A Repair Mechanism for Fault-Tolerance for

Tree-Structured Peer-To-Peer Systems

Cédric Tedeschi

WG GRAAL - 24 mai 2006

Outline

o
o
o
o

Introduction
Related Work
DLPT

Protocol

@ Tree recovery

@ Tree reorganization

Conclusion

()

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Introduction

Outline

0 Introduction

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Introduction

Context

@ Resource discovery in grid context

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Introduction

Context

@ Resource discovery in grid context
@ New needs facing the development of grids

e large scale
e no central infrastructure
e dynamic joins and leaves of nodes

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Introduction

Context

@ Resource discovery in grid context
@ New needs facing the development of grids

e large scale
e no central infrastructure
e dynamic joins and leaves of nodes

@ Adopt peer-to-peer technologies

@ Pure decentralized algorithms
e Scalable algorithms to retrieve objects
e Fault-tolerance

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Related Work

Outline

Q Related Work

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Related Work

P2P technologies

@ Unstructured P2P approaches
e flooding based
@ non-exhaustive researches

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Related Work

P2P technologies

@ Unstructured P2P approaches
e flooding based
@ non-exhaustive researches
@ Distributed Hash Tables
e routing based
e exhaustive search
e scalable :
@ logarithmic local state
@ logarithmic number of hops
e fault-tolerance
@ periodic scanning
@ replication

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Related Work

P2P technologies

@ Unstructured P2P approaches
e flooding based
@ non-exhaustive researches
@ Distributed Hash Tables
e routing based
e exhaustive search
e scalable :
@ logarithmic local state
@ logarithmic number of hops
e fault-tolerance
@ periodic scanning
@ replication
e drawbacks
@ no locality awareness
@ assumptions of homogeneity

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Related Work

P2P technologies

@ Unstructured P2P approaches
e flooding based
e non-exhaustive researches
@ Distributed Hash Tables
e routing based
e exhaustive search
e scalable :
@ logarithmic local state
@ logarithmic number of hops
o fault-tolerance
@ periodic scanning
@ replication
e drawbacks
@ no locality awareness
@ assumptions of homogeneity
@ only exact match queries

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Related Work

P2P technologies

@ Unstructured P2P approaches
e flooding based
e non-exhaustive researches
@ Distributed Hash Tables
e routing based
e exhaustive search
e scalable :
@ logarithmic local state
@ logarithmic number of hops
o fault-tolerance
@ periodic scanning
@ replication
e drawbacks
@ no locality awareness
assumptions of homogeneity
only exact match queries
replication is costly

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Related Work

Trie Based Lookup (2/2)

@ Range queries

@ automatic completion
e logarithmic Latency

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Related Work

Trie Based Lookup (2/2)

@ Range queries

@ automatic completion

e logarithmic Latency
@ Approaches
Skip Graphs (complexities)
Nodewiz (no fault-tolerance)
Prefix Hash Tree (static trie)
P-Grid (static trie)
locality awareness issue

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Outline

© pLpPT

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

DLPT

- original design

Distributed Lexicographic Placement Table
On-line building of a Greatest Common Prefix Tree

Mapping
e DHT-based (load balancing)
e each physical node maintains one or more nodes of the lo-
cical GCP Tree

Replication based fault-tolerance
Greedy locality awareness

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

DLPT - logical structure (1/2)

@ Alphabet A finite set of letters

@ < an order on A

@ Word w finite set of letters of A, w = a4,...,8&,...,a,l >0
@ u,V two words, uv concatenation of u and v

@ |w| length of w

@ e the empty word, |¢| =0

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

DLPT - logical structure (2/2)

@ u = prefix(v) if 3w s.t. v = uw

@ GCP(wq,Wp,...,Wj,...,Wy) is the longest prefix shared by
W1, Wo, ..., W,...,Wp

@ GCP Tree labeled rooted tree s.t.

e The node label is a proper prefix of any label in its subtree
@ The node label is the Proper Greatest Common Prefix of all
its son labels

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

DLPT - on-line construction

D
D
. DTR
DGEMM
DGEMM
DTRSM DGEMM
DTRMM DTRSM
1)) (3)
@ Contact
@ Routing
@ Inserting

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Routing

@ Object o to be inserted
@ L set of labels currently in the tree

p = maxm{m|m=GCP(l,0),l € L}

U={leL|GCP(l,0) = p}

@ t target label of the routing

t = min‘u|{u € U}

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Inserting

@ Once the target is found, four cases :

e t = 0 — insert o on node(t)
@ 0=tu(u#e

new node node(o) son of node(t)
insert o on node(0)

et=o0u(u+#e

new node node(o) father of node(t)
insert o on node(0)

o Default

node(t) and node(0) siblings (no father)

new node node(o) father of node(t)

new node node(GCP(o,t)) father of node(t) and node(0)
insert o on node(0)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

DLPT - Fault Tolerance and locality awareness (1/2)

@ Static replication factor k
@ Greedy locality awareness

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

DLPT - Fault Tolerance and locality awareness (1/2)

@ Static replication factor k

@ Greedy locality awareness

@ Periodically initiated by the root

@ Replication of the root

@ Election of one replica to launch the process in the subtree

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

DLPT - Fault Tolerance and locality awareness (2/2)

root

D
S3L_pfatmult chol

S3L_matmult_noadd
- B DGEMM

DTRMM DTRSM

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

DLPT - Fault Tolerance and locality awareness (2/2)

root' root

D
S3L_pfatmult chol

S3L_matmult_noadd
B - DGEMM

DTRMM DTRSM

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

DLPT - Fault Tolerance and locality awareness (2/2)

root' root

D
S3L_pfatmult chol

S3L_matmult_noadd
B - DGEMM

DTRMM DTRSM

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

DLPT - Fault Tolerance and locality awareness (2/2)

root' root

chol

S3L_matmult'

S3L_matmult_noadd DGEMM

DTRMM DTRSM

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

DLPT - Fault Tolerance and locality awareness (2/2)

root' root

chol'

S3L_matmult_noadd'
S3L_matmult_noadd

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

DLPT - Fault Tolerance and locality awareness (2/2)

root' root

'
S3L_matmult' chol chol

S3L_matmult_noadd'

S3L_matmult_noadd

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

DLPT - Fault Tolerance and locality awareness (2/2)

S3L_matmult chol chol'

S3L_matmult_noadd

DTRMM' DTRMM DTRSM DTRSM'

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Querying

root

@ Exact match query

val = {nom_service, systeme, architecture, adresse}

Cédric Tedeschi A Prefix Tree for Se; ing over P2P Platforms

Querying

1)Req(c*);

@ Range query (automatic
completion)

aca
val = {nom_service, systeme, architecture, adresse}

Cédric Tedeschi A Prefix Tree for Se: ing over P2P Platforms

Querying

@ Multicriteria lookup

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Querying

root

Q) row

S3L_matmult| . D
chol
S3L_matmult_addto rowshuff
oL rowcomp
S3L_matmult_noadd
DGEMM
DSYMM

DTRMM DTRSM

(DTRSM, Linux*, PowerPC*, *)

root (™

intel () QO amp

Athlon
AMD Sempron

O 486 AM|

i

Intel Itanium

rowerpc 60 ()

(il Femim 2 Intel Pentium 4

Inte}/Pentium 3 Athlon MP

Athlon XP
Intel Pentium 2 Xeon | 8B < seon

PowerPC 603

Cédric Tedeschi

chol

AMD Opteron

root

Linux

MAC 0OS
QLY
Linux Debian
Linux Fedora EEE
Linuyf Mandrake
IBM AIX
Q e MAC 0S X 10.
Linux Debian 3.0
Linux Debian 2.
o O R gukixa 1BMAK sU
8 052 wARP pecoe
Uinux wfrake o Wac0s X101
Linux Debian 2.0 Unux Mandrake 10.1
Linux Debian 2.1 (@) Linux Mandrake .0 A
s oM A 4.1
Lnux Mandrake 100 1 ax 8.2
Linux Mandrake 8.1
root

G aien>

PowerPC ()

fr.gridsQ

Powerpc 6()

fririsa.

PopfexPC 6
edu.columbia.

PowerPC G5
PowerPC G:

POWerPC G4 frgridsogglaragble.nade

PowerPC 620

frrid5000.grenable.node1,
PowerPC 604 g g frarid5000.grenable.node2

frrid5000.grenable.node1s

A Prefix Tree for Searching over P2P Platforms

Complexities

@ N size of the tree
@ Assumptions

o A finite
e T upper bound on the length of the labels

@ Number of hops of routing bounded by 2T
@ Local state bounded by |A|
@ Local decision of routing in O(1)

@ (Multicriteria) range query, replication/locality process

e latency bounded by T
@ linear number of messages

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Replicating or repairing ?

@ Replication
e Preventing approach
e How to tune the replication factor ?
e Costly to maintain (resources/local state)
@ Repair
o let the tree split into a forest
@ a posteriori reconnection and reordering of nodes

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Protocol

Outline

Q Protocol

@ Tree recovery
@ Tree reorganization

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Protocol

Two phases

@ Tree recovery
@ Tree reorganization

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Protocol
€000

Tree recovery

Local reconnection

p detects the lost of its father

Obtain the set of remaining physical nodes PN (DHT traver-
sal)

p builds the set of remaining logical nodes N
p computes the set of nodes in its subtree T
Choose a temporary father within N\T

If N\T = 0, p is the root of the tree
Drawback : cycles may appear

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Protocol
0®00

Tree recovery

Breaking cycles

@ Temporary father tf

@ p sends a HELLOmessage to tf

@ On receipt, tf forwards the HELLOto its own (temporary)
father

@ Step by step, two possible situations

e The real root is reached (sends a message NO_CYCLE
o Local ID is the ID of the initiator

@ A cycle is detected
@ The cycle is broken (leader election)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Protocol
fole] Yo)

Tree recovery

Correctness proof (1/2)

If a node crashes at time t, then for every t’ > t, no crash occurs.

Under Assumption 1, the recovery protocol terminates, and when this occurs,
the system contains one tree only.

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Introduction ela k Conclusion

Tree recovery

Correctness proof (2/2)

@ By contradiction, assume no node sends a NO CYCLHEnessage

A HELLOmessage never reaches the real root

Every HELLOmessages traverses only cycles

When the initiator of a HELLOmessage receives it, a cycle is broken
Cycles must be infinitely created

C the number of cycles, each one composed of at least two nodes
When cycles are broken, at most C/2 leaders reconnects to another tree

In the next phase, C' < C/2 reaching 0 (since no other crashes occurs)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Protocol
©0000000

Tree reorganization

Routing the false sons (1/2)

Each node p having a false son q initiates the routing of q
Two cases :

@ g = prefix(p), p moves q to its father
@ p = prefix(q), four cases.

(i) p-val = prefix(q) and p.val = GCP(sy, . . ., Sk).

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Protocol
0@000000

Tree reorganization

Routing of the false sons (2/2)

(a) There exists s; such that (b) There exists s; such that
si.val = prefix(qg.val). g.val = prefix(s;.val).

(c) There exists s; such that (d) p.val = prefix(q.val).
GCP(g.val,s;.val) > p.val.

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Protocol
00@00000

Tree reorganization

Merging (1/2)

@ New objects can be inserted during the recovery phase

@ A new subtree may have been created at the place of a false
root

@ Need to merge two trees
@ initiated by a MERGHnessage

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Introduction

Tree reorganization

101 upon receipt of <MERGE,fs> from q do

1.02 Gluing(q) ;

1.03 Sorting of p.sons in the lexicographic order in Table ts ;
1.04 for i =0to ts.length() do

1.05 if ts[i].val = ts[i + 1].val

1.06 then send <MERGE,ts[i + 1]> to ts[i];

1.07 i=i+1;

1.08 elseif ts[i].val = prefix(ts[i + 1].val)

1.0 then send <MOVE,ts[i + 1]> to ts[i];

1.10 p.sons := p.sons \ {ts[i + 1]} ;

111 i=i+1;

112 elseif p.val < GCP(ts[i].val, ts[i + 1].val)

113 then p.sons := p.sons U Newnode(GCP (ts[i].val, ts[i + 1].val),
114 ts[i], ts[i +1]) ;

115 p.sons; = p.sons \ {ts[i], ts[i + 1]} ;

1.16 i=i+1;

117 endif

1.18 done

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Protocol
00008000

Tree reorganization

Correctness proof (1/3)

Under Assumption 1 and assuming that the system contains one
tree only, the reorganization protocol terminates, and when this
occurs, the tree is a GCP Tree.

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Introduction Related Work Protocol Conclusion
000000000800

Tree reorganization

Correctness proof (2/3)

Proof (1/2)

If no merging is required. Two cases

1. p = prefix(fs)

o refer to previous figure
o all cases clearly results in GCP Trees

2. p # prefix(fs)

a. p.father = L
o fs = prefix(p) fs becomes the root node (GCP Tree)
@ fs and p becomes the two sons of the root node labeled

GCP(p,fs) (GCP Tree)

b. p.father # L, fs is moved to p.father
@ eventually reach q s.t. g = prefix(fs) (Case 1.)
@ eventually reach the root of the tree (Case 2.a.)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Introduction Related Work Protocol Conclusion
000000000080

Tree reorganization

Correctness proof (3/3)

Proof (2/2)

If merging is required. Four cases

i 3si,sj s.t. si = prefix(s;)
@ sj is moved to s;
@ similar to previous Case 1. (a) and (b) on previous figure
i Jsi,s;js.t. GCP(si,sj) > p
e s; and s; sons of a new node GCP(s;, sj)
@ similar to previous Case 1. (c) on the previous figure
il 3sj, s s.t. sj =S
@ recursive merging between s; and s;
@ solved by induction on s; and s;
@ 7Psi,s; satisfying either (i), (ii) or (iii) (GCP Tree)

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Introduction

Tree reorganization

From Lemmas 1 and 2 follows :

Under Assumption 1, our protocol provide a GCP tree recons-
truction after the crash of a physical node.

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

Conclusion

Outline

Q Conclusion

Cédric Tedeschi A Prefix Tree for Se; ng over P2P Platforms

Conclusion

Conclusion

@ Fault-tolerance protocol facing node crashes in a GCP Tree

@ Reconnection and reorganization of subtrees
e Guaranty of recovering a GCP Tree after a finite time
e Avoid/coupled with a replication strategy

@ Future Work

e Connecting replication and repair mechanisms to minimize
the cost of fault-tolerance
e Develop and validate a prototype on the Grid’5000 platform

Cédric Tedeschi A Prefix Tree for Searching over P2P Platforms

	Introduction
	Related Work
	DLPT
	Protocol
	Tree recovery
	Tree reorganization

	Conclusion

