Multi-workflow scheduling

Raphaël Bolze
LIP ENS Lyon
GRAAL project
http://graal.ens-lyon.fr
Introduction

• State of the problem
 - Workflow
 - Grid resources
 - Target applications
 ▪ Pipealign
 ▪ Docking
 ▪ Robinson
 ▪ Cosmology
 - Related work

• Heuristics for solve the problem
 - HEFT heuristic
 - Several other heuristics
 - Simulation
 ▪ first observations

• DIET integration

• Next
Problem

- Several users share grid computing resources (heterogeneous)
- Each user can launch an application (expressed with a workflow)
- Questions:
 - How can we schedule (ordering and allocation) tasks?
 - Can we be fair?
Definition: grid resources

- Grid resources are computing nodes fully interconnected
 - Interconnections are heterogeneous
 - Characteristics of resources are heterogeneous
Definition: workflow

_workflow definition:

- Direct Acyclic Graph (DAG)
 - Each vertex is a task
 - Each directed edge represents a communication between tasks

_Questions:

- Ordering problem?
- Mapping problem?
Targets applications
Docking Application

- Detection of protein-protein and protein-DNA interactions.
- Screening a database containing thousands of proteins for functional sites involved in binding to other proteins, DNA or ligand targets.
PipeAlign Application

- The sequence-to-function relationship can be understood through the analysis of conserved patterns and evolution of protein organization mainly based on amino acid sequence comparisons in the context of the multiple alignments.

![PipeAlign diagram](image)
This application annotate human genes according to their expression in neurological or muscular tissues, but also to the expression of their homolog other species.
Cosmology application

- Simulate the evolution of dark matter particles during time to compare it to the real observation.

Centre de Recherche en Astronomie de Lyon
Related work

- List algorithms
- Clustering algorithms
- Duplication based algorithms
- Metaheuristics

None for multi-workflows online
List Scheduling HEFT

- **List scheduling : HEFT**
 - **Ordering**
 - Set the weights of the tasks
 - Set the weights of the edges
 - Compute the rank (critical path, b-level) of each task
 - Sort the tasks into a list L by non-increasing order of their rank

 - **Mapping**
 - While the list L of tasks is not empty
 - Select the first task t of the list L
 - Select the resource r that have the earliest finish time for the task t
 - Allocate task t on resource r
 - Remove t from list L.
Online extension for multiple DAGs
HEFT multi-dags online
Other heuristic

Grid
Framework of heuristics

Each time a new DAG is submitted{
- compute rank (critical path) of each DAG’s tasks
- Sort the DAG’s tasks by non increasing order of their rank
- put the DAG in a list D
while there are unscheduled task {
- select a DAG d from the list D
- select the first unscheduled task t from DAG d
- choose the EFT server s for task t
- allocate t on s
}
Implemented and tested heuristics

- Online Heuristics
 - F1
 - F1 oldness
 - F2
 - F2 oldness
 - Round Robin
 - Random
 - FIFO
 - SRPT
 - LRPT
 - HEFT
 - HEFT oldness

Each time a new DAG is submitted{
 - compute rank (critical path) of each DAG’s tasks
 - Sort the DAG’s tasks by non increasing order of their rank
 - put the DAG in a list D
 while there are unscheduled task {
 - select a DAG d from the list D
 - select the first unscheduled task t from DAG d
 - choose the EFT server s for task t
 - allocate t on s
 }
}
HEFT oldness multi-dags online

Grid
Simulation :

- Need simulation to simply compare heuristics
- Write a simulation software for testing heuristics

- Explore the space of possible variations
 - Submission time
 - Resources: number, homogeneous, heterogeneous
 - DAG (shape, number and size of the tasks)

demo
First observations

• Oldness :
 ▪ Improve average flow with comparable makespan
• Round Robin heuristics
 ▪ RR1 & RR4
 ▪ RR2 & RR3
• Fairness :
 ▪ F1, F2 do not have expected behaviours.
 ▪ FIFO, SRPT, HEFT oldness performed well.
 ▪ Fairness vs. makespan optimization
• General remarks :
 ▪ SRPT advantage small DAGs (in terms of CP)
• Important parameters :
 ▪ Arrival time and type of DAGs

Need a table to summarize observations
Multi-workflows and DIET
MultiWorkflow in DIET

- Meta scheduler distributed in the client and in the MA-DAG (Abdelkader)
• Make a complete survey of the behavior of the heuristics

• Try to make a classification of heuristics against dags types
 ♦ Criteria:
 • Makespan : i.e. length of the critical path
 • Total amount of work (sum of \(w_i\))
 • DAG’s shapes
 • Some others

• Add heuristics based on other ordering and resource selection criteria
 ▪ Example : SDC, DLS

• Test heuristics on a real environment : DIET + applications

• Dynamic DAGs ?
Questions ?