
RPC-V: Toward Fault-Tolerant RPC 
for Internet Connected Desktop Grids 

for Volatile Nodes 

Samir Djilali, Thomas Herault, Oleg Lodygensky, 
Tangui Morlier, Gilles Fedak and Franck Cappello



Fault Tolerant RPC

● RPC is one of the 
programming models 
envisionned for the GRID

● In Internet-Connected 
Large Scale Grids, 
failures are not rare events

Distribution of CPU counts for all Top 500 lists since 1993

1

10

100

1000

10000

1 51 101 151 201 251 301 351 401 451 501

Rank in the Top 500

C
PU

 c
ou

nt

Jun-93

Nov-93

Nov-94

Jun-94

Jun-95

Nov-95

Jun-96

Nov-96

Jun-97

Nov-97

Jun-98

Nov-98

Jun-99

Nov-99

Jun-00

Nov-00

Jun-01

Nov-01

Jun-02

Nov-02

Jun-03



The Challenges of Large Scale

● Volatility
● No Stable Components
● Intermittent Crashes
● Asynchronous (best effort) networks like Internet
● Connectionless Interactions
● Changes of the System Size Asynchrony

Crashes

Crashes + Asynchrony �
Impossibility of Consen



Consequences

● Theoretically impossible to do consensus in a 
deterministic way

● Consensus is simpler than Statefull RPC 
– By defining the order of RPCs for one server could 

solve a consensus problem

● Either circumvent the problem
● Or try to address another problem

– Stateless RPC
– (or per-client-basis statefull RPC) 



Related Works
● Fault Tolerance for the Grid

– 3 tier FT Arch.
– GridRPC
– Ninf, RCS, NetSolve

● Fault Tolerance & Large Scale
– Probabilistic Solutions

● Fault Tolerance & Remote Procedure Calls
– Mostly using reliable or LAN components



RPC-V Architecture



RPC-V FT-Protocol
● On Suspicion

– User may re-launch clients when 
they suspects clients to be 
unreachable

– When server or client suspects 
coordinators they change of 
preferred one

– When a coordinator suspects server 
failure, it schedules RPCs again

– When a coordinator suspects another 
coordinator, it recomputes the 
topology

● Preventive Actions
– Each component locally 

logs every 
communication

– Synchronizes and/or 
replay lost events on 
communications

– Coordinators use 
passive replications



Implementation
● Over XtremWeb

– Heart-Beat
– Includes the three tiers : client, coordinator (dispatcher), server
– Connection-less communication protocol

● Coordinators Topology
– Ring (initially, faults may change the topology)
– Initial list, updated using state synchronisation and/or user actions

● State Synchronization
– Between Client and Coordinator, or Server and Coordinator : 

maximum timestamps
– Between Coordinators : peer-wise timestamps comparisons



Implementation

● Message Logging
– Pessimistic/Optimistic message logging (sender-

based)
– Garbage Collector, based on long delays or on user 

actions

● Coordinator Scheduling
– First Come, First Served
– Dates are shared to avoid unecessary re-submissions 

from replicas



Performance Evaluation

● Experiments on Local Area Networks for 
parameter isolation
– Reproducibility of experiments
– To highlight System overhead and FT 

capabilities

● Real Life Experiments
– Validity of the implementation
– Scalability test



LAN Experiments
● Cluster, 16 Servers, 4 Coordinators, 1 Client

● Ethernet 100 Switch, homogeneous Athlon XP 1800+, 1Gb 
RAM, IDE Disks

● Synthetic Benchmark
– non blocking RPC
– execution time (low to stress the comm.)
– parameter size
– result size

● Fault Generator
– Upon order, or regularly. 
– 5s heartbit / 6 miss => failure



Comparison of the three message 
logging strategies



Coordinator Replication Time



Synchronization Time



Fault Frequency Impact



Real Life Experiments

● International Wide Experiment
– Polytechnic School of Lille (France)
– University of Wisconsin (USA)
– Paris-Sud University (France)

● ~120 Servers (160 CPUs)
● “Real life” production application of Alcatel 

(validation and evaluation of communication 
networks)



Distribution of Tasks Duration



Coordinator Replication Time

ConfinedReal Life



Reference Execution 
without Faults



Execution with two consecutive 
coordinator faults



Conclusions & Futur works

● Reserve most stable resources to computing 
nodes (servers) and not to architecture 
(coordinators)
– Due to time gap between server execution and 

traversal of the system by a RPC

● Larger tests, optimization for larger scale
● Impact of checkpointing



Conclusion & Futur Works
(with respect to asynchrony)

● Conservative assumption : Stateless RPC
– “per-client-basis” statefull is OK

● Evaluate on GRIDs the asynchrony
– Can we conceive better FD than TCP connection ?

● Use gossiping / probabilistic techniques to 
overcome the limitation


	RPC-V: Toward Fault-Tolerant RPC for Internet Connected Desktop Grids for Volatile Nodes
	Fault Tolerant RPC
	The Challenges of Large Scale
	Consequences
	Related Works
	RPC-V Architecture
	RPC-V FT-Protocol
	Implementation
	Implementation
	Performance Evaluation
	LAN Experiments
	Comparison of the three message logging strategies
	Coordinator Replication Time
	Synchronization Time
	Fault Frequency Impact
	Real Life Experiments
	Distribution of Tasks Duration
	Coordinator Replication Time
	Reference Execution without Faults
	Execution with two consecutive coordinator faults
	Conclusions & Futur works
	Conclusion & Futur Works(with respect to asynchrony)

