
A Repair Mechanism for Fault-Tolerance for
Tree-Structured Peer-To-Peer Systems

Cédric Tedeschi

WG GRAAL - 24 mai 2006

Introduction Related Work DLPT Protocol Conclusion

Outline

1 Introduction

2 Related Work

3 DLPT

4 Protocol
Tree recovery
Tree reorganization

5 Conclusion

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 2/35

Introduction Related Work DLPT Protocol Conclusion

Outline

1 Introduction

2 Related Work

3 DLPT

4 Protocol
Tree recovery
Tree reorganization

5 Conclusion

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 3/35

Introduction Related Work DLPT Protocol Conclusion

Context

Resource discovery in grid context
New needs facing the development of grids

large scale
no central infrastructure
dynamic joins and leaves of nodes

Adopt peer-to-peer technologies
Pure decentralized algorithms
Scalable algorithms to retrieve objects
Fault-tolerance

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 4/35

Introduction Related Work DLPT Protocol Conclusion

Context

Resource discovery in grid context
New needs facing the development of grids

large scale
no central infrastructure
dynamic joins and leaves of nodes

Adopt peer-to-peer technologies
Pure decentralized algorithms
Scalable algorithms to retrieve objects
Fault-tolerance

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 4/35

Introduction Related Work DLPT Protocol Conclusion

Context

Resource discovery in grid context
New needs facing the development of grids

large scale
no central infrastructure
dynamic joins and leaves of nodes

Adopt peer-to-peer technologies
Pure decentralized algorithms
Scalable algorithms to retrieve objects
Fault-tolerance

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 4/35

Introduction Related Work DLPT Protocol Conclusion

Outline

1 Introduction

2 Related Work

3 DLPT

4 Protocol
Tree recovery
Tree reorganization

5 Conclusion

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 5/35

Introduction Related Work DLPT Protocol Conclusion

P2P technologies

Unstructured P2P approaches
flooding based
non-exhaustive researches

Distributed Hash Tables
routing based
exhaustive search
scalable :

logarithmic local state
logarithmic number of hops

fault-tolerance
periodic scanning
replication

drawbacks
no locality awareness
assumptions of homogeneity
only exact match queries
replication is costly

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 6/35

Introduction Related Work DLPT Protocol Conclusion

P2P technologies

Unstructured P2P approaches
flooding based
non-exhaustive researches

Distributed Hash Tables
routing based
exhaustive search
scalable :

logarithmic local state
logarithmic number of hops

fault-tolerance
periodic scanning
replication

drawbacks
no locality awareness
assumptions of homogeneity
only exact match queries
replication is costly

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 6/35

Introduction Related Work DLPT Protocol Conclusion

P2P technologies

Unstructured P2P approaches
flooding based
non-exhaustive researches

Distributed Hash Tables
routing based
exhaustive search
scalable :

logarithmic local state
logarithmic number of hops

fault-tolerance
periodic scanning
replication

drawbacks
no locality awareness
assumptions of homogeneity
only exact match queries
replication is costly

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 6/35

Introduction Related Work DLPT Protocol Conclusion

P2P technologies

Unstructured P2P approaches
flooding based
non-exhaustive researches

Distributed Hash Tables
routing based
exhaustive search
scalable :

logarithmic local state
logarithmic number of hops

fault-tolerance
periodic scanning
replication

drawbacks
no locality awareness
assumptions of homogeneity
only exact match queries
replication is costly

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 6/35

Introduction Related Work DLPT Protocol Conclusion

P2P technologies

Unstructured P2P approaches
flooding based
non-exhaustive researches

Distributed Hash Tables
routing based
exhaustive search
scalable :

logarithmic local state
logarithmic number of hops

fault-tolerance
periodic scanning
replication

drawbacks
no locality awareness
assumptions of homogeneity
only exact match queries
replication is costly

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 6/35

Introduction Related Work DLPT Protocol Conclusion

Trie Based Lookup (2/2)

Range queries
automatic completion
logarithmic Latency

Approaches
Skip Graphs (complexities)
Nodewiz (no fault-tolerance)
Prefix Hash Tree (static trie)
P-Grid (static trie)
locality awareness issue

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 7/35

Introduction Related Work DLPT Protocol Conclusion

Trie Based Lookup (2/2)

Range queries
automatic completion
logarithmic Latency

Approaches
Skip Graphs (complexities)
Nodewiz (no fault-tolerance)
Prefix Hash Tree (static trie)
P-Grid (static trie)
locality awareness issue

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 7/35

Introduction Related Work DLPT Protocol Conclusion

Outline

1 Introduction

2 Related Work

3 DLPT

4 Protocol
Tree recovery
Tree reorganization

5 Conclusion

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 8/35

Introduction Related Work DLPT Protocol Conclusion

DLPT - original design

Distributed Lexicographic Placement Table

On-line building of a Greatest Common Prefix Tree
Mapping

DHT-based (load balancing)
each physical node maintains one or more nodes of the lo-
cical GCP Tree

Replication based fault-tolerance

Greedy locality awareness

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 9/35

Introduction Related Work DLPT Protocol Conclusion

DLPT - logical structure (1/2)

Alphabet A finite set of letters

� an order on A

Word w finite set of letters of A, w = a1; : : : ;ai ; : : : ;al , l > 0

u; v two words, uv concatenation of u and v

jw j length of w

� the empty word, j�j = 0

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 10/35

Introduction Related Work DLPT Protocol Conclusion

DLPT - logical structure (2/2)

u = prefix(v) if 9w s.t. v = uw

GCP(w1;w2; : : : ;wi ; : : : ;wn) is the longest prefix shared by
w1;w2; : : : ;wi ; : : : ;wn

GCP Tree labeled rooted tree s.t.
The node label is a proper prefix of any label in its subtree
The node label is the Proper Greatest Common Prefix of all
its son labels

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 11/35

Introduction Related Work DLPT Protocol Conclusion

DLPT - on-line construction

Contact

Routing

Inserting

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 12/35

Introduction Related Work DLPT Protocol Conclusion

Routing

Object o to be inserted

L set of labels currently in the tree

p = maxjmjfm j m = GCP(l ;o); l 2 Lg

U = fl 2 L j GCP(l ;o) = pg

t target label of the routing

t = minjujfu 2 Ug

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 13/35

Introduction Related Work DLPT Protocol Conclusion

Inserting

Once the target is found, four cases :
t = o ! insert o on node(t)
o = tu (u 6= �)

new node node(o) son of node(t)
insert o on node(o)

t = ou (u 6= �)
new node node(o) father of node(t)
insert o on node(o)

Default
node(t) and node(o) siblings (no father)
new node node(o) father of node(t)
new node node(GCP(o; t)) father of node(t) and node(o)
insert o on node(o)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 14/35

Introduction Related Work DLPT Protocol Conclusion

DLPT - Fault Tolerance and locality awareness (1/2)

Static replication factor k

Greedy locality awareness

Periodically initiated by the root

Replication of the root

Election of one replica to launch the process in the subtree

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 15/35

Introduction Related Work DLPT Protocol Conclusion

DLPT - Fault Tolerance and locality awareness (1/2)

Static replication factor k

Greedy locality awareness

Periodically initiated by the root

Replication of the root

Election of one replica to launch the process in the subtree

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 15/35

Introduction Related Work DLPT Protocol Conclusion

DLPT - Fault Tolerance and locality awareness (2/2)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 16/35

Introduction Related Work DLPT Protocol Conclusion

DLPT - Fault Tolerance and locality awareness (2/2)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 16/35

Introduction Related Work DLPT Protocol Conclusion

DLPT - Fault Tolerance and locality awareness (2/2)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 16/35

Introduction Related Work DLPT Protocol Conclusion

DLPT - Fault Tolerance and locality awareness (2/2)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 16/35

Introduction Related Work DLPT Protocol Conclusion

DLPT - Fault Tolerance and locality awareness (2/2)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 16/35

Introduction Related Work DLPT Protocol Conclusion

DLPT - Fault Tolerance and locality awareness (2/2)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 16/35

Introduction Related Work DLPT Protocol Conclusion

DLPT - Fault Tolerance and locality awareness (2/2)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 16/35

Introduction Related Work DLPT Protocol Conclusion

Querying

Exact match query

Range query (automatic
completion)

Multicriteria lookup

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 17/35

Introduction Related Work DLPT Protocol Conclusion

Querying

Exact match query

Range query (automatic
completion)

Multicriteria lookup

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 17/35

Introduction Related Work DLPT Protocol Conclusion

Querying

Exact match query

Range query (automatic
completion)

Multicriteria lookup

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 17/35

Introduction Related Work DLPT Protocol Conclusion

Querying

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 17/35

Introduction Related Work DLPT Protocol Conclusion

Complexities

N size of the tree
Assumptions

A finite
T upper bound on the length of the labels

Number of hops of routing bounded by 2T

Local state bounded by jAj

Local decision of routing in O(1)
(Multicriteria) range query, replication/locality process

latency bounded by T
linear number of messages

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 18/35

Introduction Related Work DLPT Protocol Conclusion

Replicating or repairing ?

Replication
Preventing approach
How to tune the replication factor ?
Costly to maintain (resources/local state)

Repair
let the tree split into a forest
a posteriori reconnection and reordering of nodes

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 19/35

Introduction Related Work DLPT Protocol Conclusion

Outline

1 Introduction

2 Related Work

3 DLPT

4 Protocol
Tree recovery
Tree reorganization

5 Conclusion

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 20/35

Introduction Related Work DLPT Protocol Conclusion

Two phases

Tree recovery

Tree reorganization

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 21/35

Introduction Related Work DLPT Protocol Conclusion

Tree recovery

Local reconnection

p detects the lost of its father

Obtain the set of remaining physical nodes PN (DHT traver-
sal)

p builds the set of remaining logical nodes N

p computes the set of nodes in its subtree T

Choose a temporary father within NnT

If NnT = ;, p is the root of the tree

Drawback : cycles may appear

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 22/35

Introduction Related Work DLPT Protocol Conclusion

Tree recovery

Breaking cycles

Temporary father tf

p sends a HELLOmessage to tf

On receipt, tf forwards the HELLO to its own (temporary)
father
Step by step, two possible situations

The real root is reached (sends a message NO_CYCLE)
Local ID is the ID of the initiator

A cycle is detected
The cycle is broken (leader election)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 23/35

Introduction Related Work DLPT Protocol Conclusion

Tree recovery

Correctness proof (1/2)

Assumption 1

If a node crashes at time t , then for every t 0 > t , no crash occurs.

Lemma 1
Under Assumption 1, the recovery protocol terminates, and when this occurs,

the system contains one tree only.

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 24/35

Introduction Related Work DLPT Protocol Conclusion

Tree recovery

Correctness proof (2/2)

Proof

By contradiction, assume no node sends a NO CYCLEmessage

A HELLOmessage never reaches the real root

Every HELLOmessages traverses only cycles

When the initiator of a HELLOmessage receives it, a cycle is broken

Cycles must be infinitely created

C the number of cycles, each one composed of at least two nodes

When cycles are broken, at most C/2 leaders reconnects to another tree

In the next phase, C0 � C=2 reaching 0 (since no other crashes occurs)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 25/35

Introduction Related Work DLPT Protocol Conclusion

Tree reorganization

Routing the false sons (1/2)

Each node p having a false son q initiates the routing of q
Two cases :

q = prefix(p), p moves q to its father

p = prefix(q), four cases.

p

q s ss
1 ki

(i) p:val = prefix(q) and p:val = GCP(s1; : : : ; sk).

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 26/35

Introduction Related Work DLPT Protocol Conclusion

Tree reorganization

Routing of the false sons (2/2)

p

q s s s
1 i k

(a) There exists si such that

si :val = prefix(q:val).

p

q s ss
1 ki

(b) There exists si such that

q:val = prefix(si :val).
p

q

newsons s

s

1 k

i

(c) There exists si such that

GCP(q:val; si :val) > p:val .

p

s s sq=s
1 i kk+1

(d) p:val = prefix(q:val).

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 27/35

Introduction Related Work DLPT Protocol Conclusion

Tree reorganization

Merging (1/2)

New objects can be inserted during the recovery phase

A new subtree may have been created at the place of a false
root

Need to merge two trees

initiated by a MERGEmessage

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 28/35

Introduction Related Work DLPT Protocol Conclusion

Tree reorganization

1.01 upon receipt of <MERGE,fs> from q do
1.02 Gluing(q) ;
1.03 Sorting of p:sons in the lexicographic order in Table ts ;
1.04 for i = 0 to ts:length() do
1.05 if ts[i]:val = ts[i + 1]:val
1.06 then send <MERGE,ts[i + 1]> to ts[i] ;
1.07 i := i + 1 ;
1.08 elseif ts[i]:val = prefix(ts[i + 1]:val)
1.09 then send <MOVE,ts[i + 1]> to ts[i] ;
1.10 p:sons := p:sons n fts[i + 1]g ;
1.11 i := i + 1 ;
1.12 elseif p:val < GCP(ts[i]:val; ts[i + 1]:val)
1.13 then p:sons := p:sons [Newnode(GCP(ts[i]:val; ts[i + 1]:val);
1.14 ts[i]; ts[i + 1]) ;
1.15 p:sons; = p:sons n fts[i]; ts[i + 1]g ;
1.16 i := i + 1 ;
1.17 endif
1.18 done

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 29/35

Introduction Related Work DLPT Protocol Conclusion

Tree reorganization

Correctness proof (1/3)

Lemma 2
Under Assumption 1 and assuming that the system contains one
tree only, the reorganization protocol terminates, and when this
occurs, the tree is a GCP Tree.

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 30/35

Introduction Related Work DLPT Protocol Conclusion

Tree reorganization

Correctness proof (2/3)

Proof (1/2)
If no merging is required. Two cases

1. p = prefix(fs)

refer to previous figure
all cases clearly results in GCP Trees

2. p 6= prefix(fs)

a. p:father = ?

fs = prefix(p) fs becomes the root node (GCP Tree)
fs and p becomes the two sons of the root node labeled
GCP(p; fs) (GCP Tree)

b. p:father 6= ?, fs is moved to p:father
eventually reach q s.t. q = prefix(fs) (Case 1.)
eventually reach the root of the tree (Case 2.a.)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 31/35

Introduction Related Work DLPT Protocol Conclusion

Tree reorganization

Correctness proof (3/3)

Proof (2/2)
If merging is required. Four cases

i 9si ; sj s.t. si = prefix(sj)

sj is moved to si

similar to previous Case 1. (a) and (b) on previous figure

ii 9si ; sj s.t. GCP(si ; sj) > p

si and sj sons of a new node GCP(si ; sj)
similar to previous Case 1. (c) on the previous figure

iii 9si ; sj s.t. si = sj

recursive merging between si and sj

solved by induction on si and sj

@si ; sj satisfying either (i), (ii) or (iii) (GCP Tree)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 32/35

Introduction Related Work DLPT Protocol Conclusion

Tree reorganization

From Lemmas 1 and 2 follows :

Theorem 1

Under Assumption 1, our protocol provide a GCP tree recons-
truction after the crash of a physical node.

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 33/35

Introduction Related Work DLPT Protocol Conclusion

Outline

1 Introduction

2 Related Work

3 DLPT

4 Protocol
Tree recovery
Tree reorganization

5 Conclusion

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 34/35

Introduction Related Work DLPT Protocol Conclusion

Conclusion

Fault-tolerance protocol facing node crashes in a GCP Tree

Reconnection and reorganization of subtrees
Guaranty of recovering a GCP Tree after a finite time
Avoid/coupled with a replication strategy

Future Work
Connecting replication and repair mechanisms to minimize
the cost of fault-tolerance
Develop and validate a prototype on the Grid’5000 platform

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms 35/35

	Introduction
	Related Work
	DLPT
	Protocol
	Tree recovery
	Tree reorganization

	Conclusion

