
Offline and online master-worker scheduling
of concurrent bags-of-tasks
on heterogeneous platforms

Loris MARCHAL,

joint work with Anne BENOIT, Jean-François PINEAU,
Yves ROBERT and Frédéric VIVIEN

Laboratoire de l’Informatique du Parallélisme
École Normale Supérieure de Lyon, France

graal working group, 28/02/2008

1/33

2/33

Object of the Study

I Bags-of-tasks application
I independent tasks
I large number of similar tasks
I models embarrassingly parallel applications
I argues for the use of wide distributed platforms

I Online scheduling
I applications arrive at different time (release dates)
I no knowledge on the future
I no global makespan, try to lower the suffering of each user

2/33

Object of the Study

I Bags-of-tasks application
I independent tasks
I large number of similar tasks
I models embarrassingly parallel applications
I argues for the use of wide distributed platforms

I Online scheduling
I applications arrive at different time (release dates)
I no knowledge on the future
I no global makespan, try to lower the suffering of each user

3/33

Building on our previous results

I Large number of tasks ⇒ steady-state scheduling

I designed for large applications
I suited for heterogeneous platforms, multiple applications

(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS’06)

I optimal platform utilization: throughput maximization
I neglect transient phases (initialization/clean-up)

I Online scheduling ⇒ maximum stretch minimization

I other metrics not suited
(Minimizing the stretch when scheduling flows of biological requests, SPAA ’06)

I stretch is a kind of price for sharing resources
I minimize the maximum stretch among applications:

give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

3/33

Building on our previous results

I Large number of tasks ⇒ steady-state scheduling

I designed for large applications
I suited for heterogeneous platforms, multiple applications

(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS’06)

I optimal platform utilization: throughput maximization
I neglect transient phases (initialization/clean-up)

I Online scheduling ⇒ maximum stretch minimization

I other metrics not suited
(Minimizing the stretch when scheduling flows of biological requests, SPAA ’06)

I stretch is a kind of price for sharing resources
I minimize the maximum stretch among applications:

give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

3/33

Building on our previous results

I Large number of tasks ⇒ steady-state scheduling

I designed for large applications
I suited for heterogeneous platforms, multiple applications

(Centralized versus distributed schedulers for multiple bag-of-task applications, IPDPS’06)

I optimal platform utilization: throughput maximization
I neglect transient phases (initialization/clean-up)

I Online scheduling ⇒ maximum stretch minimization

I other metrics not suited
(Minimizing the stretch when scheduling flows of biological requests, SPAA ’06)

I stretch is a kind of price for sharing resources
I minimize the maximum stretch among applications:

give a guarantee on each application slowdown

NB: maximize throughput and minimize max-stretch could seem contradictory

4/33

Simple idea to bring things together

I Suppose we want to reach the maximum stretch S
I For a given application, we can compute its makespan “if it

was alone”: MS

I This gives a deadline:

deadline = release date + S ×MS

I Each application has now a release date and a deadline.

I Dates define intervals. . .
where we can apply steady-state relaxation!

4/33

Simple idea to bring things together

I Suppose we want to reach the maximum stretch S
I For a given application, we can compute its makespan “if it

was alone”: MS

I This gives a deadline:

deadline = release date + S ×MS

I Each application has now a release date and a deadline.

I Dates define intervals. . .
where we can apply steady-state relaxation!

4/33

Simple idea to bring things together

I Suppose we want to reach the maximum stretch S
I For a given application, we can compute its makespan “if it

was alone”: MS

I This gives a deadline:

deadline = release date + S ×MS

I Each application has now a release date and a deadline.

I Dates define intervals. . .
where we can apply steady-state relaxation!

4/33

Simple idea to bring things together

I Suppose we want to reach the maximum stretch S
I For a given application, we can compute its makespan “if it

was alone”: MS

I This gives a deadline:

deadline = release date + S ×MS

I Each application has now a release date and a deadline.

I Dates define intervals. . .
where we can apply steady-state relaxation!

4/33

Simple idea to bring things together

I Suppose we want to reach the maximum stretch S
I For a given application, we can compute its makespan “if it

was alone”: MS

I This gives a deadline:

deadline = release date + S ×MS

I Each application has now a release date and a deadline.

I Dates define intervals. . .
where we can apply steady-state relaxation!

5/33

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

6/33

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

7/33

Single bag-of-task application – context

I Master-Slave platform (heterogeneous):

Network

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Master

Workers

Links

Tasks

I Bunch of identical tasks

I Computing optimal makespan: already difficult problem

I Steady-state relaxation to get a lower bound

7/33

Single bag-of-task application – context

I Master-Slave platform (heterogeneous):

Network

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Worker Pu

Master

bandwidth bu (MB/s)

communication size: δ (MB)

speed su (MFlop/s)

computation size: w (MFlop)

Master

Workers

Links

Tasks

I Bunch of identical tasks

I Computing optimal makespan: already difficult problem

I Steady-state relaxation to get a lower bound

7/33

Single bag-of-task application – context

I Master-Slave platform (heterogeneous):

Network

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Worker Pu

Master

bandwidth bu (MB/s)

communication size: δ (MB)

speed su (MFlop/s)

computation size: w (MFlop)

Master

Workers

Links

Tasks

I Bunch of identical tasks

I Computing optimal makespan: already difficult problem

I Steady-state relaxation to get a lower bound

7/33

Single bag-of-task application – context

I Master-Slave platform (heterogeneous):

Network

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Worker Pu

Master

bandwidth bu (MB/s)

communication size: δ (MB)

speed su (MFlop/s)

computation size: w (MFlop)

Master

Workers

Links

Tasks

I Bunch of identical tasks

I Computing optimal makespan: already difficult problem

I Steady-state relaxation to get a lower bound

7/33

Single bag-of-task application – context

I Master-Slave platform (heterogeneous):

Network

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Worker Pu

Master

bandwidth bu (MB/s)

communication size: δ (MB)

speed su (MFlop/s)

computation size: w (MFlop)

Master

Workers

Links

Tasks

I Bunch of identical tasks

I Computing optimal makespan: already difficult problem

I Steady-state relaxation to get a lower bound

8/33

Single bag-of-task application – steady-state

Motivations:

I Assume the number of tasks is huge

I Forget about makespan (meaningless)

I Concentrate on throughput (fluid framework)

How it works:

I Consider average values:
“master sends 5.3 tasks per second to worker 3”

I Write constraints on these variables

I Optimize total throughput under these constraints
(with the help of linear programming)

I Reconstruct near-optimal schedule from average values
(we skip this step for now)

8/33

Single bag-of-task application – steady-state

Motivations:

I Assume the number of tasks is huge

I Forget about makespan (meaningless)

I Concentrate on throughput (fluid framework)

How it works:

I Consider average values:
“master sends 5.3 tasks per second to worker 3”

I Write constraints on these variables

I Optimize total throughput under these constraints
(with the help of linear programming)

I Reconstruct near-optimal schedule from average values
(we skip this step for now)

8/33

Single bag-of-task application – steady-state

Motivations:

I Assume the number of tasks is huge

I Forget about makespan (meaningless)

I Concentrate on throughput (fluid framework)

How it works:

I Consider average values:
“master sends 5.3 tasks per second to worker 3”

I Write constraints on these variables

I Optimize total throughput under these constraints
(with the help of linear programming)

I Reconstruct near-optimal schedule from average values
(we skip this step for now)

9/33

Single bag-of-task application – linear program



Maximize ρ =

p∑
u=1

ρu

subject to

ρu
w

su
≤ 1

ρu
δ

bu
≤ 1

p∑
u=1

ρu
δ

B
≤ 1

ρu: throughput of worker Pu

ρ: Total throughput

Analytical solution

ρ = min

{
B
δ
,

p∑
u=1

min

{
su

w
,
bu

w

}}
.

9/33

Single bag-of-task application – linear program



Maximize ρ =

p∑
u=1

ρu

subject to

ρu
w

su
≤ 1

ρu
δ

bu
≤ 1

p∑
u=1

ρu
δ

B
≤ 1

ρu: throughput of worker Pu

ρ: Total throughput

Analytical solution

ρ = min

{
B
δ
,

p∑
u=1

min

{
su

w
,
bu

w

}}
.

10/33

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

11/33

Offline multi-application – framework

For each application k (task of sizes w (k), δ(k)), we have:

I a release date

I the optimal throughput (alone): ρ∗(k)

; a bound on the makespan alone:

MS (k) ≤ number of tasks

optimal throughput
=

Π(k)

ρ∗(k)

I not only a lower bound, rather an approximation. . .

We try to reach stretch S:

I deadline:

deadline(k) = release date(k) + S × Π(k)

ρ∗(k)

12/33

Time-intervals for target stretch

If we try to reach stretch S = 2:

t
m

ak
es

pa
n

al
on

e
re

lea
se

da
te

12/33

Time-intervals for target stretch

If we try to reach stretch S = 2:

t
de

ad
lin

e

m
ak

es
pa

n

al
on

e
re

lea
se

da
te

12/33

Time-intervals for target stretch

If we try to reach stretch S = 2:

t

12/33

Time-intervals for target stretch

If we try to reach stretch S = 2:

t

12/33

Time-intervals for target stretch

If we try to reach stretch S = 2:

t

12/33

Time-intervals for target stretch

If we try to reach stretch S = 2:

twithout change
time-interval

13/33

Resolution for a target stretch S

New variables:

I communication throughput ρ
(k)
M→u(tj , tj+1)

I computation throughput ρ
(k)
u (tj , tj+1)

I state of buffers: B
(k)
u (tj)

(number of non-executed tasks at time tj)

New constraints:

I Complex (but straightforward) conservation laws between
throughputs and buffer state details

I Assert that all tasks of an application are treated.

I Resource limitations

Set of linear constraints, defining a convex K (S).

K (S) non-empty⇔ S feasible

14/33

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

I Basic binary search (with precision ε), or

I Involved search among stretch-intervals:

d (k)(S) = r (k) + S ×MS∗(k).

t
S1 = 1

S r1

d1

14/33

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

I Basic binary search (with precision ε), or

I Involved search among stretch-intervals:

d (k)(S) = r (k) + S ×MS∗(k).

t
S1 = 1

S r2

d2

r1

d1

14/33

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

I Basic binary search (with precision ε), or

I Involved search among stretch-intervals:

d (k)(S) = r (k) + S ×MS∗(k).

t
S1 = 1

S

d3

r3r2

d2

r1

d1

14/33

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

I Basic binary search (with precision ε), or

I Involved search among stretch-intervals:

d (k)(S) = r (k) + S ×MS∗(k).

t
S1 = 1

S

S5

S4
S3

S2

d3

r3r2

d2

r1

d1

14/33

Binary search of optimal stretch

We have a toolbox to know if a given stretch is feasible. Search of
the optimal (minimum) stretch:

I Basic binary search (with precision ε), or

I Involved search among stretch-intervals:

d (k)(S) = r (k) + S ×MS∗(k).

t
S1 = 1

S

S5

S4
S3

S2

d3

r3r2

d2

r1

d1

between two critical values

- linear evolution
- no dates crossing

15/33

Binary search between stretch-interval

I Consider a stretch-interval between two critical values [Sa;Sb]

I Deadlines have a linear evolution

I Everything is linear !? Not really:
when computing what receives a buffer during a time-interval:

ρ
(k)
M→u(tj , tj+1)× (Tend − Tstart)

Tend,Tstart: linear function in S
; quadratic constrains /

I Switch from throughput to amount variables:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

A
(k)
u (tj , tj+1) = ρ

(k)
u (tj , tj+1)× (tj+1 − tj)

I All the constraints are once again linear , details

15/33

Binary search between stretch-interval

I Consider a stretch-interval between two critical values [Sa;Sb]

I Deadlines have a linear evolution

I Everything is linear !? Not really:
when computing what receives a buffer during a time-interval:

ρ
(k)
M→u(tj , tj+1)× (Tend − Tstart)

Tend,Tstart: linear function in S
; quadratic constrains /

I Switch from throughput to amount variables:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

A
(k)
u (tj , tj+1) = ρ

(k)
u (tj , tj+1)× (tj+1 − tj)

I All the constraints are once again linear , details

15/33

Binary search between stretch-interval

I Consider a stretch-interval between two critical values [Sa;Sb]

I Deadlines have a linear evolution

I Everything is linear !? Not really:
when computing what receives a buffer during a time-interval:

ρ
(k)
M→u(tj , tj+1)× (Tend − Tstart)

Tend,Tstart: linear function in S
; quadratic constrains /

I Switch from throughput to amount variables:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

A
(k)
u (tj , tj+1) = ρ

(k)
u (tj , tj+1)× (tj+1 − tj)

I All the constraints are once again linear , details

15/33

Binary search between stretch-interval

I Consider a stretch-interval between two critical values [Sa;Sb]

I Deadlines have a linear evolution

I Everything is linear !? Not really:
when computing what receives a buffer during a time-interval:

ρ
(k)
M→u(tj , tj+1)× (Tend − Tstart)

Tend,Tstart: linear function in S
; quadratic constrains /

I Switch from throughput to amount variables:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

A
(k)
u (tj , tj+1) = ρ

(k)
u (tj , tj+1)× (tj+1 − tj)

I All the constraints are once again linear , details

15/33

Binary search between stretch-interval

I Consider a stretch-interval between two critical values [Sa;Sb]

I Deadlines have a linear evolution

I Everything is linear !? Not really:
when computing what receives a buffer during a time-interval:

ρ
(k)
M→u(tj , tj+1)× (Tend − Tstart)

Tend,Tstart: linear function in S
; quadratic constrains /

I Switch from throughput to amount variables:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

A
(k)
u (tj , tj+1) = ρ

(k)
u (tj , tj+1)× (tj+1 − tj)

I All the constraints are once again linear , details

15/33

Binary search between stretch-interval

I Consider a stretch-interval between two critical values [Sa;Sb]

I Deadlines have a linear evolution

I Everything is linear !? Not really:
when computing what receives a buffer during a time-interval:

ρ
(k)
M→u(tj , tj+1)× (Tend − Tstart)

Tend,Tstart: linear function in S
; quadratic constrains /

I Switch from throughput to amount variables:

A
(k)
M→u(tj , tj+1) = ρ

(k)
M→u(tj , tj+1)× (tj+1 − tj)

A
(k)
u (tj , tj+1) = ρ

(k)
u (tj , tj+1)× (tj+1 − tj)

I All the constraints are once again linear , details

16/33

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

17/33

Discussion on models

I Which communication/computation model have we been
using from the beginning ?

I My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

I No! no schedule reconstructed from the linear programs /
I Solution of a linear program : fluid throughput ρ

(k)
u , assumes

I time-sharing for communication and computation
I “Synchronous Start” for communication and computation

I Nice model for scheduling, but far from reality:
I no data dependency (!)
I Concurrent applications
I Perfect time-sharing for computation and communication (!)

I We have to come back to the “reality”

17/33

Discussion on models

I Which communication/computation model have we been
using from the beginning ?

I My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

I No! no schedule reconstructed from the linear programs /
I Solution of a linear program : fluid throughput ρ

(k)
u , assumes

I time-sharing for communication and computation
I “Synchronous Start” for communication and computation

I Nice model for scheduling, but far from reality:
I no data dependency (!)
I Concurrent applications
I Perfect time-sharing for computation and communication (!)

I We have to come back to the “reality”

17/33

Discussion on models

I Which communication/computation model have we been
using from the beginning ?

I My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

I No! no schedule reconstructed from the linear programs /
I Solution of a linear program : fluid throughput ρ

(k)
u , assumes

I time-sharing for communication and computation
I “Synchronous Start” for communication and computation

I Nice model for scheduling, but far from reality:
I no data dependency (!)
I Concurrent applications
I Perfect time-sharing for computation and communication (!)

I We have to come back to the “reality”

17/33

Discussion on models

I Which communication/computation model have we been
using from the beginning ?

I My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

I No! no schedule reconstructed from the linear programs /
I Solution of a linear program : fluid throughput ρ

(k)
u , assumes

I time-sharing for communication and computation
I “Synchronous Start” for communication and computation

I Nice model for scheduling, but far from reality:
I no data dependency (!)
I Concurrent applications
I Perfect time-sharing for computation and communication (!)

I We have to come back to the “reality”

17/33

Discussion on models

I Which communication/computation model have we been
using from the beginning ?

I My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

I No! no schedule reconstructed from the linear programs /
I Solution of a linear program : fluid throughput ρ

(k)
u , assumes

I time-sharing for communication and computation
I “Synchronous Start” for communication and computation

I Nice model for scheduling, but far from reality:
I no data dependency (!)
I Concurrent applications
I Perfect time-sharing for computation and communication (!)

I We have to come back to the “reality”

17/33

Discussion on models

I Which communication/computation model have we been
using from the beginning ?

I My favorite over-classical one-port model ?
(a processor sends/receives one message at a time, and can overlap the

communications by computations)

I No! no schedule reconstructed from the linear programs /
I Solution of a linear program : fluid throughput ρ

(k)
u , assumes

I time-sharing for communication and computation
I “Synchronous Start” for communication and computation

I Nice model for scheduling, but far from reality:
I no data dependency (!)
I Concurrent applications
I Perfect time-sharing for computation and communication (!)

I We have to come back to the “reality”

18/33

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/33

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/33

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/33

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/33

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/33

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/33

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/33

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/33

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/33

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/33

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

18/33

One-dimensional load-balancing

I General fluid schedule with rate αk for application k

I task of application k takes time tk at full speed

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

time

time

At each step, choose application which minimize

(nk + 1)× tk

αk

nk : number of task from application k already scheduled

19/33

Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

19/33

Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

at
om

ic
sc

h
ed

u
le

fl
u
id

sc
h
ed

u
le

termination of T in fluid schedule

termination of T in atomic schedule

T

T

time

time

19/33

Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

Construction of 1D-inv schedule from a fluid schedule (M:
Makespan):

1. Reverse the time: t ; M − t

2. Apply 1D algorithm

3. Reverse the time one more time

Lemma (1D-inv).

In the 1D-inv schedule, a task does not start earlier than in the
fluid schedule, and 1D-inv has a makespan ≤ M.

19/33

Properties of 1D schedules

Lemma (1D).

In the 1D schedule, a task does not terminate later than in the
fluid schedule.

Construction of 1D-inv schedule from a fluid schedule (M:
Makespan):

1. Reverse the time: t ; M − t

2. Apply 1D algorithm

3. Reverse the time one more time

Lemma (1D-inv).

In the 1D-inv schedule, a task does not start earlier than in the
fluid schedule, and 1D-inv has a makespan ≤ M.

20/33

Back to the one-port model

From a fluid schedule (of communications and computations):

1. Round every quantities down to integer values

2. Shift all computations by one task (to cope with
dependencies)

3. Apply 1D algorithm to communications
→ communications finish in time

4. Apply 1D-inv algorithm to computations
→ computations do not start in advance

Results:

I We guarantee that data dependencies are satisfied

I Some tasks may be forgotten: at most a fixed number

I Take some time at the end of an application to process the
missing tasks

21/33

Back to the one-port model

Asymptotic optimality: when the granularity of the application gets
smaller (lots of small tasks), the one-port makespan gets closer to
the fluid makespan.

I Construction of an atomic schedule for performance guarantee
I In practice:

I 1D schedule for communications
I Earliest Deadline First for computations

22/33

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

23/33

Online multi-application – framework

I No available information about future submission

I Information for application k available at release date r (k)

Adaptation:

I Consider only available information (already submitted
applications)

I Restart offline algorithm at each release date (with updated
information)

I online heuristic named CBS3M-online

I we also test the offline algorithm: CBS3M-offline

24/33

Online multi-application – framework

Classical heuristics to prioritize applications:

I First In First Out (FIFO)

I Shortest Processing Time (SPT)

I Shortest Remaining Processing Time (SRPT)

I Shortest Weighted Remaining Processing Time (SWRPT)

Previous heuristics do not mix applications,

I Master-Worker Multi-Application (MWMA)
(previous work, designed for simultaneous submissions)

25/33

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

26/33

Simulations and Experiments – settings

Experiments:

I GDSDMI cluster (8 workers)

I MPI communications

I Artificially slow-down communication and/or computations to
emulate heterogeneity

Simulation:

I SimGrid simulator
I Two scenarios:

1. simulate MPI experiments
2. extensive simulations with larger applications

27/33

MPI experiments results

28/33

MPI experiments vs simulations

Comparison of relative max-stretch:

I average difference around 16%

I standard deviation of 14% (maximum of 72%).

29/33

Simulations results – graph

MWMA NBT
SWRPT MCT

SRPT MCT
CBS3M EDF OFFLINE
CBS3M EDF ONLINE

1

1.5

2

2.5

3

3.5

4

4 5 6 7 8 9 10

av
er

ag
e

m
ax

st
re

tc
h

/
op

ti
m

al
m

ax
st

re
tc

h

load (optimal stretch)

30/33

Simulations results – table

Algorithm minimum average (± stddev) maximum (fraction of best result)
FIFO RR 4.550 16.689 (± 7.897) 62.6 (the best in 0.0 %)

FIFO MCT 1.857 6.912 (± 2.404) 17.9 (the best in 0.0 %)
FIFO DD 4.550 16.689 (± 7.897) 62.6 (the best in 0.0 %)
SPT RR 1.348 4.274 (± 1.771) 13.8 (the best in 0.0 %)

SPT MCT 1.007 1.928 (± 0.610) 5.99 (the best in 1.3 %)
SPT DD 1.348 4.274 (± 1.771) 13.8 (the best in 0.0 %)

SRPT RR 1.348 4.121 (± 1.737) 13.8 (the best in 0.0 %)
SRPT MCT 1.007 1.861 (± 0.601) 6.87 (the best in 2.2 %)
SRPT DD 1.348 4.121 (± 1.737) 13.8 (the best in 0.0 %)

SWRPT RR 1.344 4.119 (± 1.739) 13.8 (the best in 0.0 %)
SWRPT MCT 1.007 1.857 (± 0.601) 6.87 (the best in 1.9 %)
SWRPT DD 1.344 4.119 (± 1.739) 13.8 (the best in 0.0 %)

MWMA NBT 1.477 3.433 (± 1.044) 8.49 (the best in 0.0 %)
MWMA MS 2.435 8.619 (± 2.420) 20.4 (the best in 0.0 %)

CBS3M FIFO ONLINE 1.003 1.322 (± 0.208) 2.83 (the best in 6.9 %)
CBS3M EDF ONLINE 1.003 1.163 (± 0.118) 1.93 (the best in 64.0 %)
CBS3M FIFO OFFLINE 1.022 1.379 (± 0.276) 3.74 (the best in 3.8 %)
CBS3M EDF OFFLINE 1.011 1.213 (± 0.125) 2.06 (the best in 26.2 %)

31/33

Simulations results – other metrics

Sum-stretch

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 4 5 6 7 8 9 10 11 12

av
er

ag
e

su
m

_s
tr

et
ch

 /
be

st
 s

um
_s

tr
et

ch

load (optimal stretch)

SRPT_MCT
SWRPT_MCT
MWMA_NBT

CBS3M_EDF_OFFLINE
CBS3M_EDF_ONLINE

I best strategy: SWRPT (known to be optimal)

I CBSSM within 30-40%

31/33

Simulations results – other metrics

Makespan

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 4 5 6 7 8 9 10 11 12

av
er

ag
e

m
ak

es
pa

n
/ b

es
t m

ak
es

pa
n

load (optimal stretch)

SRPT_MCT
SWRPT_MCT
MWMA_NBT

CBS3M_EDF_OFFLINE
CBS3M_EDF_ONLINE

I best strategy: CBS3M

31/33

Simulations results – other metrics

Max-flow

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 4 5 6 7 8 9 10 11 12

av
er

ag
e

m
ax

_f
lo

w
 /

be
st

 m
ax

_f
lo

w

load (optimal stretch)

SRPT_MCT
SWRPT_MCT
MWMA_NBT

CBS3M_EDF_OFFLINE
CBS3M_EDF_ONLINE

I best strategy: CBS3M

31/33

Simulations results – other metrics

Sum-flow

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 4 5 6 7 8 9 10 11 12

av
er

ag
e

su
m

_f
lo

w
 /

be
st

 s
um

_f
lo

w

load (optimal stretch)

SRPT_MCT
SWRPT_MCT
MWMA_NBT

CBS3M_EDF_OFFLINE
CBS3M_EDF_ONLINE

I best strategy: CBS3M/ SWRPT

32/33

Outline

Framework

With a single bag-of-task application

Several bag-of-task applications: offline case

Discussion on models

Several bag-of-task applications: online case

Simulations and Experiments

Conclusion

33/33

Conclusion

I Key points:
I Realistic platform model
I Optimal offline algorithm
I Efficient online algorithm based on offline study

I Extensions:
I Extend the simulation to larger platform
I Bi-criteria

This work will be presented in APDCM (workshop of IPDPS’08).

Positive values

I Non-negative throughputs.

∀1 ≤ u ≤ p,∀1 ≤ k ≤ n,∀1 ≤ j ≤ 2n − 1,

ρ
(k)
M→u(tj , tj+1) ≥ 0 and ρ(k)

u (tj , tj+1) ≥ 0. (1)

I Non-negative buffers.

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p,∀1 ≤ j ≤ 2n,

B(k)
u (tj) ≥ 0. (2)

Physical constraints

I Bounded link capacity.

∀1 ≤ j ≤ 2n − 1, ∀1 ≤ u ≤ p,
nX

k=1

ρ
(k)
M→u(tj , tj+1)

δ(k)

bu
≤ 1. (3)

I Limited sending capacity of master.

∀1 ≤ j ≤ 2n − 1,
pX

u=1

nX
k=1

ρ
(k)
M→u(tj , tj+1)

δ(k)

B ≤ 1. (4)

I Bounded computing capacity.

∀1 ≤ j ≤ 2n − 1, ∀1 ≤ u ≤ p,
nX

k=1

ρ(k)
u (tj , tj+1)

w (k)

s
(k)
u

≤ 1. (5)

Buffer constraints

I Buffer initialization.

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p,

B(k)
u (r (k)) = 0. (6)

I Emptying Buffer.

∀ 1 ≤ k ≤ n,∀1 ≤ u ≤ p,

B(k)
u (d (k)) = 0. (7)

I Bounded size

∀1 ≤ u ≤ p,∀1 ≤ j ≤ 2n,
n∑

k=1

B(k)
u (tj)δ

(k) ≤ Mu. (8)

Tasks constraints

I Task conservation.

∀ 1 ≤ k ≤ n,∀1 ≤ j ≤ 2n − 1,∀1 ≤ u ≤ p,

B(k)
u (tj+1) = B(k)

u (tj)+
(
ρ

(k)
M→u(tj , tj+1)−ρ(k)

u (tj , tj+1)
)
×
(
tj+1−tj

)
.
(9)

I Total number of tasks.

∀ 1 ≤ k ≤ n,∑
1≤j≤2n−1

tj ≥ r (k)

tj+1 ≤ d (k)

p∑
u=1

ρ
(k)
M→u(tj , tj+1)× (tj+1 − tj) = Π(k). (10)

Polyhedron


find ρ

(k)
M→u(tj , tj+1), ρ

(k)
u (tj , tj+1),

∀k , u, j such that 1 ≤ k ≤ n, 1 ≤ u ≤ p, 1 ≤ j ≤ 2n − 1

under the constraints (1), (2), (3), (4), (5), (6), (7), (8), (9) and (10)

(K)

A given max-stretch S ′ is achievable if and only if the
Polyhedron (K) is not empty

In practice, we add a fictitious linear objective function. Back

New constraints

I Bounded link capacity.

∀1 ≤ j ≤ 2n − 1,∀1 ≤ u ≤ p,
n∑

k=1

A
(k)
M→u(tj , tj+1)

δ(k)

bu
≤ (αj+1 − αj)S + (βj+1 − βj)

Back

New constraints

I Bounded link capacity.

I Limited sending capacity of master.

∀1 ≤ j ≤ 2n − 1,
p∑

u=1

n∑
k=1

A
(k)
M→u(tj , tj+1)δ(k) ≤ B ×

(
(αj+1 − αj)S + (βj+1 − βj)

)

Back

New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

∀1 ≤ j ≤ 2n − 1,∀1 ≤ u ≤ p,
n∑

k=1

A(k)
u (tj , tj+1)

w (k)

s
(k)
u

≤ (αj+1 − αj)S + (βj+1 − βj)

Back

New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

I Total number of tasks.

∀ 1 ≤ k ≤ n, ∑
1≤j≤2n−1

tj ≥ r (k)

tj+1 ≤ d (k)

p∑
u=1

A
(k)
M→u(tj , tj+1) = Π(k)

Back

New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

I Total number of tasks.

I Task conservation.

∀ 1 ≤ k ≤ n,∀1 ≤ j ≤ 2n − 1,∀1 ≤ u ≤ p,

B(k)
u (tj+1) = B(k)

u (tj) + A
(k)
M→u(tj , tj+1)− A(k)

u (tj , tj+1)

Back

New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

I Total number of tasks.

I Task conservation.

I Non-negative buffer.

I Buffer initialization.

I Emptying Buffer.

Back

New constraints

I Bounded link capacity.

I Limited sending capacity of master.

I Bounded computing capacity.

I Total number of tasks.

I Task conservation.

I Non-negative buffer.

I Buffer initialization.

I Emptying Buffer.

I Bounded stretch
Sa ≤ S ≤ Sb (11)

Back

	Main Part
	Framework
	With a single bag-of-task application
	Several bag-of-task applications: offline case
	Discussion on models
	Several bag-of-task applications: online case
	Simulations and Experiments
	Conclusion
	Extra material
	
	

