
Toward autonomic QoS in Grid-aware 
applications: the ASSIST experiment

Marco Aldinucci
Dept. of Computer Science, University of Pisa, Italy

& ISTI - CNR, Pisa, Italy

ENS Lyon, France 29 March 2006



Outline

Motivating ...
high-level programming for the grid
application adaptivity for the grid

ASSIST basics & adaptivity in ASSIST
mechanisms 
demo & some experiments

Components & QoS
autonomic managers
QoS contracts

Concluding remarks
46

46



// progr. & the grid

concurrency exploitation, concurrent activities set up, 
mapping/scheduling, communication/synchronization 
handling and data allocation, ...
manage resources heterogeneity and unreliability, 
networks latency and bandwidth unsteadiness, resources 
topology and availability changes, firewalls, private 
networks, reservation and jobs schedulers, ... 

47

... and  a non trivial QoS for applications
not easy leveraging only on middleware

D. Gannon et al. opened the way (GrADS@Rice)

47



ASSIST idea

“moving most of the Grid 
specific efforts needed 
while developing high-

performance Grid 
applications from 

programmers to grid tools 
and run-time systems”

48

Grid

Abstact

Machine

Application Manager (AM)

(non functional aspects & QoS control)

ASSIST components
(interoperability towards other comp. models)

Abstraction of the basic services: 

resource management & scheduling, 

monitoring, ...

standard middleware

(TCP/IP, Globus, WS, CCM, ...)

Applications

ASSIST is a high-level programming environment for grid-aware // applications. 
Developed at Uni. Pisa within several national & EU projects. 

First version in 2001. Open source under GPL.

48



49 7

input output

Sequential or 
parallel module

Typed streams
of data items

Programmable, possibly 
nondeterministic input behaviour

app = graph of modules

P1
P2 P3

P4

49



50 7

native + standards

P1
P2 P3

P4

ASSIST native or wrap 
(MPI, CORBA, CCM, WS)

TCP/IP, Globus,
IIOP CORBA,
HTTP/SOAP

50



51

VP VP

VP VP

VP VP

ASSIST parmod

51



51

VP VP

VP VP

VP VP

An “input 
section” can be 
programmed in 
a  CSP-like way

ASSIST parmod

51



51

VP VP

VP VP

VP VP

An “input 
section” can be 
programmed in 
a  CSP-like way

Data items can be 
distributed (scattered, 

broadcasted, 
multicasted) to a set of 

Virtual Processes 
which are named 
accordingly to a 

topology

ASSIST parmod

51



51

VP VP

VP VP

VP VP

An “input 
section” can be 
programmed in 
a  CSP-like way

Data items can be 
distributed (scattered, 

broadcasted, 
multicasted) to a set of 

Virtual Processes 
which are named 
accordingly to a 

topology

Data items partitions 
are elaborated by 
VPs, possibly in 

iterative way

while(...)
  forall VP(in, out)
  barrier

data is logically shared by 
VPs (owner-computes)

ASSIST parmod

51



51

VP VP

VP VP

VP VP

An “input 
section” can be 
programmed in 
a  CSP-like way

Data items can be 
distributed (scattered, 

broadcasted, 
multicasted) to a set of 

Virtual Processes 
which are named 
accordingly to a 

topology

Data items partitions 
are elaborated by 
VPs, possibly in 

iterative way

while(...)
  forall VP(in, out)
  barrier

data is logically shared by 
VPs (owner-computes)

Data is eventually 
gathered accordingly to 

an user defined way

ASSIST parmod

51



51

VP VP

VP VP

VP VP

An “input 
section” can be 
programmed in 
a  CSP-like way

Data items can be 
distributed (scattered, 

broadcasted, 
multicasted) to a set of 

Virtual Processes 
which are named 
accordingly to a 

topology

Data items partitions 
are elaborated by 
VPs, possibly in 

iterative way

while(...)
  forall VP(in, out)
  barrier

data is logically shared by 
VPs (owner-computes)

Data is eventually 
gathered accordingly to 

an user defined way

Easy to express 
standard paradigms
(skeltons), such as

farm, deal, haloswap, 
map, apply-to-all, 

forall, ...

ASSIST parmod

51



parmod implementation

52 10

input
manager

VP VP

VP manager (VPM)

VP VP

VP manager (VPM)

input
manager

VP VP

VP manager (VPM)

processes VP Virtual Processes

52



Compiling & running

53

QoS
contract

ASSIST
program

ASSIST
compiler

resource
description

XML

executable
code

(linux, mac,
M$win)

launch

query new 
resources

re
co

n
f

co
m

m
an

d
s

Managers

AM+MAMs

Grid execution

agent (GEA)

ISM OSM

VPM

seqseq

Network of processes

Run

53



Application adaptivity

54

Adaptivity aims to dynamically  control 
program configuration (e.g. parallel degree) 
and mapping

for performance (high-performance is a natural sub-
target)
for fault-tolerance (enable to cope with unsteadiness 
of resources, and some kind of faults) 

54



Adaptivity recipe (ingredients)

1. Mechanism for  adaptivity
reconf-safe points

in which points a parallel code can be safely reconfigured?

reconf-safe point consensus
different parallel activities may not proceed in lock-step fashion

add/remove/migrate computation & data
2. Managing adaptivity

QoS contracts
Describing high-level QoS requirement for modules/applications

“self-optimizing” modules/components
under the control of an autonomic manager

55
55



Mechanisms

At parmod level 
add/remove/migrate VPs
very low-overhead due to knowledge coming from high-level 
semantics + suitable compiling tools

At component level 
create/destroy/wire/unwire parallel entities
medium/large overhead due to underlying API for staging, 
run, ...

Not addressed in this talk (see references in the paper: 
Europar 05, ParCo 05, ...), I just show a short demo

56
56



adaptivity: a working ex.

57

VP VP

ISM OSM

MAM

VP
VPM

VP VP
VPM

data

VP

data

18

57



adaptivity: a working ex.

57

VPM

VP VP

ISM OSM

MAM

VP
VPM

VP VP
VPM

data

VP

data

1. Gexec(newPE, VPM)

18

57



adaptivity: a working ex.

57

VPM

VP VP

ISM OSM

MAM

VP
VPM

VP VP
VPM

data

VP

data

1. Gexec(newPE, VPM)

2. acquire consensus

18

57



adaptivity: a working ex.

57

VPM

VP

ISM OSM

MAM

VP
VPM

VP VP
VPM

data

VP VP

data

1. Gexec(newPE, VPM)

2. acquire consensus

3. move VP and data

Only 3. is in the critical path 18

57



overhead? (mSecs)

59

!"# $"#

%&#

#'#

!"!#!$%&'("!)*+$#!("&+*",&-.&/0,1

!"# $"#

#'#

%&#

!"# $"#

%&#

#'#

%&#

2+('3,,

("&/04

!"$%&'("!)*+$#!("&+*",&-.56&/0,1

$"$%7832%$" 9:9

;:9&-<!==%3>$+31!"#$%&'()*#'(&"$'

"33=&6&/0 /04

+,-.'/0-12$3*#'(&"$'

343'*#3

2$+<(=&+3$'?3,&$
+3'("@A,$@3&2(!"#

+3'("@B&%$#3"'7

+3'("@B&#!<3

<("!#(+

#!<3

C$*"'?-D/9E/041 $'.

4("5*6%2",%(*#'(&"$'

D/,&$+3
+3=!,#+!F*#3=

G?3&"3>&2+('3,,
'("#$'#,&#?3&9:9

Fig. 2. Reconfiguration dynamics and metrics.

TCP/IP or Globus provided communication channels. The two applications are
composed by one parmod and two sequential modules. The first is a data-parallel
application receiving a stream of integer arrays and computing a forall of sim-
ple function for each stream item; the matrix is stored in the parmod shared
state. The second is a farm application computing a simple function on different
stream items. Since Rt also depends on sequential function cost, in both cases
we choose sequential functions with a close to zero computational cost in order
to evaluate mechanism on the finest possible grain.

The reconfiguration overhead (Ro) measured during our experiments, with-
out any reconfiguration change actually performed, is practically negligible, re-
maining under the limit of 0,004%, the measurement of the other two metrics
are reported in Table 1.

Notice that in the case of a data-parallel parmod, Rl grows linearly with
(x + y) for the reconfiguration x → y for both kinds of reconf-safe points, and
depends on shared state size and mapping. Farm parmod cannot be reconfigured
on-barrier since it has no barrier, and achieves a negligible Rl (below 10−3 ms).
This is due to the fact that no processes are stopped in the transition from one
configuration to the next. Rt, which includes both the protocol cost and time to
reach next reconf-safe point, grows linearly with (x + y) for the former cost and
heavily depends on user-function cost for the latter.

parmod kind Data-parallel (with shared state) Farm (without shared state)

reconf. kind add PEs remove PEs add PEs remove PEs

# of PEs involved 1→2 2→4 4→8 2→1 4→2 8→4 1→2 2→4 4→8 2→1 4→2 8→4

Rl on-barrier 1.2 1.6 2.3 0.8 1.4 3.7 – – – – – –
Rl on-stream-item 4.7 12.0 33.9 3.9 6.5 19.1 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Rt 24.4 30.5 36.6 21.2 35.3 43.5 24.0 32.7 48.6 17.1 21.6 31.9

Table 1. Evaluation of reconfiguration overheads (ms). On this cluster, 50 ms are
needed to ping 200KB between two PEs, or to compute a 1M integer additions.

GrADS papers reports overhead in the order of hundreds of seconds (K. Kennedy et al. 
2004),  this is mainly due to the stop/restart behavior, not to the different running env. 

19

59



Autonomic Computing

AC emblematic of a vast hierarchy of self-
governing systems, many of which consist 
of many interacting, self-governing 
components that in turn comprise a number 
of interacting, self-governing components at 
the next level down.
IBM “invented” it in 2001 (control with self-
awareness, from human body autonomic 
nervous system)

self-optimization, self-healing, self-
protection, self-configuration = self-
management

control loop, of course, exists from mid of 
last century

60

Managed elements (MAMs)

Monitor

Analyze Plan

 ExecuteKwowledge

Autonomic Manager (AM)

M4

M2
M1

M3

60



Autonomic behavior

61

Monitor Plan

Execute

Analyze
broken
contract

next
configuration

QoS data

Managed element
(module, component)

monitor: collect execution stats: machine load, VPM service time, input/output 
queues lenghts, ...
analyze: instanciate performance models with monitored data, detect broken 
contract, in and in the case try to indivituate the problem
plan: select a (predefined or user defined) strategy to reconvey the contract to valid 
status. The strategy is actually a list of mechanism to apply.
execute: leverage on mechanism to apply the plan

61



Autonomic behavior

61

Monitor Plan

Execute

Analyze
broken
contract

next
configuration

QoS data

Managed element
(module, component)

monitor: collect execution stats: machine load, VPM service time, input/output 
queues lenghts, ...
analyze: instanciate performance models with monitored data, detect broken 
contract, in and in the case try to indivituate the problem
plan: select a (predefined or user defined) strategy to reconvey the contract to valid 
status. The strategy is actually a list of mechanism to apply.
execute: leverage on mechanism to apply the plan

Autonomic behavior as
been included in NGG2/3 

(Next Generation Grid) EU 
founding recommendation 

as prerequisite for Grid 
computing

61



ASSIST & components

62

P1 P2

P3

P4

62



ASSIST & components

62

P1 P2

P3

P4

ASSIST graphs can be enclosed in components

ASSIST

native

62



ASSIST & components

62

P1 P2

P3

P4

ASSIST graphs can be enclosed in components
they can be wired one another

P1 P2

P3

P4

ASSIST

native

ASSIST

native

62



ASSIST & components

62

P1 P2

P3

P4

ASSIST graphs can be enclosed in components
they can be wired one another
they may used to wrap sequential or parallel 
code (e.g. MPI)

P1 P2

P3

P4

ASSIST

native

ASSIST

native

wrap (e.g. MPI)

62



ASSIST & components

62

P1 P2

P3

P4

ASSIST graphs can be enclosed in components
they can be wired one another
they may used to wrap sequential or parallel 
code (e.g. MPI)
they can be wired to other legacy components 
(e.g. CCM)

P1 P2

P3

P4

ASSIST

native

ASSIST

native

wrap (e.g. MPI)

other component
models (e.g. CCM)

62



ASSIST & components

62

P1 P2

P3

P4

ASSIST graphs can be enclosed in components
they can be wired one another
they may used to wrap sequential or parallel 
code (e.g. MPI)
they can be wired to other legacy components 
(e.g. CCM)
currently native component model, already 
converging in the forthcoming GCM (authors 
involved in CoreGRID NoE, WP3)

P1 P2

P3

P4

ASSIST

native

ASSIST

native

wrap (e.g. MPI)

other component
models (e.g. CCM)

62



managed components

modules and components are controlled by managers
managers implements NF-ports

63

M4M3

M1 M2

ASSIST stream

component 
functional
interaction
(e.g. RPC)

provided
port

component a component b

component c

NF port

NF port NF port

MAM4
MAM3

AM

CAMa

MAM4

CAMc

CAMb

MAM2

63



managed components

modules and components are controlled by managers
managers implements NF-ports

63

M4M3

M1 M2

ASSIST stream

component 
functional
interaction
(e.g. RPC)

provided
port

component a component b

component c

NF port

NF port NF port

MAM4
MAM3

AM

CAMa

MAM4

CAMc

CAMb

MAM2

MAM
4

MAM
3

AM

CAM
a

MAM
4

CAM
c

CAM
b

MAM
2

63



managed components

modules and components are controlled by managers
managers implements NF-ports
the distributed coordination of managers enable the managing of the 
application as whole (the top manager being the Application Manager)

63

M4M3

M1 M2

ASSIST stream

component 
functional
interaction
(e.g. RPC)

provided
port

component a component b

component c

NF port

NF port NF port

MAM4
MAM3

AM

CAMa

MAM4

CAMc

CAMb

MAM2

MAM
4

MAM
3

AM

CAM
a

MAM
4

CAM
c

CAM
b

MAM
2

63



QoS contract
(of the experiment I’ll show you in a minute)

64

Perf. features QLi (input queue level), QLo (input queue
level), TISM (ISM service time), TOSM

(OSM service time), Nw (number of VPMs),
Tw[i] (VPMi avg. service time), Tp (parmod
avg. service time)

Perf. model Tp = max{TISM ,
∑n

i=1
Tw[i]/n, TOSM},

Tp < K (goal)

Deployment arch = (i686-pc-linux-gnu ∨ powerpc-apple-
darwin*)

Adapt. policy goal based

64



experiment: stateless farm

Input stream pressure
VPMs aggregated power

N. of VPMs in parmod

QoS contract

 50

 200 180 160 140 120

Wall Clock Time (s)

 20  100

 2
 4
 6
 8

 10

 2
 4
 6
 8

 80 60 40

F
ill

 %
It

e
m

s/
s

N
. 

o
f 

V
P

M
s

 100

 0
Input stream queue fill level 

contract:
keep a given service time
contract change along the run

65
65



Experimenting heterogeneity

66

0

1,500

3,000

4,500

6,000

A B C D
Platforms

D
35%

C
24%

B
30%

A
11%

A B C D

Bo
go

M
IP

S

P4@2.5GHz P4@2GHz P4@2.8GHzP3@868MHz
Expected work
balance among

platforms

66

mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz


Experimenting heterogeneity

66

0

1,500

3,000

4,500

6,000

A B C D
Platforms

D
35%

C
24%

B
30%

A
11%

A B C D

Bo
go

M
IP

S

P4@2.5GHz P4@2GHz P4@2.8GHzP3@868MHz
Expected work
balance among

platforms

Not only Intel+linux: similar experiments has been run on Linux, Mac, 
Win, and a mixture of them

66

mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz
mailto:P4@2.5GHz


Data-par experiment (STP)

 6
 3
 0

 80%
 40%
 0%

 0  400 350 300 250 200 150 100 50

 400

 300

 200

 100
 0

25%

25%25%

25%
36%

22%

31%

11%

51%

1%

41%

8%
35%

23%

32%

11%

Time (iteration no.)

Iteration time

Relative Unbalance

A

D

C

B

67

Distribution of load among platforms (n. of VPs)

67



Conclusions 1/2

68

Application adaptivity in ASSIST
complex, but trasparent (no burden for the 
programmers)

they should just define they QoS requirements

QoS models are automatically generated from program structure (and don’t 
depend on seq. funct.)

dynamically controlled, efficiently managed
catch both platforms unsteadiness and code irregular behavior in running 
time

performance models not critical, reconfiguration does not stop the 
application

key feature for the grid

68



Conclusions 2/2

ASSIST cope with
grid platform unsteadiness
interoperability with standards

and rely on them for many features

high-performance
app deployment problems on grid

private networks, job schedulers, firewalls, ...

QoS of the whole application through hierarchy of 
managers

69
69



Thank you

ASSIST is open source under GPL
http://www.di.unipi.it/Assist.html

70

http://www.di.unipi.it/Assist.html
http://www.di.unipi.it/Assist.html



