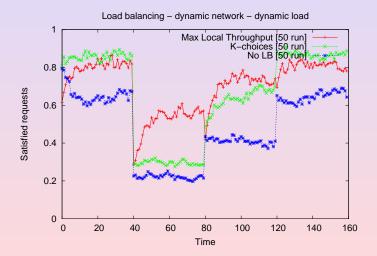








Load	Stable network		Dynamic network	
	Max local th.	K-choices	Max local th.	K-choices
5%	39,62%	38,58%	18.25%	32,47%
10%	103,41%	58,95%	46,16%	51,00%
16%	147,07%	64,97%	65,90%	59,11%
24%	165,25%	59,27%	71,26%	60,01%
40%	206,90%	68,16%	97,71%	67,18%
80%	230,51%	76,99%	90,59%	71,93%



Conclusion and future work

- Contributions
 - A protocol to map a trie on a P2P network
 - Reduction of the architecture cost
 - Better self-containment
 - Load Balancing
 - A novel heuristic
 - Localizing maximizing the throughput
 - Good performance compared to K-choices
 - Dynamic load balancing in tries
- On-going work
 - Prototype development
 - First results are promising